Memorization Weights for Instance Reweighting in Adversarial Training

Jianfu Zhang1, Yan Hong2, and Qibin Zhao1 \footnote{Corresponding author}

1RIKEN AIP
2Shanghai Jiao Tong University
jianfu.zhang@riken.jp, yanhong.sjtu@gmail.com, qibin.zhao@riken.jp

Abstract

Adversarial training is an effective way to defend deep neural networks (DNN) against adversarial examples. However, there are atypical samples that are rare and hard to learn, or even hurt DNNs' generalization performance on test data. In this paper, we propose a novel algorithm to reweight the training samples based on self-supervised techniques to mitigate the negative effects of the atypical samples. Specifically, a memory bank is built to record the popular samples as prototypes and calculate the memorization weight for each sample, evaluating the “typicalness” of a sample. All the training samples are reweighted based on the proposed memorization weights to reduce the negative effects of atypical samples. Experimental results show the proposed method is flexible to boost state-of-the-art adversarial training methods, improving both robustness and standard accuracy of DNNs.

1 Introduction

DNNs have shown enormous success in the machine learning community. However, recent works indicate that DNNs are vulnerable to adversarial examples (Goodfellow, Shlens, and Szegedy 2015; Szegedy et al. 2014). Those adversarial examples are crafted by adding perturbations imperceptible to human eyes from the natural images, causing disastrous consequences. Since DNNs play critical roles in different artificial intelligence applications nowadays, affecting vast groups of people, developing robust DNNs against these adversarial attacks is an important topic.

To improve robustness of DNNs, existing works develop adversarial training (AT) (Madry et al. 2018) methods, which minimize DNN’s error against adversarial perturbations by fitting DNNs on generated adversarial examples of all natural training data. Based on AT, many methods (Zhang et al. 2019; Wang et al. 2019; Zhang et al. 2020a; Wu, Xia, and Wang 2020; Chen et al. 2020a) are proposed to further enhance the robustness of DNNs. Although ATs can fit all training data as well as their adversarial counterparts to improve DNN’s robustness, they still suffer from poor robustness performance (i.e., accuracy on adversarial samples) on the test set (Tsipras et al. 2018; Schmidt et al. 2018). Adversarial examples generated by AT are stochastic and for worst-case scenario. DNNs need to be over-parameterized to fit these adversarial examples or compromise their performance.

Recent works (Xu et al. 2021; Feldman 2020; Sanyal et al. 2020; Dong, Liu, and Shang 2021) indicate that natural images and data distributions have a significant fraction of atypical examples which are distinct from the sub-populations and have rare frequencies to appear in the training set. Experimental results show that if DNN is trained with atypical and typical samples, atypical samples prevent DNNs from memorizing typical samples and hurt DNN’s robust performance. These discoveries demonstrate that if no more training samples are provided, it is beneficial to remove or apply less weight on the atypical samples to reduce their negative effects for training robust DNNs.

In this paper, we propose a novel reweight method by leveraging the memorization effect in AT to distinguish atypical samples from typical samples adaptively with increasing model generalization ability. In detail, we adopt self-supervised learning techniques to learn a discrete codebook (Esser, Rombach, and Ommer 2021; van den Oord, Vinyals, and Kavukcuoglu 2017). The codebook receives embeddings extracted by DNN from input samples and records the most popular embeddings, which can be recognized as prototypes of typical samples. Typical samples are hard to perturb due to their large populations. With the help of codebook, each sample is assigned with an adaptive weight calculated based on how close each sample is to its nearest neighbor code in the codebook. Larger weights are assigned to the samples near the nearest neighbor code, which can be recognized as typical samples, otherwise, the samples which are far away from the nearest neighbor codes are atypical samples and assigned with lower weights. Our proposed reweight method is fast and flexible to boost existing adversarial training algorithms. Compare to existing reweight methods (Zhang et al. 2020b; Wang et al. 2020), our proposed method is more stable to defend strong and adaptive attacks. Experimental results show that the proposed method is effective in defending different backbones of DNNs on different datasets.

2 Preliminary and Related Works

We focus on image classification task in this paper. For a C-class classification problem, we consider a training dataset
S = \{ (x_i, y_i) \}_{i=1}^{n} \) independently drawn from a distribution D and a DNN \(f_\theta(x) \) parameterized by \(\theta \). \(f_\theta(x) \) predicts the label of an input data via \(f_\theta(x) = \arg \max_k p_k(x; \theta) \), with \(p_k(x; \theta) \) being the predicted probability (softmax on logits) of the \(k \)-th class.

2.1 Adversarial Training (AT)

AT’s objective functions imply the optimization of adversarially robust networks, with one inner step generating adversarial data and one outer step minimizing loss on the generated adversarial data. Let \((\mathcal{X}, d_\infty) \) denote the input feature space \(\mathcal{X} \) with the infinity distance metric \(d_\infty(x, x') = \| x - x' \|_\infty, B_\epsilon(x) = \{ x' \in \mathcal{X} \mid d_\infty(x, x') \leq \epsilon \} \) with \(\epsilon > 0 \) be the closed ball of radius \(\epsilon \) centered at \(x \) in \(\mathcal{X} \), and dataset \(S = \{ (x_i, y_i) \}_{i=1}^{n} \), where \(x_i \in \mathcal{X} \) and \(y_i \in \mathcal{Y} = \{0, 1, ..., C - 1\} \). The objective function of standard adversarial training (AT) (Madry et al. 2018) is:

\[
\arg \min_{f_\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell_{out}(f_\theta(\tilde{x}_i), y_i), \quad \text{outer step}
\]

s.t. \(\tilde{x}_i = \arg \max_{x \in B_\epsilon(x_i)} \ell_{in}(f_\theta(x), y_i) \),

(1)

and \(\tilde{x} \) is the most “adversarial” data within the \(\epsilon \)-ball centered as \(x \), and the loss functions \(\ell : \mathcal{R}^C \times \mathcal{Y} \rightarrow \mathcal{R} \) are specific loss functions (e.g., cross-entropy loss). AT employs the most adversarial data generated according to the inner step for updating the current model by outer step. The PGD method (Madry et al. 2018) is commonly adopted for the inner step: for a natural example \(x_i \), it starts with random noise and repeatedly computes:

\[
\delta_i^{(t)} \leftarrow \text{Proj}_\epsilon \left[\delta_i^{(t-1)} + \alpha \text{sign} \left(\nabla_{\theta} \ell(x_i + \delta_i^{(t-1)}, y_i; \theta) \right) \right]
\]

with the clipping operation \(\text{Proj}_\epsilon \) such that \(\delta_i^{(t)} \) is always in the \(\epsilon \) bound, and sign the signum function. Due to non-convexity, we approximate the optimal solution iteratively by \(\delta_i^{(T)} \) with \(T \) being the maximally allowed steps. Accordingly, \(\delta_i^{(T)} \) is viewed as the perturbation for the most adversarial example, i.e., \(\tilde{x} = x_i + \delta_i^{(T)} \).

Intuitively, AT corresponds to the worst-case robust optimization, continuously augmenting the training dataset with adversarial variants that highly confuse the current model. Therefore, it is a practical learning framework to alleviate the impact of adversarial attacks. However, it still results in unsatisfactory model performance regarding adversarial robustness, due to:

Noises: Adversarial training generates adversarial examples stochastically because of random initialization. The model is not apt and not necessary to memorize such very noisy information.

Training-friendly: AT has an overwhelming smoothing effect in fitting highly adversarial examples (Zhang et al. 2019), and thus consumes a large model capacity to learn from individual data points.

To alleviate these problems, SWA (Chen et al. 2020b) and AWP (Wu, Xia, and Wang 2020) are proposed which smooth the weights of DNNs in AT. In (Zhang et al. 2020a), Friendly Adversarial Training (FAT) is proposed which stops PGD early to avoid generating adversarial data which are too strong to train DNNs for enhanced robustness.

2.2 Instance Reweighting for Adversarial Training

Instance reweighting methods are used to improve adversarial training. In the framework of reweighting, weights are assigned to the loss associated with individual samples. The goal of reweighting is to minimize the empirical weighted training loss, where objective function Eqn. 1 is modified as:

\[
\min_{f_\theta \in \mathcal{F}} \sum_i \omega_i \ell_{out}(f_\theta(\tilde{x}_i), y_i) \quad \text{s.t. } \omega_i \geq 0 \text{, and } \sum \omega_i = 1.
\]

The constraints are required since the risk after weighting is consistent with the original one without weighting.

Previous works in instance reweighting for adversarial robustness (Zhang et al. 2020b; Wang et al. 2020; Zeng et al. 2021) largely focus on designing heuristic functions of various notions of margins to use for the sample weight \(w_i \) to evaluate the “difficulty” of the sample.

A reweighting method for adversarial training typically (I) should focus on misclassified samples and (II) should favour samples to the decision boundary.

(Wang et al. 2019) shows that we can apply more weights to the incorrect samples for better performance. (Zhang et al. 2020b) claimed that training examples should have unequal significance in AT, and proposed the Geometry-Aware Instance-Reweighted Adversarial Training (GAILAT). They revealed that data near decision boundary are much vulnerable to be attacked and require large weights. Margin-Aware Instance Reweighting Learning (MAIL) (Wang et al. 2020) relies on the local linearity of ReLU networks and the fact that for samples near the margin, the relative scale of predicted class-likelihoods directly corresponds to the distance to the decision boundary.

Although these techniques improve adversarial training over regular AT, they still have problems: **Vulnerability:** Existing reweighting methods mostly depend on supervised metrics. They may be biasing the model towards certain samples by re-scaling the loss and lead the model to be susceptible to attacks that scale the logits. In (Hitaj et al. 2021), a simple adaptive attack: logit scaling attack is proposed, which can easily decrease GAILAT’s robust accuracy.

2.3 Memorization Effects of Adversarial Training

There are several existing methods discuss the relationship between memorization effects and adversarial training. As well known, overparameterized DNNs have tremendous capacity to make them easy to perfectly fit the training dataset (Zhang et al. 2021; Neyshabur et al. 2017; Belkin et al.
We remove the last layer of classifier $f_0(\cdot)$ as feature extractor $g_0(\cdot)$, which is used to extract embeddings of natural samples x_i (resp., adversarial sample \hat{x}_i) as F_i (resp., \hat{F}_i) $\in \mathbb{R}^d$, where d is the feature dimension. We build a memory bank to adaptively learn the typical sample prototypes. There are many works study how to build memory banks for DNNs (Sun et al. 2021; Wu et al. 2018; Song et al. 2019), and we apply the method in (van den Oord, Vinyals, and Kavukcuoglu 2017; Esser, Rombach, and Ommer 2021). We learn a codebook $B = \{e_k\}_{k=1}^N \in \mathbb{R}^{N \times d}$ where N is the number of items in the codebook. Each code $e_k \in \mathbb{R}^d$ in codebook B can be regarded as a set of stable modes from distribution for training samples. In each batch, we use embeddings $\{F_i\}$ to update the codebook. Similar to (van den Oord, Vinyals, and Kavukcuoglu 2017), we quantize embeddings F_i by looking up its nearest neighbor in the codebook B. Specifically, each F_i can be replaced with its nearest item e_k in the codebook B by comparing the distances between F_i and all items in B. This process can be represented by optimizing:

$$
\ell_m = \sum_i \|sg[F_i] - \hat{F}_i\|_2^2, \tag{3}
$$

where $\hat{F}_i = e_k$, $k = \arg \min_j \|F_i - e_j\|_2$, and $sg[\cdot]$ represents the stop-gradient operation and $\|\cdot\|_2$ denotes L_2 loss. The codebook is trained concurrently with the classifier, which reveals the prototype representations of the classifier adaptively during the training phase. Please note, the memory loss does not return gradients to DNNs. The memory loss will enhance the codes which appear more frequently in the feature space, which is closely related to the “typical” sample concept.

3.2 Weight Assignment for Adversarial Training

With updated codebook B, we can measure the weights of embeddings $\{F_i\}$ for different samples. Items $\{e_k\}$ in codebook B represents the stable major population of training
features, \textit{i.e.}, typical samples. Given embeddings \(\{F\}\), we can calculate the Euclidean distance \(d(F, B)\) between \(F\) and its nearest code \(e_k\) in codebook \(B\). The distance \(d(F, B)\) indicates the “typicalness” of embedding \(F\). The smaller the distance \(d(F, B)\), the more typical the embedding \(F\) is. In this way, we define two opposite weights of samples:

\[
\begin{align*}
 w^-(F) &= \exp(-d(F, B)/T), \\
 w^+(F) &= \exp(d(F, B)/T)
\end{align*}
\]

where \(\exp(\cdot)\) is the natural exponential function and \(T = 10\) is a constant hyperparameter as temperature. Intuitively, \(w^-\) will suppress the effect of atypical samples while \(w^+\) will amplify the effect of atypical samples.

3.3 Objective Functions

In (Feldman and Zhang 2020), the “long tail theory” shows that atypical samples in natural image distribution help generalization even with significant memorization. However, the long-tail distributions of adversarial examples may be harmful to DNNs, which is opposite to the phenomenon for natural examples. Different from natural samples, atypical adversarial samples contain more noisy information and may be more training-unfriendly, as we have mentioned in Section 2.1. We choose to apply \(w^-\) on adversarial samples and \(w^+\) on natural samples for MeoW. Here, we demonstrate how to apply the proposed reweight method on AT (Madry et al. 2018) and TRADES (Zhang et al. 2019).

For AT, the objective function (outer step in Eqn. (1)) changes to:

\[
\begin{align*}
 \ell_{AT}^{MeoW}(f_0(\hat{x}_i), y_i) &= \alpha \cdot w^+(F) \cdot CE(p(\hat{x}; \theta), y) \\
 &+ (1 - \alpha) \cdot w^-(\hat{F}) \cdot CE(p(\hat{x}; \theta), y) \quad (5)
\end{align*}
\]

For TRADES, the objective function changes to:

\[
\begin{align*}
 \ell_{TRADES}^{MeoW}(f_0(x_i), y_i) &= w^+(\hat{F}) \cdot CE(p(x; \theta), y) \\
 &+ \lambda \cdot w^-(\hat{F}) \cdot KL(p(x; \theta) || p(\hat{x}; \theta)) \quad (6)
\end{align*}
\]

where \(\alpha\) and \(\lambda\) are trade-off hyperparameters.

3.4 Implementation Details and Discussions

Latency of MeoW:

In Table 1, we report the model complexity and average time cost for each training batch of MeoW and baseline backbones. \(N = 2048\) in Table 1. We can see the additional latency of MeoW is minor (about 0.01s per batch) for training. It is also worth noting that MeoW does not introduce any latency during the test phase.

Embedding Selection:

As mentioned in Section 2.2, reweighting methods focus on samples which are misclassified or near decision boundary. MeoW can also achieve this goal by selecting a subset of misclassified natural/adversarial embeddings from each batch for calculating the memory loss in Eqn. 3. Given natural sample \(x_i\) (resp., adversarial sample \(x_i\)) with predicted label \(\hat{y}_i\) (resp., \(\hat{y}_i\)). If predicted \(\hat{y}_i = y_i\) (resp., \(\hat{y}_i = y_i\)), the corresponding input \(x_i\),

\[
\begin{array}{|c|c|c|}
\hline
\text{Network} & \text{Time} & \text{Parameters(M)} \\
\hline
\text{ResNet18} & 0.597 & 11.2 \\
+\text{MeoW} & 0.608 & 12.2 \\
\text{WRN-34-10} & 1.121 & 46.2 \\
+\text{MeoW} & 1.129 & 47.5 \\
\hline
\end{array}
\]

Table 1: Batch train time and number of model parameters.

(resp., \(\hat{x}_i\)) is referred to as correct natural (resp., adversarial) sample, otherwise the input is referred to as wrong natural (resp., adversarial) sample. We divide natural features \(\{F_i\}\) (resp., adversarial features \(\{\hat{F}_i\}\)) into two subsets consisting of correct natural features \(\{F^c_i\}\) (resp., correct adversarial features \(\{\hat{F}^c_i\}\)) and wrong natural features \(\{F^w_i\}\) (resp., incorrect adversarial features \(\{\hat{F}^w_i\}\)). We select wrong natural features \(\{F^w_i\}\) and wrong adversarial features \(\{\hat{F}^w_i\}\) to update our codebook \(B\). In Appendix, we will discuss the effect of embedding selection for MeoW in detail.

Training Process:

For each batch of training, we first calculate the adversarial examples based on Eqn. 2. Then we calculate the embeddings \(F\) from the codebook and calculate weights in Eqn. 4. After that we will update the codebook and the network respectively. Please refer to the Appendix for the pseudocodes of the whole algorithm.

Remarks:

Generally, MeoW will force the model to pay more attention to the adversarial samples which appear more frequently in the memory bank. This will make the adversarial training process stable and smooth. The capacity of the codebook is limited, hence, DNN is regularized to ignore the noise of adversarial samples caused by random initialization or optimization. Intuitively, extreme training-unfriendly adversarial samples are out-of-distribution samples. Hence, they are suppressed by MeoW. After adopting reweighted scheme, the model would be focused on memorizing stable features from typical samples instead of relying overly on atypical samples, in this way, the model is able to improve the robustness of predictions. It is also worth noting that MeoW also amplifies the weights of atypical natural samples, which avoids ignoring minor populations of the training dataset.

4 Experiments

To evaluate the effectiveness of MeoW, we conducted extensive experiments on three datasets, including CIFAR-10 (Krizhevsky et al. 2009), CIFAR-100 (Krizhevsky et al. 2009), and SVHN (Netzer et al. 2011). We choose popular PreActResNet (He et al. 2016) and Wide ResNet (Zagoruyko and Komodakis 2016) as backbones in our experiments.

4.1 Experimental Setup

Training Parameters We train the networks batch stochastic gradient descent with momentum 0.9, weight decay \(5 \times 10^{-4}\). The training process takes 200 epochs. Batch size is 128, and the initial learning rate is 0.1. Learning rate
Table 2: Average accuracy (%) of AT and AT+MeoW on different datasets with PreActResNet-18.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Methods</th>
<th>Robustness</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Best</td>
<td>Last</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>AT</td>
<td>52.81 ± 0.23</td>
<td>45.30 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>AT+MeoW</td>
<td>55.07 ± 0.27</td>
<td>54.61 ± 0.18</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>AT</td>
<td>27.09 ± 0.18</td>
<td>21.97 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>AT+MeoW</td>
<td>30.47 ± 0.25</td>
<td>30.09 ± 0.29</td>
</tr>
<tr>
<td>SVHN</td>
<td>AT</td>
<td>54.51 ± 0.13</td>
<td>45.39 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>AT+MeoW</td>
<td>59.49 ± 0.20</td>
<td>57.23 ± 0.26</td>
</tr>
</tbody>
</table>

Table 3: Average accuracy (%) of different methods on CIFAR10 with WideResNet of 5 runs.

<table>
<thead>
<tr>
<th>Defense</th>
<th>Natural</th>
<th>PGD-100</th>
<th>AutoAttack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT (Madry et al. 2018)</td>
<td>86.07 ± 0.16</td>
<td>55.72 ± 0.28</td>
<td>52.51 ± 0.22</td>
</tr>
<tr>
<td>AT+MeoW</td>
<td>87.03 ± 0.18</td>
<td>57.73 ± 0.30</td>
<td>53.92 ± 0.24</td>
</tr>
<tr>
<td>TRADES (Zhang et al. 2019)</td>
<td>84.37 ± 0.20</td>
<td>55.93 ± 0.25</td>
<td>53.00 ± 0.27</td>
</tr>
<tr>
<td>TRADES+MeoW</td>
<td>85.07 ± 0.19</td>
<td>58.72 ± 0.23</td>
<td>55.60 ± 0.29</td>
</tr>
<tr>
<td>FAT (Zhang et al. 2020a)</td>
<td>87.93 ± 0.23</td>
<td>55.30 ± 0.31</td>
<td>52.09 ± 0.23</td>
</tr>
<tr>
<td>FAT+MeoW</td>
<td>88.10 ± 0.19</td>
<td>57.82 ± 0.25</td>
<td>53.80 ± 0.21</td>
</tr>
<tr>
<td>AWP (Wu, Xia, and Wang 2020)</td>
<td>85.22 ± 0.19</td>
<td>58.78 ± 0.30</td>
<td>56.03 ± 0.29</td>
</tr>
<tr>
<td>AWP+MeoW</td>
<td>85.93 ± 0.19</td>
<td>59.42 ± 0.28</td>
<td>56.61 ± 0.22</td>
</tr>
<tr>
<td>RST (Carmon et al. 2019)</td>
<td>89.67 ± 0.16</td>
<td>62.03 ± 0.18</td>
<td>59.41 ± 0.20</td>
</tr>
<tr>
<td>RST+MeoW</td>
<td>90.01 ± 0.14</td>
<td>63.79 ± 0.21</td>
<td>60.70 ± 0.19</td>
</tr>
</tbody>
</table>

Hyperparameters For the proposed MeoW, we set the size of the codebook $N = 2048$ and the temperature $T = 10$ in Eqn. (4). The trade-off parameter for AT α in Eqn. (5) was set to 0.2 and for TRADES λ in Eqn. (6) it was 6. For the detailed ablative studies of these hyperparameters, please refer to Appendix.

Robustness Evaluation We evaluated our methods and baselines using the standard accuracy on natural test data (NAT) and the adversarial robustness based on several representative attack methods, including the PGD method with 100 iterations (Madry et al. 2018), and AutoAttack (AA) (Croce and Hein 2020). We evaluate all the methods on white-box setting that all these methods have full access to the model parameters and all the attacks are constrained by the same perturbation limit as above. Black-box attack methods (Bai et al. 2020; Chen et al. 2020a; Li et al. 2020) are relatively easy to defense (Chakraborty et al. 2018), so here we do not focus on them.

4.2 Comparing Vanilla AT and AT+MeoW

In this part, we conduct a case study on vanilla AT and AT+ MeoW across three benchmark datasets (CIFAR-10 (Krizhevsky et al. 2009), CIFAR-100 (Krizhevsky et al. 2009), and SVHN (Netzer et al. 2011)) and L_∞ threat model using PreActResNet-18 for 200 epochs. We follow the same settings in (Rice, Wong, and Kolter 2020): for L_∞ threat model, $\epsilon = 8/255$, step size is $1/255$ for SVHN, and $2/255$ for CIFAR-10 and CIFAR-100. The training/test attacks are PGD10/20. The test robustness is reported in Table 2, where “Best” means the highest robustness that ever achieved at different checkpoints for each dataset and threat model while “Last” means the robustness at the last epoch checkpoint.

We can see that AT+ MeoW consistently improves the test robustness for all cases. It indicates that MeoW is generic and is applicable for different datasets to reduce the negative effects of “atypical” samples based on learned memory bank.

4.3 Applying MeoW to Other Defense

In this part, we evaluate the robustness of our proposed MeoW on CIFAR-10 (Krizhevsky et al. 2009) to benchmark the state-of-the-art robustness against white-box attacks. Two types of adversarial training methods are considered here: One is only based on original data: 1) AT (Madry et al. 2018); 2) TRADES (Zhang et al. 2019), 3) FAT (Zhang et al. 2020a), and 4) AWP (Wu, Xia, and Wang 2020). The other type is RST (Carmon et al. 2019) using additional data. For CIFAR-10 under L_∞ attack with $\epsilon = 8/255$, we train WideResNet 28-10 for RST (Carmon et al. 2019), while WideResNet 34-10 for remaining adversarial training methods, following their original papers. All defenses are trained
Table 4: Average accuracy (\%) of reweight methods on CIFAR10 with WRN-34-10.

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Reweight</th>
<th>Natural</th>
<th>PGD-100</th>
<th>AutoAttack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Vanilla</td>
<td>86.07 ± 0.16</td>
<td>55.72 ± 0.28</td>
<td>52.51 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>GAIRAT (Zhang et al. 2020a)</td>
<td>86.20 ± 0.46</td>
<td>57.46 ± 0.48</td>
<td>41.39 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>MAIL (Wang et al. 2020)</td>
<td>84.98 ± 0.36</td>
<td>57.51 ± 0.36</td>
<td>47.29 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>MeoW</td>
<td>87.03 ± 0.18</td>
<td>57.73 ± 0.30</td>
<td>53.92 ± 0.24</td>
</tr>
<tr>
<td>TRADES</td>
<td>Vanilla</td>
<td>84.37 ± 0.20</td>
<td>55.93 ± 0.25</td>
<td>53.00 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>GAIRAT (Zhang et al. 2020a)</td>
<td>85.01 ± 0.30</td>
<td>58.49 ± 0.51</td>
<td>48.71 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>MAIL (Wang et al. 2020)</td>
<td>84.05 ± 0.37</td>
<td>57.74 ± 0.59</td>
<td>52.81 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>MeoW</td>
<td>85.07 ± 0.19</td>
<td>58.72 ± 0.23</td>
<td>55.60 ± 0.29</td>
</tr>
</tbody>
</table>

Figure 2: Visualization of natural and adversarial sample with learned weights on CIFAR-10. In the left column (resp., right) column, we show five training sample with the highest (resp., lowest) weights obtained by our method.

Table 3 reports the “best” test robustness (the highest robustness ever achieved at different checkpoints for each defense against each attack) against white-box and black-box attacks. “Natural” denotes the accuracy on natural test examples. First, we test PGD-100 (Madry et al. 2018). MeoW almost improves the robustness of state-of-the-art methods against all types of attacks. Second, we test MeoW against AutoAttack (AA) (Croce and Hein 2020), which is a strong and reliable attack to verify the robustness via an ensemble of diverse parameter-free attacks. Compared with original results of those state-of-the-art methods, MeoW can further boost their robustness, ranking the first on both with and without additional data. This verifies that MeoW is flexible to be integrated with existing defense methods (resp., AT, TRADES, FAT, AWP, and RST) to further improve adversarial robustness.

4.4 Comparison with Other Reweighting Methods

In this part, we compare MeoW with other reweighting methods using the same setting as Section 4.3. For comparison, we firstly report the results without any reweighting strategy referred to as “Vanilla” in table 4. Then, we report the results of competitive reweighting baselines including GAIRAT (Zhang et al. 2020b), and MAIL (Wang et al. 2020) in table 4. As we can see, the superiority of our method is apparent. Comparing the results between “MeoW+AT” (resp., “MeoW + TRADES”) and “AT” (resp., “TRADES”, “MART”, “MAIL”), MeoW can lead to promising robustness, especially for the strong ensemble attack AA. The reason is that “MeoW” can measure the robustness of training samples by calculating the distance between its feature and its nearest robust cluster in learned codebook. As a result, it can help accurately assign high weights for those robust samples during training.

In Appendix, we also show MeoW is more robust to state-of-the-art reweighting methods against logit-scale attack (Hitaj et al. 2021), which is specially designed to attack...
Figure 3: Illustration of our motivation of designing reweighting scheme. In subfigure (a) (resp., subfigure (b)), we visualize the results of our reweighted scheme on natural and adversarial samples from selected three classes (resp., all ten classes) on CIFAR-10 dataset as example. Natural training samples (resp., adversarial training samples) are denoted with colored circles (○) (resp., boxes (□)). The larger the weights, the more transparent the colored circles (○) (resp., boxes (□)). In each class, samples with larger weights are gathered into several clusters, while sample with small weights are scattered in sparse space far from those clustered samples.

4.5 Analysis of the Learned Weight

Examples with Small/Large Weights: We show some examples training natural samples (resp., adversarial samples) from CIFAR10 dataset in Figure 2, those example samples are selected based on the weights learned from our proposed method. In Figure 2, natural (resp., adversarial) samples with the highest weights are shown in the left subfigure, we can see that the objects in training samples with higher weights are clear and the background information is simple, (i.e., the whole body of frogs and trucks in the left subfigure can be captured by camera and its bodies account for a large proportion in the image). In contrast, samples with small weights in the right subfigure are far different from large-weighted samples. Some of them have unusually colored skin (i.e., frog in 7-th and 10-th column), which are quite different from usual samples. For trucks with small weights (i.e., 8-th and 9-th column) seem like toys, which is challenging for model to classify them into real trucks.

t-SNE Visualization of the Learned Representation: To further demonstrate our motivation, on CIFAR-10 dataset with our proposed reweight scheme, we visualize the t-SNE of reweighted embeddings of natural samples \(F \) and embeddings of adversarial samples \(\hat{F} \) from three/ten class samples in Figure 3. From the figure, we can find that the natural samples (resp., adversarial samples) with larger weights (colored with less transparent ○ (resp., □)) are gathered into several clusters, while natural samples (resp., adversarial samples) with small weights (colored with more transparent ○ (resp., □)) are scattered in sparse space far from those clusters. Figure 3 can indicate that the learned larger weights are assigned to typical samples, whose features are gathered into stable clusters in feature space, while those samples with smaller weights are scattered in more parse feature space.

5 Conclusions

In this paper, we leverage memorization effect in DNNs to construct a memory bank using vector quantization techniques. Learned memory bank can guide model to distinguish typical samples from atypical samples for robust training by assigning larger weight to typical samples while alleviating overly relying on atypical samples. Extensive experiments on various datasets with different backbones demonstrate the effectiveness of our proposed instance reweighting method. It is interesting to consider designing adaptive attacks to MeoW based on the codebook it learned. However, the codebook is learned adaptively during the training process and the effect is complex. Also, it is hard to design attack methods against reweighting methods. We take designing attacks against MeoW as future work.

Acknowledgments

The work is partially supported by JSPS KAKENHI Grant Number 20H04249, 20H04208.

References

Belkin, M.; Hsu, D.; Ma, S.; and Mandal, S. 2019. Reconciling modern machine-learning practice and the classi-

