
Are Transformers Effective for Time Series Forecasting?

Ailing Zeng1,2*, Muxi Chen1*, Lei Zhang2, Qiang Xu1

1The Chinese University of Hong Kong
2International Digital Economy Academy

{zengailing, leizhang}@idea.edu.cn,{mxchen21, qxu}@cse.cuhk.edu.hk

Abstract

Recently, there has been a surge of Transformer-based solu-
tions for the long-term time series forecasting (LTSF) task.
Despite the growing performance over the past few years,
we question the validity of this line of research in this work.
Specifically, Transformers is arguably the most successful so-
lution to extract the semantic correlations among the elements
in a long sequence. However, in time series modeling, we are
to extract the temporal relations in an ordered set of contin-
uous points. While employing positional encoding and using
tokens to embed sub-series in Transformers facilitate preserv-
ing some ordering information, the nature of the permutation-
invariant self-attention mechanism inevitably results in tem-
poral information loss.
To validate our claim, we introduce a set of embarrassingly
simple one-layer linear models named LTSF-Linear for com-
parison. Experimental results on nine real-life datasets show
that LTSF-Linear surprisingly outperforms existing sophisti-
cated Transformer-based LTSF models in all cases, and often
by a large margin. Moreover, we conduct comprehensive em-
pirical studies to explore the impacts of various design ele-
ments of LTSF models on their temporal relation extraction
capability. We hope this surprising finding opens up new re-
search directions for the LTSF task. We also advocate revisit-
ing the validity of Transformer-based solutions for other time
series analysis tasks (e.g., anomaly detection) in the future.

Introduction
Time series are ubiquitous in today’s data-driven world.
Given historical data, time series forecasting (TSF) is a
long-standing task that has a wide range of applications,
including but not limited to traffic flow estimation, energy
management, and financial investment. Over the past sev-
eral decades, TSF solutions have undergone a progression
from traditional statistical methods (e.g., ARIMA (Ariyo,
Adewumi, and Ayo 2014)) and machine learning techniques
(e.g., GBRT (Friedman 2001)) to deep learning-based solu-
tions, e.g., (Bai, Kolter, and Koltun 2018; Liu et al. 2022).

Transformer (Vaswani et al. 2017) is arguably the most
successful sequence modeling architecture, demonstrating
unparalleled performances in various applications, such as
natural language processing (NLP) (Devlin et al. 2018),

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

speech recognition (Dong, Xu, and Xu 2018), and computer
vision (Liu et al. 2021b). Recently, there has also been a
surge of Transformer-based solutions for time series analy-
sis, as surveyed in (Wen et al. 2022). Most notable mod-
els, which focus on the less explored and challenging long-
term time series forecasting (LTSF) problem, include Log-
Trans (Li et al. 2019) (NeurIPS 2019), Informer (Zhou et al.
2021) (AAAI 2021 Best paper), Autoformer (Xu et al. 2021)
(NeurIPS 2021), Pyraformer (Liu et al. 2021a) (ICLR 2022
Oral), Triformer (Cirstea et al. 2022) (IJCAI 2022) and the
recent FEDformer (Zhou et al. 2022) (ICML 2022).

The main working power of Transformers is from its
multi-head self-attention mechanism, which has a remark-
able capability of extracting semantic correlations among el-
ements in a long sequence (e.g., words in texts or 2D patches
in images). However, self-attention is permutation-invariant
and “anti-order” to some extent. While using various types
of positional encoding techniques can preserve some order-
ing information, it is still inevitable to have temporal infor-
mation loss after applying self-attention on top of them. This
is usually not a serious concern for semantic-rich applica-
tions such as NLP, e.g., the semantic meaning of a sentence
is largely preserved even if we reorder some words in it.
However, when analyzing time series data, there is usually
a lack of semantics in the numerical data itself, and we are
mainly interested in modeling the temporal changes among
a continuous set of points. That is, the order itself plays
the most crucial role. Consequently, we pose the following
intriguing question: Are Transformers really effective for
long-term time series forecasting?

Moreover, while existing Transformer-based LTSF so-
lutions have demonstrated considerable prediction accu-
racy improvements over traditional methods, in their exper-
iments, all the compared (non-Transformer) baselines per-
form autoregressive or iterated multi-step (IMS) forecast-
ing (Ariyo, Adewumi, and Ayo 2014; Salinas, Flunkert, and
Gasthaus 2017; Bahdanau, Cho, and Bengio 2014; Taylor
and Letham 2017), which are known to suffer from sig-
nificant error accumulation effects for the LTSF problem.
Therefore, in this work, we challenge Transformer-based
LTSF solutions with direct multi-step (DMS) forecasting
strategies to validate their real performance.

Not all time series are predictable, let alone long-term
forecasting (e.g., for chaotic systems). We hypothesize that

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11121



long-term forecasting is only feasible for those time series
with a relatively clear trend and periodicity. As linear mod-
els can already extract such information, we introduce a set
of embarrassingly simple models named LTSF-Linear as a
new baseline for comparison. LTSF-Linear regresses histor-
ical time series with a one-layer linear model to forecast fu-
ture time series directly. We conduct extensive experiments
on nine widely-used benchmark datasets that cover various
real-life applications: traffic, energy, economics, weather,
and disease predictions. Surprisingly, our results show that
LTSF-Linear outperforms existing complex Transformer-
based models in all cases, and often by a large margin (20%
∼ 50%). Moreover, we find that, in contrast to the claims in
existing Transformers, most of them fail to extract temporal
relations from long sequences, i.e., the forecasting errors are
not reduced (sometimes even increased) with the increase of
look-back window sizes. Finally, we conduct various abla-
tion studies on existing Transformer-based TSF solutions to
study the impact of various design elements in them.

To sum up, the contributions of this work include:

• To the best of our knowledge, this is the first work to
challenge the effectiveness of the booming Transformers
for the long-term time series forecasting task.

• To validate our claims, we introduce a set of embar-
rassingly simple one-layer linear models, named LTSF-
Linear, and compare them with existing Transformer-
based LTSF solutions on nine benchmarks. LTSF-Linear
can be a new baseline for the LTSF problem.

• We conduct comprehensive empirical studies on various
aspects of existing Transformer-based solutions, includ-
ing the capability of modeling long inputs, the sensitivity
to time series order, the impact of positional encoding
and sub-series embedding, and efficiency comparisons.
Our findings would benefit future research in this area.

With the above, we conclude that the temporal model-
ing capabilities of Transformers for time series are exagger-
ated, at least for the existing LTSF benchmarks. At the same
time, while LTSF-Linear achieves a better prediction accu-
racy compared to existing works, it merely serves as a sim-
ple baseline for future research on the challenging long-term
TSF problem. With our findings, we also advocate revisiting
the validity of Transformer-based solutions for other time
series analysis tasks (e.g., anomaly detection) in the future.

Preliminaries: TSF Problem Formulation
For time series containing C variates, given historical data
X = {Xt

1, ..., X
t
C}Lt=1, wherein L is the look-back window

size and Xt
i is the value of the ith variate at the tth time step.

The time series forecasting task is to predict the values X̂ =

{X̂t
1, ..., X̂

t
C}

L+T
t=L+1 at the T future time steps. When T > 1,

iterated multi-step (IMS) forecasting (Taieb, Hyndman et al.
2012) learns a single-step forecaster and iteratively applies it
to obtain multi-step predictions. Alternatively, direct multi-
step (DMS) forecasting (Chevillon 2007) directly optimizes
the multi-step forecasting objective at once.

Compared to DMS forecasting results, IMS predictions
have smaller variance thanks to the autoregressive estima-

tion procedure, but they inevitably suffer from error accu-
mulation effects. Consequently, IMS forecasting is prefer-
able when there is a highly-accurate single-step forecaster,
and T is relatively small. In contrast, DMS forecasting gen-
erates more accurate predictions when it is hard to obtain an
unbiased single-step forecasting model, or T is large.

Transformer-Based LTSF Solutions
Transformer-based models (Vaswani et al. 2017) have
achieved unparalleled performances in many long-standing
AI tasks in natural language processing and computer vi-
sion fields, thanks to the effectiveness of the multi-head
self-attention mechanism. This has also triggered lots of re-
search interest in Transformer-based time series modeling
techniques (Wen et al. 2022). In particular, a large amount
of research works are dedicated to the LTSF task (e.g., (Li
et al. 2019; Liu et al. 2021a; Xu et al. 2021; Zhou et al. 2021,
2022)). Considering the ability to capture long-range depen-
dencies with Transformer models, most of them focus on the
less-explored long-term forecasting problem (T ≫ 1)1.

When applying the vanilla Transformer model to the
LTSF problem, it has some limitations, including the
quadratic time/memory complexity with the original self-
attention scheme and error accumulation caused by the au-
toregressive decoder design. Informer (Zhou et al. 2021) ad-
dresses these issues and proposes a novel Transformer ar-
chitecture with reduced complexity and a DMS forecasting
strategy. Later, more Transformer variants introduce various
time series features into their models for performance or effi-
ciency improvements (Liu et al. 2021a; Xu et al. 2021; Zhou
et al. 2022). We summarize the design elements of existing
Transformer-based LTSF solutions as follows (see Figure 1).
Time series decomposition: For data preprocessing, nor-
malization with zero-mean is common in TSF. Besides, Aut-
oformer (Xu et al. 2021) first applies seasonal-trend de-
composition behind each neural block, which is a standard
method in time series analysis to make raw data more pre-
dictable (Cleveland 1990; Hamilton 2020). Specifically, they
use a moving average kernel on the input sequence to extract
the trend-cyclical component of the time series. The differ-
ence between the original sequence and the trend component
is regarded as the seasonal component. On top of the de-
composition scheme of Autoformer, FEDformer (Zhou et al.
2022) further proposes the mixture of experts’ strategies to
mix the trend components extracted by moving average ker-
nels with various kernel sizes.
Input embedding strategies: The self-attention layer in the
Transformer architecture cannot preserve the positional in-
formation of the time series. However, local positional infor-
mation, i.e. the ordering of time series, is important. Besides,
global temporal information, such as hierarchical times-
tamps (week, month, year) and agnostic timestamps (holi-
days and events), is also informative (Zhou et al. 2021). To
enhance the temporal context of time-series inputs, a practi-
cal design in the SOTA Transformer-based methods is inject-
ing several embeddings, like a fixed positional encoding, a

1Due to page limit, we leave the discussion of non-Transformer
forecasting solutions in the Appendix.

11122



(d) Decoder(c) Encoder(b) Embedding(a) Preprocessing

Forecasting Output

(d) Decoder(c) Encoder(b) Embedding(a) Preprocessing

O
ut

pu
t

In
pu

t

Seasonal-trend 
decomposition

Normalization

Timestamp
preparation

Channel projection

Fixed position

Local timestamp

Global timestamp

ProbSparse and distilling 
self-attention @Informer

Series auto-correlation with 
decomposition @Autoformer

Multi-resolution pyramidal     
attention @Pyraformer

Frequency enhanced block with 
decomposition @FEDformer

LogSparse and convolutional 
self-attention @LogTrans

Direct Multi-Step 
(DMS) @Informer

DMS with auto-correlation and 
decomposition @Autoformer

DMS along spatio-temporal 
dimension @Pyraformer

DMS with frequency attention 
and decomposition@FEDformer

Iterated Multi-Step 
(IMS) @LogTrans

Figure 1: The pipeline of existing Transformer-based TSF solutions. In (a) and (b), the solid boxes are essential operations, and
the dotted boxes are applied optionally. (c) and (d) are distinct for different methods (Li et al. 2019; Zhou et al. 2021; Xu et al.
2021; Liu et al. 2021a; Zhou et al. 2022).

channel projection embedding, and learnable temporal em-
beddings into the input sequence. Moreover, temporal em-
beddings with a temporal convolution layer (Li et al. 2019)
or learnable timestamps (Xu et al. 2021) are introduced.
Self-attention schemes: Transformers rely on the self-
attention mechanism to extract the semantic dependencies
between paired elements. Motivated by reducing the O

(
L2

)
time and memory complexity of the vanilla Transformer, re-
cent works propose two strategies for efficiency. On the one
hand, LogTrans and Pyraformer explicitly introduce a spar-
sity bias into the self-attention scheme. Specifically, Log-
Trans uses a Logsparse mask to reduce the computational
complexity to O (LlogL) while Pyraformer adopts pyrami-
dal attention that captures hierarchically multi-scale tem-
poral dependencies with an O (L) time and memory com-
plexity. On the other hand, Informer and FEDformer use
the low-rank property in the self-attention matrix. Informer
proposes a ProbSparse self-attention mechanism and a self-
attention distilling operation to decrease the complexity to
O (LlogL), and FEDformer designs a Fourier enhanced
block and a wavelet enhanced block with random selection
to obtain O (L) complexity. Lastly, Autoformer designs a
series-wise auto-correlation mechanism to replace the origi-
nal self-attention layer.
Decoders: The vanilla Transformer decoder outputs se-
quences in an autoregressive manner, resulting in a slow in-
ference speed and error accumulation effects, especially for
long-term predictions. Informer designs a generative-style
decoder for DMS forecasting. Other Transformer variants
employ similar DMS strategies. For instance, Pyraformer
uses a fully-connected layer concatenating Spatio-temporal
axes as the decoder. Autoformer sums up two refined de-
composed features from trend-cyclical components and the
stacked auto-correlation mechanism for seasonal compo-
nents to get the final prediction. FEDformer also uses a de-
composition scheme with the proposed frequency attention
block to decode the final results.

The premise of Transformer models is the semantic cor-
relations between paired elements, while the self-attention
mechanism itself is permutation-invariant, and its capabil-
ity of modeling temporal relations largely depends on posi-

tional encodings associated with input tokens. Considering
the raw numerical data in time series (e.g., stock prices or
electricity values), there are hardly any point-wise semantic
correlations between them. In time series modeling, we are
mainly interested in the temporal relations among a contin-
uous set of points, and the order of these elements instead
of the paired relationship plays the most crucial role. While
employing positional encoding and using tokens to embed
sub-series facilitate preserving some ordering information,
the nature of the permutation-invariant self-attention mech-
anism inevitably results in temporal information loss. Due
to the above observations, we are interested in revisiting the
effectiveness of Transformer-based LTSF solutions.

An Embarrassingly Simple Baseline for LTSF
In the experiments of existing Transformer-based LTSF so-
lutions (T ≫ 1), all the compared (non-Transformer) base-
lines are IMS forecasting techniques, which are known to
suffer from significant error accumulation effects. We hy-
pothesize that the performance improvements in these works
are largely due to the DMS strategy used in them.

Figure 2: Illustration of the basic linear model.

To validate this hypothesis, we present the simplest DMS
model via a temporal linear layer, named LTSF-Linear, as
a baseline for comparison. The basic formulation of LTSF-
Linear directly regresses historical time series for future pre-
diction via a weighted sum operation (as illustrated in Fig-
ure 2). The mathematical expression is X̂i = WXi, where

11123



Datasets ETTh1&ETTh2 ETTm1 &ETTm2 Traffic Electricity Exchange-Rate Weather ILI
Variates 7 7 862 321 8 21 7

Timesteps 17,420 69,680 17,544 26,304 7,588 52,696 966
Granularity 1hour 5min 1hour 1hour 1day 10min 1week

Table 1: The statistics of the nine popular datasets for the LTSF problem.

Methods IMP. Linear* NLinear* DLinear* FEDformer Autoformer Informer Pyraformer* Repeat*
Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 27% 0.140 0.237 0.141 0.237 0.140 0.237 0.193 0.308 0.201 0.317 0.274 0.368 0.386 0.449 1.588 0.946

192 24% 0.153 0.250 0.154 0.248 0.153 0.249 0.201 0.315 0.222 0.334 0.296 0.386 0.386 0.443 1.595 0.950
336 21% 0.169 0.268 0.171 0.265 0.169 0.267 0.214 0.329 0.231 0.338 0.300 0.394 0.378 0.443 1.617 0.961
720 17% 0.203 0.301 0.210 0.297 0.203 0.301 0.246 0.355 0.254 0.361 0.373 0.439 0.376 0.445 1.647 0.975

E
xc

ha
ng

e 96 45% 0.082 0.207 0.089 0.208 0.081 0.203 0.148 0.278 0.197 0.323 0.847 0.752 0.376 1.105 0.081 0.196
192 42% 0.167 0.304 0.180 0.300 0.157 0.293 0.271 0.380 0.300 0.369 1.204 0.895 1.748 1.151 0.167 0.289
336 34% 0.328 0.432 0.331 0.415 0.305 0.414 0.460 0.500 0.509 0.524 1.672 1.036 1.874 1.172 0.305 0.396
720 46% 0.964 0.750 1.033 0.780 0.643 0.601 1.195 0.841 1.447 0.941 2.478 1.310 1.943 1.206 0.823 0.681

Tr
af

fic

96 30% 0.410 0.282 0.410 0.279 0.410 0.282 0.587 0.366 0.613 0.388 0.719 0.391 2.085 0.468 2.723 1.079
192 30% 0.423 0.287 0.423 0.284 0.423 0.287 0.604 0.373 0.616 0.382 0.696 0.379 0.867 0.467 2.756 1.087
336 30% 0.436 0.295 0.435 0.290 0.436 0.296 0.621 0.383 0.622 0.337 0.777 0.420 0.869 0.469 2.791 1.095
720 26% 0.466 0.315 0.464 0.307 0.466 0.315 0.626 0.382 0.660 0.408 0.864 0.472 0.881 0.473 2.811 1.097

W
ea

th
er 96 19% 0.176 0.236 0.182 0.232 0.176 0.237 0.217 0.296 0.266 0.336 0.300 0.384 0.896 0.556 0.259 0.254

192 21% 0.218 0.276 0.225 0.269 0.220 0.282 0.276 0.336 0.307 0.367 0.598 0.544 0.622 0.624 0.309 0.292
336 23% 0.262 0.312 0.271 0.301 0.265 0.319 0.339 0.380 0.359 0.395 0.578 0.523 0.739 0.753 0.377 0.338
720 20% 0.326 0.365 0.338 0.348 0.323 0.362 0.403 0.428 0.419 0.428 1.059 0.741 1.004 0.934 0.465 0.394

IL
I

24 48% 1.947 0.985 1.683 0.858 2.215 1.081 3.228 1.260 3.483 1.287 5.764 1.677 1.420 2.012 6.587 1.701
36 36% 2.182 1.036 1.703 0.859 1.963 0.963 2.679 1.080 3.103 1.148 4.755 1.467 7.394 2.031 7.130 1.884
48 34% 2.256 1.060 1.719 0.884 2.130 1.024 2.622 1.078 2.669 1.085 4.763 1.469 7.551 2.057 6.575 1.798
60 34% 2.390 1.104 1.819 0.917 2.368 1.096 2.857 1.157 2.770 1.125 5.264 1.564 7.662 2.100 5.893 1.677

E
T

T
h1

96 1% 0.375 0.397 0.374 0.394 0.375 0.399 0.376 0.419 0.449 0.459 0.865 0.713 0.664 0.612 1.295 0.713
192 4% 0.418 0.429 0.408 0.415 0.405 0.416 0.420 0.448 0.500 0.482 1.008 0.792 0.790 0.681 1.325 0.733
336 7% 0.479 0.476 0.429 0.427 0.439 0.443 0.459 0.465 0.521 0.496 1.107 0.809 0.891 0.738 1.323 0.744
720 13% 0.624 0.592 0.440 0.453 0.472 0.490 0.506 0.507 0.514 0.512 1.181 0.865 0.963 0.782 1.339 0.756

E
T

T
h2

96 20% 0.288 0.352 0.277 0.338 0.289 0.353 0.346 0.388 0.358 0.397 3.755 1.525 0.645 0.597 0.432 0.422
192 20% 0.377 0.413 0.344 0.381 0.383 0.418 0.429 0.439 0.456 0.452 5.602 1.931 0.788 0.683 0.534 0.473
336 26% 0.452 0.461 0.357 0.400 0.448 0.465 0.496 0.487 0.482 0.486 4.721 1.835 0.907 0.747 0.591 0.508
720 14% 0.698 0.595 0.394 0.436 0.605 0.551 0.463 0.474 0.515 0.511 3.647 1.625 0.963 0.783 0.588 0.517

E
T

T
m

1 96 21% 0.308 0.352 0.306 0.348 0.299 0.343 0.379 0.419 0.505 0.475 0.672 0.571 0.543 0.510 1.214 0.665
192 21% 0.340 0.369 0.349 0.375 0.335 0.365 0.426 0.441 0.553 0.496 0.795 0.669 0.557 0.537 1.261 0.690
336 17% 0.376 0.393 0.375 0.388 0.369 0.386 0.445 0.459 0.621 0.537 1.212 0.871 0.754 0.655 1.283 0.707
720 22% 0.440 0.435 0.433 0.422 0.425 0.421 0.543 0.490 0.671 0.561 1.166 0.823 0.908 0.724 1.319 0.729

E
T

T
m

2 96 18% 0.168 0.262 0.167 0.255 0.167 0.260 0.203 0.287 0.255 0.339 0.365 0.453 0.435 0.507 0.266 0.328
192 18% 0.232 0.308 0.221 0.293 0.224 0.303 0.269 0.328 0.281 0.340 0.533 0.563 0.730 0.673 0.340 0.371
336 16% 0.320 0.373 0.274 0.327 0.281 0.342 0.325 0.366 0.339 0.372 1.363 0.887 1.201 0.845 0.412 0.410
720 13% 0.413 0.435 0.368 0.384 0.397 0.421 0.421 0.415 0.433 0.432 3.379 1.338 3.625 1.451 0.521 0.465

- Methods* are implemented by us; Other results are from FEDformer (Zhou et al. 2022).

Table 2: Multivariate long-term forecasting errors in terms of MSE and MAE, the lower the better. Among them, ILI dataset is
with forecasting horizon T ∈ {24, 36, 48, 60}. For the others, T ∈ {96, 192, 336, 720}. The best results are highlighted in bold
and the best results of Transformers are highlighted with an underline. IMP. is the best result of linear models compared to the
results of Transformer-based solutions.

W ∈ RT×L is a linear layer along the temporal axis. X̂i

and Xi are the prediction and input for each ith variate.
Note that LTSF-Linear shares weights across different vari-
ates and does not model any spatial correlations.

LTSF-Linear is a set of linear models. Vanilla Linear is a
one-layer linear model. To handle time series across differ-
ent domains (e.g., finance, traffic, and energy domains), we
further introduce two variants with two preprocessing meth-

ods, named DLinear and NLinear.

• Specifically, DLinear is a combination of a Decompo-
sition scheme used in Autoformer and FEDformer with
linear layers. It first decomposes a raw data input into a
trend component by a moving average kernel and a re-
mainder (seasonal) component. Then, two one-layer lin-
ear layers are applied to each component, and we sum up
the two features to get the final prediction. By explicitly

11124



handling trend, DLinear enhances the performance of a
vanilla linear when there is a clear trend in the data.

• Meanwhile, to boost the performance of LTSF-Linear
when there is a distribution shift in the dataset, NLin-
ear first subtracts the input by the last value of the se-
quence. Then, the input goes through a linear layer, and
the subtracted part is added back before making the final
prediction. The subtraction and addition in NLinear are a
simple normalization for the input sequence.

Experiments
Experimental Settings
Dataset. We conduct extensive experiments on nine
widely-used real-world datasets, including ETT (Electric-
ity Transformer Temperature) (Zhou et al. 2021) (ETTh1,
ETTh2, ETTm1, ETTm2), Traffic, Electricity, Weather, ILI,
Exchange-Rate (Lai et al. 2017). All of them are multivariate
time series. We leave data descriptions in the Appendix.

Evaluation metric. Following previous works (Zhou
et al. 2021; Xu et al. 2021; Zhou et al. 2022), we use Mean
Squared Error (MSE) and Mean Absolute Error (MAE).

Compared methods. We include four recent
Transformer-based methods: FEDformer (Fourier) (Zhou
et al. 2022), Autoformer (Xu et al. 2021), Informer (Zhou
et al. 2021), Pyraformer (Liu et al. 2021a). Besides, we
include a naive DMS method: Closest Repeat (Repeat),
which repeats the last value in the look-back window.

Comparison with Transformers
Quantitative results. In Table 2, we extensively evaluate
all mentioned Transformers on nine benchmarks, following
the experimental setting of previous work (Xu et al. 2021;
Zhou et al. 2022, 2021). Surprisingly, the performance of
LTSF-Linear surpasses the SOTA FEDformer in most cases
by 20% ∼ 50% improvements on the multivariate forecast-
ing, where LTSF-Linear even does not model correlations
among variates. For different time series benchmarks, NLin-
ear and DLinear show the superiority to handle the dis-
tribution shift and trend-seasonality features. We also pro-
vide results for univariate forecasting of ETT datasets in
the Appendix, where LTSF-Linear still consistently outper-
forms Transformer-based LTSF solutions by a large mar-
gin. In general, these results reveal that existing complex
Transformer-based LTSF solutions are not seemingly effec-
tive on the existing nine benchmarks while LTSF-Linear
can be a powerful baseline. Another interesting observa-
tion is that even though the naive Repeat method shows
worse results when predicting long-term seasonal data (e.g.,
Electricity ), it surprisingly outperforms all Transformers on
Exchange-Rate (around 45%). This is mainly caused by the
wrong prediction of trends in Transformer-based solutions,
which may overfit toward sudden change noises in the train-
ing data, resulting in significant accuracy degradation.

Qualitative results. As shown in Figure 3, we plot the
prediction results on three selected time series datasets with
Transformer-based solutions and LTSF-Linear: Electricity
(Sequence 1951, Variate 36) , where it has different tem-
poral patterns. When the input length is 96 steps, and the

0 50 100 150 200 250 300

1.5

1.0

0.5

0.0

0.5

1.0

GrouthTruth Autoformer Informer FEDformer DLinear

Figure 3: Illustration of the long-term forecasting outputs
(Y-axis) of five models with an input length L=96 and output
length T=192 (X-axis) on Electricity.

output horizon is 336 steps, Transformers fail to capture the
scale and bias of the future data . Moreover, they can hardly
predict a proper trend on aperiodic data.

More Analyses on Transformer-Based Solutions
Can existing LTSF-Transformers extract temporal rela-
tions well from longer input sequences? The size of the
look-back window greatly impacts forecasting accuracy as
it determines how much we can learn from historical data.
Generally speaking, a powerful TSF model with a strong
temporal relation extraction capability should be able to
achieve better results with larger look-back window sizes.

To study the impact of input look-back window sizes, we
conduct experiments with L ∈ {24, ..., 720} for long-term
forecasting (T=720). Similar to the observations from pre-
vious studies (Zhou et al. 2021; Wen et al. 2022), existing
Transformers’ performance deteriorates or stays stable when
the look-back window size increases. In contrast, the perfor-
mances of all LTSF-Linear are significantly boosted with the
increase of look-back window size. Thus, existing solutions
tend to overfit temporal noises instead of extracting tempo-
ral information if given a longer sequence, and the input size
96 is exactly suitable for most Transformers.

What can be learned for long-term forecasting? While
the temporal dynamics in the look-back window signifi-
cantly impact the forecasting accuracy of short-term time
series forecasting, we hypothesize that long-term forecasting
depends on whether models can capture the trend and peri-
odicity well only. That is, the farther the forecasting horizon,
the less impact the look-back window itself has.

Methods FEDformer Autoformer
Input Close Far Close Far

Electricity 0.251 0.265 0.255 0.287
Traffic 0.631 0.645 0.677 0.675

Table 3: The MSE comparisons of different input sequences.

To validate the above hypothesis, in Table 3, we com-

11125



24 48 72 96 120 144 168 192 336 504 672 720

0.20

0.25

0.30

0.35

0.40

Transformer
Informer

Autoformer
FEDformer

Pyraformer
Linear

NLinear
DLinear

Figure 4: The MSE results (Y-axis) of models with different
look-back window sizes (X-axis) of long-term forecasting
(T=720) on Electricity.

pare the forecasting accuracy for the same future 720 time
steps with data from two different look-back windows: (i).
the original input L=96 setting (called Close) and (ii). the
far input L=96 setting (called Far) that is before the original
96 time steps. The performance of the SOTA Transformers
drops slightly, indicating these models only capture simi-
lar temporal information from the adjacent time series se-
quence. Since capturing the intrinsic characteristics of the
dataset generally does not require a large number of param-
eters, i,e. one parameter can represent the periodicity. Using
too many parameters will even cause overfitting.

Are the self-attention scheme effective for LTSF? We
verify whether these complex designs in the existing Trans-
former (e.g., Informer) are essential. In Table 4, we grad-
ually transform Informer to Linear. First, we replace each
self-attention layer with a linear layer, called Att.-Linear,
since a self-attention layer can be regarded as a fully-
connected layer where weights are dynamically changed.
Furthermore, we discard other auxiliary designs (e.g., FFN)
in Informer to leave embedding layers and linear layers,
named Embed + Linear. Finally, we simplify the model to
one linear layer. As can be observed, the performance of In-
former grows with the gradual simplification, thereby chal-
lenging the necessity of these modules.

Methods Informer Att.-Linear Embed + Linear Linear

E
xc

ha
ng

e 96 0.847 1.003 0.173 0.084
192 1.204 0.979 0.443 0.155
336 1.672 1.498 1.288 0.301
720 2.478 2.102 2.026 0.763

E
T

T
h1

96 0.865 0.613 0.454 0.400
192 1.008 0.759 0.686 0.438
336 1.107 0.921 0.821 0.479
720 1.181 0.902 1.051 0.515

Table 4: The MSE comparisons of gradually transforming
Informer to a Linear from the left to right columns.

Can existing LTSF-Transformers preserve temporal or-

der well? Self-attention is inherently permutation-invariant,
i.e., regardless of the order. However, in time-series forecast-
ing, the sequence order often plays a crucial role. We argue
that even with positional and temporal embeddings, existing
Transformer-based methods still suffer from temporal infor-
mation loss. In Table 5, we shuffle the raw input before
the embedding strategies. Two shuffling strategies are pre-
sented: Shuf. randomly shuffles the whole input sequences
and Half-Ex. exchanges the first half of the input sequence
with the second half. Interestingly, compared with the orig-
inal setting (Ori.) on the Exchange Rate, the performance
of all Transformer-based methods does not fluctuate even
when the input sequence is randomly shuffled. By contrary,
the performance of LTSF-Linear is damaged significantly.
These indicate that LTSF-Transformers with different posi-
tional and temporal embeddings preserve quite limited tem-
poral relations and are prone to overfit on noisy financial
data, while the simple LTSF-Linear can model the order nat-
urally and avoid overfitting with fewer parameters.

For the ETTh1 dataset, FEDformer and Autoformer in-
troduce time series inductive bias into their models, mak-
ing them can extract certain temporal information when the
dataset has more clear temporal patterns (e.g., periodicity)
than the Exchange Rate. Therefore, the average drops of
the two Transformers are 73.28% and 56.91% under the
Shuf. setting, where it loses the whole order information.
Moreover, Informer still suffers less from both Shuf. and
Half-Ex. settings due to its no such temporal inductive bias.
Overall, the average drops of LTSF-Linear are larger than
Transformer-based methods for all cases, indicating the ex-
isting Transformers do not preserve temporal order well.

How effective are different embedding strategies? In Ta-
ble 6, the forecasting errors of Informer largely increase
without positional embeddings (wo/Pos.). Without times-
tamp embeddings (wo/Temp.) will gradually damage the
performance of Informer as the forecasting lengths increase.
Since Informer uses a single time step for each token, it is
necessary to introduce temporal information in tokens.

Rather than using a single time step in each token, FED-
former and Autoformer input a sequence of timestamps to
embed the temporal information. Hence, they can achieve
comparable or even better performance without fixed po-
sitional embeddings. However, without timestamp embed-
dings, the performance of Autoformer declines rapidly be-
cause of the loss of global temporal information. Instead,
thanks to the frequency-enhanced module proposed in FED-
former to introduce temporal inductive bias, it suffers less
from removing any position/timestamp embeddings.

Is training data size a limiting factor for existing LTSF-
Transformers? Some may argue that the poor performance
of Transformer-based solutions is due to the small sizes of
the benchmark datasets. Unlike computer vision or natural
language processing tasks, TSF is performed on collected
time series, and it is difficult to scale up the training data
size. In fact, the size of the training data would indeed have a
significant impact on the model performance. Accordingly,
we conduct experiments on Traffic, comparing the perfor-
mance of the model trained on a full dataset (17,544*0.7
hours), named Ori., with that training on a shortened dataset

11126



Methods Linear FEDformer Autoformer Informer
Predict Length Ori. Shuf. Half-Ex. Ori. Shuf. Half-Ex. Ori. Shuf. Half-Ex. Ori. Shuf. Half-Ex.

E
xc

ha
ng

e 96 0.080 0.133 0.169 0.161 0.160 0.162 0.152 0.158 0.160 0.952 1.004 0.959
192 0.162 0.208 0.243 0.274 0.275 0.275 0.278 0.271 0.277 1.012 1.023 1.014
336 0.286 0.320 0.345 0.439 0.439 0.439 0.435 0.430 0.435 1.177 1.181 1.177
720 0.806 0.819 0.836 1.122 1.122 1.122 1.113 1.113 1.113 1.198 1.210 1.196

Average Drop N/A 27.26% 46.81% N/A -0.09% 0.20% N/A 0.09% 1.12% N/A -0.12% -0.18%

E
T

T
h1

96 0.395 0.824 0.431 0.376 0.753 0.405 0.455 0.838 0.458 0.974 0.971 0.971
192 0.447 0.824 0.471 0.419 0.730 0.436 0.486 0.774 0.491 1.233 1.232 1.231
336 0.490 0.825 0.505 0.447 0.736 0.453 0.496 0.752 0.497 1.693 1.693 1.691
720 0.520 0.846 0.528 0.468 0.720 0.470 0.525 0.696 0.524 2.720 2.716 2.715

Average Drop N/A 81.06% 4.78% N/A 73.28% 3.44% N/A 56.91% 0.46% N/A 1.98% 0.18%

Table 5: The MSE comparisons of models when shuffling the raw input sequence. Shuf. randomly shuffles the input sequence.
Half-EX. randomly exchanges the first half of the input sequences with the second half. We run five times.

Methods Embedding Traffic
96 192 336 720

FEDformer

All 0.597 0.606 0.627 0.649
wo/Pos. 0.587 0.604 0.621 0.626

wo/Temp. 0.613 0.623 0.650 0.677
wo/Pos.-Temp. 0.613 0.622 0.648 0.663

Autoformer

All 0.629 0.647 0.676 0.638
wo/Pos. 0.613 0.616 0.622 0.660

wo/Temp. 0.681 0.665 0.908 0.769
wo/Pos.-Temp. 0.672 0.811 1.133 1.300

Informer

All 0.719 0.696 0.777 0.864
wo/Pos. 1.035 1.186 1.307 1.472

wo/Temp. 0.754 0.780 0.903 1.259
wo/Pos.-Temp. 1.038 1.351 1.491 1.512

Table 6: The MSE comparisons of different embedding
strategies on Transformer-based methods with look-back
window size 96 and forecasting lengths {96, 192, 336, 720}.

(8,760 hours, i.e., 1 year), called Short. Unexpectedly, Ta-
ble 7 presents that the prediction errors with reduced train-
ing data are usually lower. This might be because the whole-
year data maintain clearer temporal features than a longer
but incomplete data size. While we cannot conclude that we
should use fewer data for training, it demonstrates that the
training data scale is not the limiting reason.

Methods FEDformer Autoformer
Dataset Ori. Short Ori. Short

96 0.587 0.568 0.613 0.594
192 0.604 0.584 0.616 0.621
336 0.621 0.601 0.622 0.621
720 0.626 0.608 0.660 0.650

Table 7: The MSE comparisons of two training data sizes.

Is efficiency really a top-level priority? Existing LTSF-
Transformers claim that the O

(
L2

)
complexity of the

vanilla Transformer is unaffordable for the LTSF problem.
Although they prove to be able to improve the theoretical
time and memory complexity from O

(
L2

)
to O (L), it is

unclear whether 1) the actual inference time and memory
cost on devices are improved, and 2) the memory issue is
unacceptable and urgent for today’s GPU (e.g., an NVIDIA
Titan XP here). In Table 8, we compare the average prac-

tical efficiencies with 5 runs. Interestingly, compared with
the vanilla Transformer (with the same DMS decoder), most
Transformer variants incur similar or worse inference time
and parameters in practice. These follow-ups introduce more
additional design elements to make practical costs high.

Method MACs Parameter Time Memory
DLinear 0.04G 139.7K 0.4ms 687MiB

Transformer× 4.03G 13.61M 26.8ms 6091MiB
Informer 3.93G 14.39M 49.3ms 3869MiB

Autoformer 4.41G 14.91M 164.1ms 7607MiB
Pyraformer 0.80G 241.4M 3.4ms 7017MiB
FEDformer 4.41G 20.68M 40.5ms 4143MiB

× the same one-step decoder.

Table 8: Comparison of practical efficiency of LTSF-
Transformers under L=96 and T=720 on the Electricity.
MACs are the number of multiply-accumulate operations.
The inference time averages 5 runs.

Conclusion and Future Work
Conclusion. This work questions the effectiveness of
emerging favored Transformer-based solutions for the long-
term time series forecasting problem. We use an embarrass-
ingly simple linear model LTSF-Linear as a DMS forecast-
ing baseline to verify our claims. Note that our contributions
do not come from proposing a linear model but rather from
throwing out an important question, showing surprising
comparisons, and demonstrating why LTSF-Transformers
are not as effective as claimed in these works through var-
ious perspectives. We sincerely hope our comprehensive
studies can benefit future work in this area.

Future work. LTSF-Linear has a limited model capacity,
and it merely serves a simple yet competitive baseline with
strong interpretability for future research. Consequently, we
believe there is great potential for new model designs, data
processing, and benchmarks to tackle LTSF.

Acknowledgments
This work was supported in part by Alibaba Group Holding
Ltd. under Grant No. TA2015393. We thank the anonymous
reviewers for their constructive comments and suggestions.

11127



References
Ariyo, A. A.; Adewumi, A. O.; and Ayo, C. K. 2014. Stock
price prediction using the ARIMA model. In 2014 UKSim-
AMSS 16th International Conference on Computer Mod-
elling and Simulation, 106–112. IEEE.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural Ma-
chine Translation by Jointly Learning to Align and Trans-
late. arXiv: Computation and Language arXiv:1409.0473.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271.
Chevillon, G. 2007. Direct multi-step estimation and fore-
casting. Journal of Economic Surveys, 21(4): 746–785.
Cirstea, R.-G.; Guo, C.; Yang, B.; Kieu, T.; Dong, X.;
and Pan, S. 2022. Triformer: Triangular, Variable-Specific
Attentions for Long Sequence Multivariate Time Series
Forecasting–Full Version. arXiv preprint arXiv:2204.13767.
Cleveland, R. B. 1990. STL : A Seasonal-Trend Decomposi-
tion Procedure Based on Loess. Journal of Office Statistics.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Dong, L.; Xu, S.; and Xu, B. 2018. Speech-transformer:
a no-recurrence sequence-to-sequence model for speech
recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 5884–
5888. IEEE.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of statistics, 1189–1232.
Hamilton, J. D. 2020. Time series analysis. Princeton uni-
versity press.
Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2017. Modeling
Long- and Short-Term Temporal Patterns with Deep Neural
Networks. international acm sigir conference on research
and development in information retrieval.
Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. Advances in Neural Information Processing Systems,
32.
Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; and
Xu, Q. 2022. SCINet: Time Series Modeling and Forecast-
ing with Sample Convolution and Interaction. Thirty-sixth
Conference on Neural Information Processing Systems.
Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A. X.; and
Dustdar, S. 2021a. Pyraformer: Low-complexity pyramidal
attention for long-range time series modeling and forecast-
ing. In International Conference on Learning Representa-
tions.
Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021b. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 10012–10022.

Salinas, D.; Flunkert, V.; and Gasthaus, J. 2017. DeepAR:
Probabilistic Forecasting with Autoregressive Recurrent
Networks. International Journal of Forecasting.
Taieb, S. B.; Hyndman, R. J.; et al. 2012. Recursive and
direct multi-step forecasting: the best of both worlds, vol-
ume 19. Citeseer.
Taylor, S. J.; and Letham, B. 2017. Forecasting at Scale.
PeerJ Prepr.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; and
Sun, L. 2022. Transformers in Time Series: A Survey. arXiv
preprint arXiv:2202.07125.
Xu, J.; Wang, J.; Long, M.; et al. 2021. Autoformer: Decom-
position transformers with auto-correlation for long-term se-
ries forecasting. Advances in Neural Information Processing
Systems, 34.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond Efficient Trans-
former for Long Sequence Time-Series Forecasting. In
The Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Virtual Conference, volume 35, 11106–11115.
AAAI Press.
Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin, R.
2022. FEDformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In International
Conference on Machine Learning.

11128


