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Abstract

In the absence of assigned tasks, a learning agent typically
seeks to explore its environment efficiently. However, the pur-
suit of exploration will bring more safety risks. An under-
explored aspect of reinforcement learning is how to achieve
safe efficient exploration when the task is unknown. In this
paper, we propose a practical Constrained Entropy Maxi-
mization (CEM) algorithm to solve task-agnostic safe explo-
ration problems, which naturally require a finite horizon and
undiscounted constraints on safety costs. The CEM algorithm
aims to learn a policy that maximizes state entropy under the
premise of safety. To avoid approximating the state density in
complex domains, CEM leverages a k-nearest neighbor en-
tropy estimator to evaluate the efficiency of exploration. In
terms of safety, CEM minimizes the safety costs, and adap-
tively trades off safety and exploration based on the cur-
rent constraint satisfaction. The empirical analysis shows that
CEM enables the acquisition of a safe exploration policy in
complex environments, resulting in improved performance in
both safety and sample efficiency for target tasks.

Introduction
Despite the remarkable achievements in many fields, safety
and exploration are still the main challenges faced by rein-
forcement learning (RL; Sutton and Barto 2018; Mnih et al.
2015). Exploration is critical to avoid the learning agent
finally converging into a suboptimal policy. However, in
safety-critical domains, unlimited exploration is unaccept-
able (Dulac-Arnold et al. 2021; Garcı́a and Fernández 2015).
For instance, while running a power network, an agent trying
unlimited exploration could cause a blackout (Marot et al.
2020; Subramanian et al. 2021). Hence, encouraging explo-
ration is bound to increase safety risks.

Many learning problems may start from an unsupervised
setting. The knowledge gained can make an agent easier to
achieve a variety of tasks later. When employing a safe ex-
ploration policy as a safe guide (SaGui; Yang et al. 2022a),
an agent can adapt safely and quickly to a revealed task,
especially when the task’s reward signal is sparse. In this
paper, we focus on learning such a task-agnostic safe ex-
ploration policy. While task-agnostic exploration has been
given attention (Lee et al. 2019; Hazan et al. 2019; Tao,
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François-Lavet, and Pineau 2020; Badia et al. 2019; Mutti,
Pratissoli, and Restelli 2021; Seo et al. 2021; Liu and Abbeel
2021b), its safety aspects are still under-explored.

Prior approaches to boosting exploration usually shape
the reward signal using an exploration bonus (Stadie,
Levine, and Abbeel 2015; Bellemare et al. 2016; Ostrovski
et al. 2017; Tang et al. 2017; Pathak et al. 2017; Haarnoja
et al. 2018a,b; Fox, Choshen, and Loewenstein 2018; Sun
et al. 2019; Pathak, Gandhi, and Gupta 2019; Burda et al.
2019a,b; Seo et al. 2021). Most of them are based on a mea-
sure of state novelty to lead the agent to new unseen states.
However, these typically heuristic measures are not part of
the optimization objectives. They are designed to only tran-
siently affect the process of learning, but not the final result.
In contrast, to quantify exploration in a more principled way,
Lee et al. (2019); Hazan et al. (2019); Tao, François-Lavet,
and Pineau (2020); Badia et al. (2019); Mutti, Pratissoli, and
Restelli (2021); Seo et al. (2021); Liu and Abbeel (2021b)
propose to encourage uniform coverage of the state space.
With an explicit target to maximize the entropy of the state
density, the interpretability of the learned exploration policy
is improved significantly (Seo et al. 2021).

In safe RL, it is natural to formulate safety concerns by
constraints (Achiam et al. 2017; Qin, Chen, and Fan 2021;
Yang et al. 2021, 2022b). In this case, safety can be de-
coupled from reward to mitigate the issue of constructing
a single reward signal that must carefully trade off task per-
formance and safety. When our focus is solely on efficient
exploration, however, it is not clear how we can design a tra-
ditional reward signal to maximize the state entropy. With
additional safety concerns, it is even more challenging to
construct a single reward signal that is sensible for both
safety and exploration. Therefore, in task-agnostic safe ex-
ploration, the need to treat safety as a constraint is exacer-
bated.

In safety-constrained RL problems, the discounted long-
term costs are usually constrained within a pre-defined cost
limit (Achiam et al. 2017; Liu, Ding, and Liu 2020; Yang
et al. 2020; Kamran et al. 2022). However, for industrial and
robotic settings (Jardine, Lin, and Banjevic 2006; Boutilier
and Lu 2016; De Nijs, Spaan, and de Weerdt 2015), the
safety constraints are always built on the real costs within
a finite horizon instead of the discounted cost-return. For in-
stance, a safety constraint for an electric vehicle is based on
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its real battery capacity, so the battery consumption cannot
be discounted.

In this paper, we aim to achieve safe and efficient explo-
ration when the so-called target task is unknown. We pro-
pose to formulate the problem by maximizing the entropy
of the state density under safety constraints. Likewise, we
designed the Constrained Entropy Maximization (CEM) al-
gorithm, which leverages the k-nearest neighbor state en-
tropy estimator to avoid approximating the full state density,
which hardly scales to complex domains (Hazan et al. 2019;
Lee et al. 2019). Based on the real costs, CEM leverages an
adaptive safety weight (Lagrangian multiplier) to automati-
cally trade off exploration and safety during policy updates.
We improve the safety of the policy by calculating the gra-
dient on the discounted cost-return but updating the safety-
weight following the undiscounted real costs.

Summarizing, our main contributions are as follows: i) we
propose a practical and approximately convergent CEM al-
gorithm for task-agnostic safe exploration problems, ii) and
we empirically show that CEM enables the acquisition of a
safe exploration policy in the complex domain, and that the
policy benefits the target tasks.

Preliminaries
In this section, we present the background and notation.

Constrained Markov Decision Processes
A constrained Markov decision process (CMDP; Alt-
man 1999; Borkar 2005) is defined as a tuple M =
⟨S,A,P, r, c, d, T, ι⟩: a state space S , an action space A,
a probabilistic transition function P : S × A → Dist(S), a
reward function r : S × A → [rmin, rmax], a cost function
c : S×A → [cmin, cmax], a given safety threshold d, a time
horizon T , and an initial state distribution ι ∈ Dist(S). An
MDP (Puterman 2014) can be seen as an unbounded CMDP
with d = ∞. A stationary policy π : S → Dist(A) is
a map from states to probability distributions over actions,
with π(a|s) denoting the probability of selecting action a in
state s. We denote the set of all stationary policies by Π.

In this work, an agent interacts with a CMDP, without
knowledge about the transition, reward, and cost functions,
generating a trajectory τ ∈ T , which is a sequence of transi-
tions ⟨(s0, a0, r0, c0, s′0), (s1, a1, r1, c1, s′1), · · · ⟩. A trajec-
tory starts from s0 ∼ ι(·), then, at each timestep t the agent
is in a state st ∈ S , and takes an action at ∈ A. Then, it
gets a reward rt = r(st, at), a cost ct = c(st, at), and steps
into a successor state s′t ∼ P(· | st, at). This process re-
peats starting from st+1 = s′t, until some terminal condition
is met, such as reaching the time horizon T . Then, a new
trajectory starts.

For a complex and long-horizon problem, it is common to
introduce a discount factor γ to make the problem tractable.
In this paper, we assume that we have no access to the re-
ward signal. For safety-costs, we express the value func-
tion as V c

π (s) = E(st,at)∈Tπ
[
∑∞

t=0 γ
tct|s0 = s] and action-

value function as Qc
π(s, a) = E(st,at)∈Tπ

[
∑∞

t=0 γ
tct|s0 =

s, a0 = a]. The advantage function for costs is Ac
π(s, a) =

Qc
π(s, a) − V c

π (s). In a traditional CMDP, the goal of the

agent is to learn a policy that maximizes the expected re-
turn for each episode such that the generated costs remain
below the given threshold d. In this paper, we have a simi-
lar formulation for the constraint, but a completely different
optimization objective related to the state entropy.

Induced State Density
We use a state density function ρ : S 7→ R≥0 that quanti-
fies the distribution of states within the state space S . When
a policy π is applied to a CMDP, it influences the state dis-
tribution over time. For each time step t, the state density
function ρπt (s) calculates the concentration of states at that
moment. The initial state distribution ι serves as the starting
point, and the policy interaction with the CMDP produces
the state density ρπt (s) = ρ(st = s|π) for each subsequent
time step t > 0. For CMDPs with finite horizon T , the sta-
tionary density of state s can be expressed as:

ρπT (s) =
1

T

T∑
t=1

ρπt (s), (1)

which is the average state density, and
∫
S ρ

π
T (s)ds = 1.

However, a full model of state density estimation for
ρπT (s) does not scale easily to complex domains (Hazan et al.
2019; Lee et al. 2019), where we need to avoid modeling
the state density directly. We choose to use the k-nearest
neighbors (k-NN) entropy estimator Ĥk

N (ρ) by a group of
particles {si}Ni=1 to avoid estimating the state density di-
rectly (Singh et al. 2003). In the RL process, we may need to
use the samples from the current policy to estimate the state
entropy of the target policy, for which we can employ an
Importance-Weighted (IW) k-NN estimator Ĥk

N (ρ|ρ′) (Ajgl
and Šimandl 2011). We refer the reader to Mutti, Pratissoli,
and Restelli (2021) for the detailed expression of Ĥk

N (ρ|ρ′).

Task-Agnostic Safe Exploration
In this section, we define the learning objective and safety
for task-agnostic safe exploration (TASE), where only safety
signals are provided. Without the reward signal, the agent
aims to explore the world safely and efficiently. The ob-
tained policy with safe exploration capabilities may provide
useful prior knowledge required to enhance the safety in po-
tential target tasks.

In this paper, we focus on a finite-horizon setting like the
work by Lee et al. (2019); Mutti, Pratissoli, and Restelli
(2021). Most real-world constrained RL problems naturally
require a finite horizon and typically constraints on safety
costs do not include discounts, which also mitigates the
problem of designing a safety threshold based on the dis-
counted cost-return (Walraven and Spaan 2018). For in-
stance, an electric vehicle can take its battery capacity as
the cost limit d. Naturally, we can select the horizon T in
alignment with the horizon of the target task that the policy
is expected to confront. When the target task is not clear, we
can tune T to balance the exploration efficiency and qual-
ity (Mutti, Pratissoli, and Restelli 2021).
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Definition 1 (Safety within a finite horizon). A policy π is
safe if its expected accumulated costs E(st,at)∼Tπ

[∑T
t=1 ct

]
over finite-horizon T remains below a safety threshold d.

Then, we formulate the TASE problem as maximizing the
entropy of the average state density under the premise of
safety:

max
π∈Π
H(ρπT ) s.t. E

(st,at)∼Tπ

[
T∑

t=1

ct

]
≤ d. (2)

We are particularly interested in problems where the set of
initial states is small, since they are more challenging for
task-agnostic exploration. If the trajectory can start at any
state, it will be meaningless to maximize the state entropy.

Safety-Constrained Entropy Maximization
In this section, we first clarify that traditional value function
based methods are not suitable for maximizing the state en-
tropy when the original environment reward does not exist.
To achieve task-agnostic safe exploration (TASE), we will
establish the duality of the original problem, then propose
a practical algorithm called Constrained Entropy Maximiza-
tion (CEM) for TASE with convergence guarantees.

Vulnerable Reliance on Return
Traditional RL agents learn from the reward signal when in-
teracting with the environment. We call this original envi-
ronment signal as extrinsic reward, and the signal designed
for encouraging exploration as intrinsic reward. When we
have no access to the extrinsic reward, it is important to ask
whether we can design an intrinsic reward, such that we can
solve the TASE problems by traditional RL methods.

When learning is only for exploration without extrinsic
rewards, we need to design an intrinsic reward that is sta-
tionary and implies efficient exploration of the environment
in the standard RL framework. Many different intrinsic re-
wards are designed in previous works, e.g., count-based ex-
ploration (Bellemare et al. 2016; Ostrovski et al. 2017),
prediction-based exploration (Stadie, Levine, and Abbeel
2015; Pathak et al. 2017), and auxiliary task (Fox, Choshen,
and Loewenstein 2018; Burda et al. 2019a). However, they
are not easy to be generalized to explicitly maximize the
state entropy in the task-agnostic setting.

Duality of Constrained Entropy Maximization
The standard RL algorithms that optimize long-term re-
wards cannot solve the TASE problem (2) directly. Even
for constrained RL algorithms, traditional RL rewards are
also necessary. Without a reward signal, the TASE prob-
lem (2) is dual to a problem that is solvable in a La-
grangian way. We denote the Lagrangian multiplier for
E(st,at)∼Tπ

[
∑T

t=1 ct] ≤ d as ω : Π → R≥0. Note that ω
is an overall safety evaluation of the current policy and does
not depend on the state. Then we consider the following op-
timization problem:

min
ω≥0

max
π
G(π, ω) .= f(π)− ωg(π), (3)

where f(π) = H(ρπT ), and g(π) = E(st,at)∼Tπ
[
∑T

t=0 ct] −
d. Alternating between optimizing π and ω can gradually ad-
just the Lagrange multiplier until the Karush-Kuhn-Tucker
(KKT; Gordon and Tibshirani 2012) condition ωg(π) = 0 is
satisfied.

We search for a policy within a parametric space of
stochastic differentiable policies ΠΘ = {πθ : θ ∈ Θ}. Ide-
ally, we have two loss functions for the constrained opti-
mization problem (2), i.e.,

Jπ(θ) = ωg(θ)− f(θ),
Js(ω) = −ωg(θ).

(4)

In practice, if we calculate the policy gradient based on
E(st,at)∼Tπθ

[∑T
t=1 ct

]
, the training is likely to be unsta-

ble because of the high variance in policy evaluation, es-
pecially for complex and long-horizon problems (Kakade
2001; Peters and Bagnell 2010). Instead, we will optimize
the policy π by using the gradient of its induced long-term
discounted costs, i.e.,

g(θ) = E(st,at)∼Tπθ

[ ∞∑
t=0

γtct

]
− d,

where d = d
T (1−γ) is the discounted approximation of d.

We propose to replace g(θ) in Jπ(θ) by g(θ), but Js(ω)
remains as in Eq. 4, because the constraint satisfaction of a
policy can be easily estimated by the real costs of the sam-
pled trajectories. In the following, we argue that it is valid to
optimize the policy π by minimizing the discounted cumu-
lative costs until the original undiscounted cost constraint is
satisfied.
Theorem 1. Let the constrained optimization in (2) be fea-
sible with a solution S ∗ = (θ∗, ω∗) that satisfies the KKT
conditions, which is found by minimizing the loss func-
tions (4). Then, S

∗
= (θ∗, ω∗) with ω∗ = ω∗

h′(0) is a solu-
tion to the problem obtained by replacing g(θ) in Jπ(θ) with
h(g(θ)), where h : R→ R is a strictly monotone increasing
function. The reverse also holds.

If we have a long episode length T ≫ 1/(1− γ) and on-
policy sampling at each gradient step, g(θ) is approximately
an affine function of g(θ), i.e.,

g(θ)
.
=

g(θ)

T (1− γ)
, (5)

Therefore, invoking Theorem 1, we can optimize the pol-
icy π for (2) by calculating the gradient on the discounted
cost-return g(θ), but updating the safety weight ω based
on the undiscounted real costs. We refer the reader to Ap-
pendix A for the proof of Theorem 1 and derivation of Eq. 5.

The CEM Algorithm
To solve the safety-constrained entropy maximization prob-
lem (2) in complex domains, we propose the CEM method
(Algorithm 1) to optimize the policy within ΠΘ. At each
gradient step, CEM will perform a series of fine-tuned op-
timizations centered around the current policy (Schulman
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et al. 2015). We take the trust region as a constraint to en-
sure that the optimizations are conducted within a reliable
and stable neighborhood of the current policy θ′. Consid-
ering the trust-region threshold δ, we are presented with a
constrained optimization problem as follows:

max
θ∈Θ
Ĥk(ρT (θ)) s.t.

{
DKL(ρT (θ)||ρT (θ′)) ≤ δ

E
(st,at)∼Tθ

[∑T
t=1 ct

]
≤ d. (6)

Before updating the policy, we can determine the safety
weight ω by evaluating the current safety performance. With
the current policy parameters θ′, we can sample a batch of
trajectories of length T (Algorithm 1, lines 3-8). We use λπ
and λω to represent the learning rate for the policy π and
safety weight ω respectively. Then, we can update the safety
weight (Algorithm 1, line 9) by

ω ← max(0, ω + λω ĝ(θ
′)), (7)

where

ĝ(θ′) =
1

NT

NT∑
n=1

[
T∑

t=1

ct|(st, at) ∼ Tπθ′

]
− d, (8)

where NT is the number of trajectories. Then, we construct
the loss function for the policy

Jπ(θ) = JH(θ) + ωJg(θ), (9)

where JH(θ) = −Ĥk(ρT (θ)|ρT (θ′))
and Jg(θ) = g(θ)− g(θ′).

The loss function for the state entropy JH(θ) is based on the
IW k-NN estimator Ĥk

N (ρ|ρ′). Note that the entropy cannot
be calculated directly, but needs to be estimated based on the
current policy, the target policy, and the sampled particles
from the current policy. We can first compute the normalized
importance weight for each sample, then approximate the
state density Ĥk

N (ρ|ρ′) (Mutti, Pratissoli, and Restelli 2021).
Although these samples are not all independent (trajectories
are sampled independently, but states within a trajectory are
correlated), we observe satisfactory behavior when k and the
number of trajectories are sufficiently large.

Notice that we use the surrogate advantage g(θ) − g(θ′)
to approximate our objective in minimizing the discounted
safety costs, and build our loss function Jg for safety. The
surrogate advantage is a measure of how the target policy πθ
performs in safety relative to the current policy πθ′ using
data from πθ′ (Schulman et al. 2015), i.e.,

Jg(θ)
.
= E

(st,at)∼Tπ
θ′

[
πθ (a|s)
πθ′ (a|s)

Ac
πθ′

(s, a)

]
, (10)

where Ac
π(s, a) = Qc

π(s, a)− V c
π (s) is the advantage func-

tion for costs. The surrogate advantage is designed for max-
imizing the long-term return, but it can be easily adapted to
minimize the discounted safety costs g(π) in our setting. We
refer the reader to (Schulman et al. 2015) for the proof of
Eq. 10.

Algorithm 1: Constrained Entropy Maximization

Require: Initial parameters T , N , δ, λ, k, and d
1: initialize θ, ω, D ← ∅, θ′ ← θ
2: for each epoch do
3: for each environment step do
4: at ∼ πθ′(at|st)
5: ct ∼ c(at|st)
6: st+1 ∼ P(st+1|st, at)
7: D ← D ∪ {(st, at, ct, st+1)}
8: end for
9: ω ← max(0, ω + λω ĝ(θ

′))
10: while DKL(ρT (θ)||ρT (θ′)) ≤ δ do
11: θ ← θ + λπ∇θJπ(θ)
12: end while
13: θ′ ← θ
14: D ← ∅
15: end for
Output: Safe exploration policy πθ

At each gradient step, we exploit a KL estimator
D̂KL(ρ∥ρ′) to compute the trust-region constraint. We re-
fer the reader to (Ajgl and Šimandl 2011; Mutti, Pratis-
soli, and Restelli 2021) for the detailed derivation and ex-
pression of D̂KL(ρ∥ρ′). While the updated policy satisfies
D̂KL(ρT (θ)||ρT (θ′)) ≤ δ, we can optimize the policy sev-
eral times (Algorithm 1, lines 10-12) by

θ ← θ + λπ∇θJπ(θ)

= θ + λπ∇θJH(θ) + λπω∇θJg(θ),
(11)

where

∇θJg(θ) =
1

N

N∑
n=1

∇θ

[
πθ (an|sn)
πθ′ (an|sn)

Ac
πθ′

(sn, an)

]
.

We employ Theorem 5.1 by Mutti, Pratissoli, and Restelli
(2021) to compute the gradient of the IW entropy estima-
tor in∇θJH(θ), where θ is updated without constraints. Us-
ing the Lagrangian cost constraint, we leverage ω to balance
safety during policy updates instead of as a reward-shaping
factor.

Bounds on Approximate Convergence
In this section, we demonstrate the approximate conver-
gence of CEM to the optimal solution by transforming the
problem (3) into the framework by Qin, Chen, and Fan
(2021). At each gradient step, CEM updates the policy based
on the gradient descent algorithm with the modifications
shown by Theorem 1, which finds the direction of the max-
imum increase in the entropy of the average state density
but only considers the immediate surroundings of the cur-
rent policy. Thus, the policy ascent is noisy due to limited
samples and constrained due to the trust-region constraint.
Then, the question is whether the gradient descent of the
weight ω is sufficiently perturbed to no longer find a solu-
tion. Theorem 2 by Qin, Chen, and Fan (2021) has shown
that a density-constrained RL algorithm can eventually con-
verge around the optimal policy even under suboptimal pol-
icy updates at each gradient step.
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The amended Lagrangian optimization from Theorem 1
can be written as:

max
ω≥0
F(ω),where

F(ω) = ωg(ρ∗(ω))–H(ρ∗(ω)), and
ρ∗(ω) = argmin

ρ
ωg(ρ)–H(ρ).

(12)

In this representation, the state density ρ = ρπT is implicitly
generated by the policy π. The associated discounted safety
costs can be expressed as

g(ρ) =

∫
S

ρπT (s)V
c
π (s)ds− d

≈ 1

1− γ

[∫
S

ρπT (s)c(s)ds−
d

T

]
,

where g(ρ) is (approximately) affine in ρ, and we assumed
that costs c(s) are incurred by the presence in states, not by
actions.

Theorem 2 by Qin, Chen, and Fan (2021) is built on the
assumption that the optimization function is strongly con-
vex. Because –H(ρ) is convex and g(ρ) is (approximately)
affine in ρ, our optimization function ωg(ρ)–H(ρ) in Eq. 12
is convex in ρ but not necessarily strongly convex, which
depends on the underlying distribution and the specific form
of the entropy measure. Even when ωg(ρ)–H(ρ) is not
strongly convex, we can add a regularization term to enforce
strong convexity, ensuring that it has a unique minimum and
steepness that increases when moving away from the mini-
mum. When ωg(ρ)–H(ρ) is strongly convex, let its modulus
be µ, which measures the degree of convexity.

We optimize ω to achieve maxω≥0 F(ω). The set of
its optimal solutions is denoted as Ω∗ = {ω|F(ω) =
maxω≥0 F(ω)}, with ω∗ ∈ Ω∗ in line with Theorem 1. For
a given ω, we use the TRPO method (with discounted safety
costs) to solve the state density optimization problem. For a
suboptimal update in policy, we assume the imperfect solu-
tion ρ̂ satisfies

ωg(ρ̂)−H(ρ̂)−F(ω) ≤ ϵ.

The corresponding update in the safety weight is ω ←
max(0, ω + λω∇F̂(ω)), where ∇F̂(ω) = g(ρ̂). Then, we
can invoke Lemma 2 and Theorem 2 by Qin, Chen, and Fan
(2021) to get the following convergence result.

Convergence result For a step size λω ≤ µ, CEM with
suboptimal policy updates will converge to a ω̂ that satisfies

min
ω′∈Ω∗

∥ω̂ − ω′∥ ≤ ψ
√
ϵ/µ

with constant ψ > 0. With another constant ξ > 0, F(ω̂)
also converge to a bounded neighborhood of its optimal
value:

min
ω′∈Ω∗

∥F(ω̂)−F(ω′)∥ ≤ ξϵ/µ2.

Empirical Analysis
We evaluate our method based on a wide variety of TASE
benchmarks. We organize our empirical analysis as follows:

(a) BasicNav (b) MountainCar (c) CartPole

(d) PointGoal (e) CarButton

Figure 1: Safety-constrained exploration tasks with different
complexity levels, i.e., the state spaces, the type of the ob-
stacles, and the potential target tasks.

1) We demonstrate that CEM can facilitate learning a safe
exploration policy in various complex environments; 2) We
reveal that the safe exploration policy can benefit the target
tasks in safety and sample efficiency.

Benchmarks We first evaluate our safe unsupervised ex-
ploration in a 2D navigation domain BasicNav (2D states,
Figure 1(a)), where a hazard in the center should be avoided.
Then, we consider two continuous illustrative domains:
MountainCar (2D, Figure 1(b)) and CartPole (4D, Fig-
ure 1(c)). Note that they are different from the original ver-
sions in OpenAI Gym (Brockman et al. 2016) because of the
additional constraints. In MountainCar, the constraint is to
not go too far to the left (indicated by the red line in Fig-
ure 1(b)), every step the cart is too far to the left a cost
of 1 is incurred. In CartPole, the constraint is to keep the
cart in a certain region. Finally, we test our method in a set
of continuous control, high-dimensional environments from
the Safety Gym suite (Todorov, Erez, and Tassa 2012; Ray,
Achiam, and Amodei 2019): PointGoal (36D, Figure 1(d)),
CarButton (56D, Figure 1(e)). In PointGoal, we control the
point robot to navigate in the 2D map to reach a goal while
trying to avoid a vase and several hazards. In CarButton,
we control a more complex car robot to push the right but-
ton while trying to avoid the wrong button, several mov-
ing gremlins, and several fixed hazards. In all environments,
c = 1 if an unsafe interaction happens, and c = 0 otherwise.
All experiments are performed over 10 runs with different
random seeds and the plots show the mean and standard de-
viation of all runs. More details about the environments and
experiments are provided in Appendix B.

Evaluation of Safe Exploration
During training, the agent is not aware of the extrinsic en-
vironment reward, i.e., r(s, a) = 0, ∀s ∈ S, a ∈ A. The
policy is evaluated in terms of its entropy value Ĥk(ρT (θ))
and the average episodic costs over each epoch. We hand-
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Figure 2: Comparison of MEPOL, SAC-λ-RF, SAC-λ-IR, and CEM during training in exploration (top row) and safety (bottom
row). The solid lines are the average of all runs, and the shaded area is the standard deviation. The red dashed lines indicate the
safety thresholds.

tune hyperparameter k to attain reasonable performance of
the entropy estimator. We choose the horizon T according to
the potential task for the agent in each specific environment.
We analyze the sensitivity of the parameters in Appendix C.
To evaluate how our method performs in pure safe explo-
ration tasks, we compare CEM with three baselines:

MEPOL To show how well the agent can explore the
world without taking into account any safety concerns, we
also take MEPOL as a baseline, which is a state-of-the-art
algorithm in maximizing the state entropy (Mutti, Pratissoli,
and Restelli 2021).

SAC-λ-RF To efficiently explore the world, we first con-
sider SAC-λ (Ha et al. 2020) to maximize the policy entropy
under the safety constraints with r(s, a) = 0 : ∀s ∈ S, a ∈
A, rather than optimize the state entropy directly.

SAC-λ-IR Inspired by the off-policy version for efficient
exploration in the work by Seo et al. (2021), we introduce an
auxiliary reward r(s) := log(∥s − sk-NN∥2 + 1) to further
enhance the exploration under the framework of SAC-λ (Ha
et al. 2020).

As we show in Figure 2, compared to the safe methods
(SAC-λ-RF, SAC-λ-IR, and CEM), MEPOL shows the abil-
ity to acquire policies with remarkably strong exploration
across all domains, but it does not satisfy the safety con-
straint. Both SAC-λ-RF and SAC-λ-IR can converge to safe
policies even in more complex environments. In the clas-
sic control environments MountainCar and CartPole, the two
SAC-λ methods can also make prominent improvements in
state entropy, but failed in BasicNav (Figure 2(a)), Point-
Goal (Figure 2(d)), and CarButton (Figure 2(e)). In general,
with the benefits from the intrinsic reward, SAC-λ-IR at-
tained higher state entropy than SAC-λ-RF. Compared to all
the baselines, only CEM managed to learn a policy that fi-
nally gets remarkable results in exploration and satisfies the
safety constraint.

After training, we leverage the heat maps in Figure 3 to
show the exploration of the final policies in the illustrative
environments BasicNav, MountainCar, and CartPole. Note

Figure 3: Exploration analysis after training. The heat maps
show the final state density of the learned policies. The red
line indicates the dangerous area.

that the states in CartPole are 4D, but we just focus on the
cart position and pole angle. We can see that MEPOL can al-
ways achieve efficient exploration in all environments. How-
ever, the unsafe areas are also covered by the learned agents.
The exploration heat maps also show that the two SAC-λ
methods are too conservative in safety. Even though SAC-
λ-IR is generally better than SAC-λ-RF, the learned agent
cannot cover the safe areas well, especially in BasicNav and
CartPole. Only CEM can efficiently explore the safe areas in
all the illustrative environments.

Evaluation of Safe Transfer Learning
In this section, we evaluate how a safe exploration policy
learned by CEM can benefit the target tasks in safety and
sample efficiency. To evaluate the policy in safety, we use
the safety costs generated during the interaction with the
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Figure 4: Effects of the quality of the safe exploration poli-
cies on the target tasks. The solid lines are the average of all
runs, and the shaded area is the standard deviation. The red
dashed lines indicate the safety thresholds.

environment. In terms of performance, we use the average
episodic rewards over 100 episodes in an extra test process
after each epoch. In the target tasks, the extrinsic environ-
ment reward is revealed to the agent. We leverage the safe
exploration policy to guide learning in the off-policy safe
guide (SaGui; Yang et al. 2022a) framework, which achieves
safe transfer learning by two mechanisms: i) Adaptively reg-
ularize the student policy to the guide policy based on the
student’s safety; ii) Use the safe exploration policy as a re-
covery policy when the student starts to take unsafe actions.

To show how the quality of the safe exploration policies
plays a role in learning, we use the policy learned by CEM
to represent a teacher with a good balance between safety
and exploration (Balance). For comparison, we use the pol-
icy learned by MEPOL to represent an unsafe teacher but
with efficient exploration over the whole state space (Over-
Explore), so we deactivate the recovery mechanism with this
unsafe policy in SaGui for a fair comparison. On the other
hand, we also use the policy learned SAC-λ-RF, which is
safe but very conservative in exploration (OverlySafe). We
also take the agent that starts learning from scratch (From-
Scratch) as a baseline.

In Figure 4, we show how the quality of the safe explo-
ration policies influences the learning in the target tasks,
where the agent needs to reach the goal in PointGoal, and
push the right button in CarButton. In general, we can ob-
serve that the different safe exploration policies benefit the
target tasks in different ways. The agent guided by the
OverExplore policy can learn to get high rewards quickly,
but cannot get obvious improvement in safety compared to
learning from scratch. The OverlySafe policy can stay the
agent to be absolutely safe when interacting with the envi-
ronment. However, the resulting performance is even worse
than learning from scratch. The policy learned by CEM
(Balance) can guide the agent to obtain high rewards quickly
under the condition of ensuring the safety of training.

Related Work
Task-agnostic exploration has been studied in three different
directions, estimating the environment dynamics (Jin et al.
2020; Tarbouriech et al. 2020), learning a transferable meta-
reward function (Bechtle et al. 2021; Zheng et al. 2020), and
learning an efficient exploration policy (Hazan et al. 2019;
Lee et al. 2019; Tarbouriech and Lazaric 2019; Mutti and
Restelli 2020; Mutti, Pratissoli, and Restelli 2021; Guo et al.
2021; Nedergaard and Cook 2022). These works made im-
pressive progress in exploring the environment efficiently
without a reward signal (Laskin et al. 2021b). Nevertheless,
task-agnostic exploration with safety concerns is still under-
explored. Compared to our method, their learned policies
cannot explore safely, which is important when we need to
explore the real world and the target tasks are safety critical.

The constrained cross-entropy method proposed by Wen
and Topcu (2018) could be extended to the TASE problem,
but its efficiency under the state-entropy maximization ob-
jective has not yet been tested. To some extent, SAC-λ can
also be used to solve our problem. By maximizing the pol-
icy entropy, the agent trained by SAC-λ tends to have di-
verse behaviors, but it does not imply efficient exploration
of the environment. With an additional intrinsic reward, the
exploration of SAC-λ can be enhanced (Yang et al. 2022a),
but the interpretability of the learned policy in exploration is
not clear. Achiam et al. (2017); Liu, Ding, and Liu (2020);
Yang et al. (2020) propose a series of constrained policy op-
timization methods, where the constraints are built on long-
term costs instead of real costs within a finite horizon. To
apply their methods in our domain, more work is needed to
process the different optimization objective and constraint.

Conclusions and Future Work
In this paper, we propose the CEM algorithm to solve safety-
constrained entropy maximization problems in a completely
reward-free manner. We argue that it is more practical to for-
mulate the problem to be finite-horizon without discounting,
which mitigates the problem of designing a safety threshold
based on the discounted cost-return. To trade off exploration
with safety, we adaptively change the safety weights based
on the undiscounted real costs. Accordingly, we can update
the policy under the adjusted balance between safety and
exploration. The learned policy can maximize exploration
under the premise of safety even in complex continuous-
control domains, and benefit the potential target tasks in
sample efficiency and safety. To address more complex
problems in the future, it is critical to abstract the state space
to make the state entropy estimation easier and more effec-
tive (Tao, François-Lavet, and Pineau 2020; Liu and Abbeel
2021b; Seo et al. 2021; Yarats et al. 2021). Also, it is promis-
ing to consider different pretraining settings, e.g., maxi-
mum entropy over the state-action pairs (Zhang, Cai, and Li
2021), the maximum mutual information between tasks and
policy-induced states (Liu and Abbeel 2021a) or between
state transitions and latent skill vectors (Laskin et al. 2021a),
pretraining in a class of multiple environments (Mutti, Man-
cassola, and Restelli 2022), and pretraining for history-based
policies (Mutti, De Santi, and Restelli 2021).
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