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Abstract

Online optimization with multiple budget constraints is chal-
lenging since the online decisions over a short time hori-
zon are coupled together by strict inventory constraints. The
existing manually-designed algorithms cannot achieve sat-
isfactory average performance for this setting because they
often need a large number of time steps for convergence
and/or may violate the inventory constraints. In this paper,
we propose a new machine learning (ML) assisted unrolling
approach, called LAAU (Learning-Assisted Algorithm Un-
rolling), which unrolls the agent’s online decision pipeline
and leverages an ML model for updating the Lagrangian mul-
tiplier online. For efficient training via backpropagation, we
derive gradients of the decision pipeline over time. We also
provide the average cost bounds for two cases when training
data is available offline and collected online, respectively. Fi-
nally, we present numerical results to highlight that LAAU can
outperform the existing baselines.

Introduction
Online optimization with budget (or inventory) constraints,
also referred to as OOBC, is an important problem model-
ing a wide range of sequential decision-making applications
with limited resources, such as online virtual machine re-
source allocation (Joe-Wong et al. 2013; Palomar and Chi-
ang 2007), one-way trading in economics (El-Yaniv et al.
2001), resource management in wireless networks (Neely
2010; Lan et al. 2010), and data center server provision-
ing (Ghodsi et al. 2011). More specifically, when virtual-
izing a physical server into a small number of virtual ma-
chines (VMs) to satisfy the demand of multiple sequentially-
arriving jobs, the agent must make sure that the total VM re-
source consumption is no more than what the physical server
can provide (VMware 2022).

In an OOBC problem, online actions are selected sequen-
tially to maximize the total utility over a short time hori-
zon while the resource consumption over the time horizon is
strictly constrained by a fixed amount of budgets (i.e., violat-
ing the budget constraint is naturally prohibited due to phys-
ical constraints). Consequently, the short time horizon (e.g.,
24 hourly decisions in a day) and the strict budget constraint
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present substantial algorithmic challenges — the optimal so-
lution relies on complete offline context information, but in
the online setting, only the online contexts are revealed and
the exact future contexts are unavailable for decision making
(Lin et al. 2019, 2022).

A relevant but different problem is online optimization
with (long-term) constraints (Balseiro, Lu, and Mirrokni
2020; Feldman et al. 2010; Neely 2010; Azar et al. 2016).
In the literature, a common approach is to relax the long-
term capacity constraints and include them as additional
weighted costs into the original optimization objective, i.e.,
Lagrangian relaxation (Devanur et al. 2019; Zinkevich 2003;
Balseiro, Lu, and Mirrokni 2020; Neely 2010). The La-
grangian multiplier can be interpreted as the resource price
(Palomar and Chiang 2007), and is updated at each time
step by a manually-designed algorithm such as Dual Mir-
ror Descent (DMD) (Balseiro, Lu, and Mirrokni 2020; Wei,
Yu, and Neely 2020; Jiang, Li, and Zhang 2020). These al-
gorithms require a sufficiently long time horizon for con-
vergence, which hence may not provide satisfactory perfor-
mance for short-term budget constraints, especially when
contexts in an episode are not identically independently dis-
tributed (i.i.d.). Additionally, some studies consider con-
straints on average (i.e., equivalently, long-term constraints)
(Qiu et al. 2018; He et al. 2013) or bound the violation of
the constraints (Neely 2010; Yu and Neely 2020; Sun et al.
2016). Thus, they do not apply to strict budget constraints
over a short time horizon.

The challenges of OOBC with short-term and strict bud-
get constraints can be further highlighted by that competitive
online algorithms have only been proposed very recently un-
der settings with linear constraints (Lin et al. 2019, 2022).
Concretely, CR-Pursuit algorithms are proposed to make ac-
tions by following a pseudo-optimal algorithm based on the
competitive ratio pursuit framework. Nonetheless, to make
sure the solution exists for each OOBC episode, the guaran-
teed competitive ratio (ratio between the algorithm cost and
the offline-optimal cost) can be large. Also, they treat each
OOBC problem instance as a completely new one and fo-
cus on the worst-case competitive ratio without considering
the available historical data obtained when solving previous
OOBC episodes. Thus, their conservative nature does not re-
sult in a satisfactory average performance, which may limit
the practicability of these algorithms.
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By tapping into the power of historical data, a natural idea
for OOBC is to train an machine learning (ML) based op-
timizer. Indeed, reinforcement learning has been proposed
to solve online allocation problems in other contexts (Kong
et al. 2019; Alomrani, Moravej, and Khalil 2021; Du, Wu,
and Huang 2019). But, the existing ML-based algorithms
for online optimization typically learn online actions in an
end-to-end manner without exploiting the structure of the
online problem being studied, which hence can have an un-
necessarily high learning complexity and create additional
challenges for generalization to unseen problem instances
(Chen et al. 2021; Liu et al. 2019).

Contribution. We study OOBC with short-term and strict
budget constraints, and propose a novel ML-assisted un-
rolling approach based on recurrent architectures, called
LAAU (Learning-Assisted Algorithm Unrolling). Instead of
using an end-to-end ML model to directly learn online ac-
tions, LAAU uniquely exploits the LAAU problem structure
and unrolls the agent’s online decision pipeline into decision
pipeline with three stages/layers — update the Lagrangian
multiplier, optimize decisions subject to constraints, and up-
date remaining resource budgets — and only plugs an ML
model into the first stage (i.e., update the Lagrangian mul-
tiplier) where the key bottleneck for better performance ex-
ists. Thus, compared with the end-to-end model, LAAU ben-
efits generalization by exploiting the knowledge of decision
pipeline (Chen et al. 2021). Moreover, when the action di-
mension is larger than the number of constraints (i.e., the di-
mension of Lagrangian multipliers), the complexity advan-
tage of using LAAU to learn Lagrangian multipliers can be
further enhanced compared to learning the actions using an
end-to-end model.

It is challenging to train LAAU through backpropaga-
tion since the constrained optimization layer is not eas-
ily differentiable. Thus, we derive tractable gradients for
back-propagation through the optimization layer based on
Karush-Kuhn-Tucker (KKT) conditions. In addition, we rig-
orously analyze the performance of LAAU in terms of the
expected cost for both the case when the offline distribu-
tion information is available and the case when the data is
collected online. Finally, to validate LAAU, we present nu-
merical results by considering online resource allocation for
maximizing the weighted fairness metric. Our results high-
light that LAAU can significantly outperform the existing
baselines and is very close to the optimal oracle in terms
of the fairness utility.

Related Works
Constrained online optimization. Some earlier works (De-
vanur and Hayes 2009; Feldman et al. 2010) solve on-
line optimization with (long-term) constraints by estimat-
ing a fixed Lagrangian multiplier using offline data. This
approach works only for long-term or average constraints.
Many other studies design online algorithms by updating
the Lagrangian multiplier in an online style (Devanur et al.
2019; Balseiro, Lu, and Mirrokni 2020; Wei, Yu, and Neely
2020; Jiang, Li, and Zhang 2020). These algorithms guar-
antee sub-linear regrets under the i.i.d. context setting, and
thus can achieve high utility if the number of time steps is

sufficiently large. Likewise, the Lyapunov optimization ap-
proach addresses the long-term packing constraints by in-
troducing virtual queues (equivalent to the Lagrangian mul-
tiplier) (Neely 2010; Yu and Neely 2020; Huang, Liu, and
Hao 2014). Nonetheless, it also requires a sufficiently large
number of time steps for convergence. By contrast, we con-
sider online optimization with short-term strict budget con-
straints, which, motivated by practical applications, makes
OOBC significantly more challenging.

Our work is relevant to the studies on OOBC (Lin et al.
2019, 2022) which design online algorithms to achieve a
worst-case performance guarantee. However, to guarantee
the worst-case performance and the feasibility of the algo-
rithm, the algorithms are very conservative and their average
performances are unsatisfactory. Comparably, we consider a
more general setting where the budget constraint can be non-
linear, and utilize available historical data more efficiently
to design ML-based LAAU that unrolls the online decision
pipeline and achieves favorable average performance.

Algorithm unrolling. LAAU is related to the recent
studies on ML-assisted algorithm unrolling and deep im-
plicit layers, which integrate ML into traditional algorith-
mic frameworks for better generalization and interpretabil-
ity, lower sampling complexity and/or smaller ML model
size (Adler and Öktem 2018; Chen et al. 2021; Kolter, Du-
venaud, and Johnson 2022; Monga, Li, and Eldar 2021; Liu
et al. 2019). Algorithm unrolling has been used for sparse
coding (Gregor and LeCun 2010; Sprechmann, Bronstein,
and Sapiro 2015), signal and image processing (Monga, Li,
and Eldar 2021; Li et al. 2019), and solving inverse prob-
lems (Kobler et al. 2020) and ordinary differential equa-
tions (ODEs) (Chen et al. 2018). Also, algorithm unrolling
is applied in learning to optimize (L2O) (Chen et al. 2021;
Wichrowska et al. 2017). Among these works, (Narasimhan
et al. 2020) predicts the Lagrangian multiplier by a model
to efficiently solve offline optimizations which may have a
large number of constraints but allow constraint violations.
These studies have their own challenges orthogonal to our
problem where the key challenge is the lack of complete
offline information. Thus, LAAU, to our knowledge, is the
first to leverage ML to unroll an online optimizer for solving
the online convex optimization with budget constraints, thus
having better generalization than generic RL-based optimiz-
ers to directly obtain end solutions (Alomrani, Moravej, and
Khalil 2021; Du, Wu, and Huang 2019; Kong et al. 2019).

Problem Formulation
As in the existing ML-based optimizers for online problems
(Kong et al. 2019; Alomrani, Moravej, and Khalil 2021;
Du, Wu, and Huang 2019), we consider an agent that inter-
acts with a stochastic environment. The time horizon of an
episode consists of N time steps. For an episode, two vectors
c = [c1, · · · , cN ]⊤ and B = [B1, · · · , BM ]⊤, where ct is a
context vector and Bm ∈ R+ is the total budget for resource
m, are drawn from a certain joint distribution (c,B) ∼ P ,
which we refer to as the environment distribution. Note that
ci and cj for i ̸= j can follow different probability dis-
tributions, and so can Bi and Bj for i ̸= j. The random
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vector B = [B1, · · · , BM ]⊤ are revealed at the beginning
of an episode, and represents the budgets for M types of
resources. On the other hand, c = [c1, · · · , cN ]⊤ are on-
line contexts sequentially revealed over N different steps
within an episode. That is, at step t, the agent only knows
c1, · · · , ct, but not the future parameters ct+1, · · · , cN .

At each step t = 1, · · · , N , the agent makes a decision
xt ∈ Rd, consumes some budgets, and also receives a utility.
Given the decision xt and parameter ct, the amount of the
resource consumption is denoted as a non-negative function
gm(xt, ct) ≥ 0, for m = 1, · · · ,M . To be consistent with
the notation of loss function, we use a cost or loss l(xt, ct)
to denote the negative of the utility — the less l(xt, ct), the
better. As the cost function l(·, ct) is parameterized by ct,
knowing ct is also equivalent to knowing the cost function.
We assume that the loss function l and the constraint func-
tions gm,m = 1, · · · ,M are twice continuously differen-
tiable, and either the loss function l or one of the constraint
functions gm,m = 1, · · · ,M is strongly convex in terms of
the decision xt.

For each episode with (c,B) ∼ P , the goal of the agent
is minimizing its total cost over the N steps subject to M re-
source capacity constraints, which we formulate as follows:

min
x=(x1,··· ,xN )

N∑
t=1

l(xt, ct),

s.t.
N∑
t=1

gm(xt, ct) ≤ Bm,m = 1, · · · ,M.

(1)

This is an online optimization problem with inventory
constraints (referred to as OOBC) in the sense that the
short-term strict inventory constraints are imposed for each
episode of N time steps. An episode has its own M capacity
constraints which should be strictly satisfied, and the unused
budgets cannot roll over to the next episode. For ease of no-
tation, given a policy π which maps available inputs to fea-
sible actions, we denote L(π) =

∑N
t=1 l(xt, ct) as the total

loss for one episode and E [L(π)] as the expected total loss
over the distribution of (c,B) ∼ P .

The setting of OOBC presents new technical challenges
compared with existing works on constrained online op-
timization. Specifically in OOBC, the time horizon in an
episode (episode length) is finite and can be very short. In
this case, there are not many steps for algorithms to con-
verge, and bad decisions at early steps have a large im-
pact on the overall performance. Thus, DMD (Balseiro, Lu,
and Mirrokni 2020; Wei, Yu, and Neely 2020; Jiang, Li,
and Zhang 2020) and Lyapunov optimization (Neely 2010)
which are specifically designed for long episodes may not
provide good results for OOBC. Besides, unlike some stud-
ies that satisfy average constraints (Qiu et al. 2018; He et al.
2013) or that only approximately satisfy the constraints un-
der bounded violations (i.e., soft constraints) (Yu and Neely
2020, 2019; Sun et al. 2016), OOBC requires all the con-
straints in Eqn. (1) be strictly satisfied. This requirement is
necessary for many practical applications with finite avail-
able resources (e.g., a data center’s power capacity must not
be exceeded (Fan, Weber, and Barroso 2007)), but makes

the problem more challenging. Last but not least, the con-
texts in one episode in OOBC are drawn from a general joint
distribution (not necessarily i.i.d.). Under non-i.i.d. cases,
DMD(Balseiro, Lu, and Mirrokni 2020) has performance
guarantees only when each episode is long enough. CR-
Pursuit(Lin et al. 2019, 2022) has competitive ratios but
is too conservative and may not perform well on average.
To improve the average performance of OOBC, new algo-
rithms are needed to effectively utilize history data of previ-
ous episodes.

Learning-Assisted Algorithm Unrolling
Relaxed Optimization
The design of LAAU is based on the Lagrangian relaxed op-
timization method which is introduced here. Since it is diffi-
cult to directly solve the constrained optimization in Eqn. (1)
due to the lack of complete offline information in an online
setting, many studies (Arora, Hazan, and Kale 2012; Bal-
seiro, Lu, and Mirrokni 2020; Neely 2010) solve the La-
grangian relaxed form written as follows:

min
x=(x1,··· ,xN )

N∑
t=1

l(xt, ct) + λ⊤
N∑
t=1

g(xt, ct), (2)

where g(xt, ct) = [g1(xt, ct), · · · , gM (xt, ct)]
⊤ and λ =

[λ1, · · · , λM ]⊤ is the non-negative Lagrangian multiplier
corresponding to the M constraints

∑N
t=1 g(xt, ct) ≤ B.

The multiplier λ with M dimensions essentially relaxes the
M inventory constraints, thus decoupling the decisions over
the N time steps within an episode. It is also interpreted as
the resource price in the resource allocation literature (Palo-
mar and Chiang 2007; Boyd, Boyd, and Vandenberghe 2004;
Neely 2010): A greater λt means a higher price for the re-
source consumption, thus pushing the agent to use less re-
source. Clearly, had we known the optimal Lagrangian mul-
tiplier λ∗ at the beginning of each episode, the OOBC prob-
lem would become very easy. Unfortunately, knowing λ∗

also requires the complete offline information (c,B), which
is not possible in the online case. Nevertheless, if we can
appropriately update λt in an online manner while strictly
satisfying the constraints, we can also efficiently solve the
OOBC problem. Formally, by using λt that is updated online
for each step t, we can instead solve the following relaxed
problem:

min
xt

l(xt, ct) + λ⊤
t g(xt, ct), s.t., g(xt, ct) ≤ bt, (3)

where λt = [λt,1, · · · , λt,M ]⊤, g(xt, ct) =
[g1(xt, ct), · · · , gM (xt, ct)]

⊤, and the remaining bud-
get for step t is bt = B −

∑t−1
s=1 g(xs, cs).

In fact, designing good update rules for λt for each step
t = 1, · · · , N is commonly considered in the literature
(Balseiro, Lu, and Mirrokni 2020; Agrawal and Devanur
2014). For example, (Balseiro, Lu, and Mirrokni 2020) up-
date λt by DMD, in order to meet long-term constraints
while achieving a low regret compared to the optimal or-
acle. Nonetheless, it requires a large number of time steps
to converge to a good Lagrangian parameter. Likewise, the
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Algorithm 1: Online Inference Procedure of LAAU

Input: ML model fθ.
1: for t=1 to N do
2: Receive ct, forward propagate fθ and get Lagrangian

multiplier λt = fθ (bt, ct, t̄).
3: Solve the constrained convex optimization in (4) and

make action xt.
4: Update the resource budget bt+1 = bt − g(xt, ct).
5: end for

Lyapunov optimization technique introduces a virtual queue,
whose length essentially takes the role of λt and is updated
as λt+1 = max

{
λt + g(xt, ct)− 1

NB, 0
}

or in other sim-
ilar ways (Neely 2010). Nonetheless, the convergence rate
of using Lyapunov optimization is slow (even assuming ct
is i.i.d. for t = 1, · · · , N ), and there exists a tradeoff be-
tween cost minimization and long-term constraint satisfac-
tory, making it unsuitable for the short-term constraints that
we focus on.

Alternatively, one may want to exploit the distribution in-
formation of (c,B) ∼ P and solve a relaxed problem of-
fline by considering M average constraints (referred to as
AVG-LT). That is, we replace the short-term capacity con-
straints in Eqn. (1) with EP

[∑N
t=1 gm(xt, ct)

]
≤ Bm for

m = 1, · · · ,M . By solving this relaxed problem, we can ob-
tain a Lagrangian multiplier λP that only depends on P but
not the specific (c,B). Thus, we can replace λt in Eqn. (3)
with λP . However, since this method uses a constant La-
grangian multiplier for all episodes, we will either be overly
conservative and not using the budgets as much as possible,
or violating the the constraints.

Algorithm Unrolling
We propose to leverage the powerful capacity of ML to find
a solution. One approach is to train an end-to-end model that
takes the online input information and directly outputs a de-
cision. But, the end-to-end model should be large enough to
capture the possibly complex logic of the optimal policy, and
the end-to-end models often have poor interpretability and
worse generalization (see the comparison between LAAU
and the generic end-to-end approach in Section ). Therefore,
instead of replacing the whole decision pipeline with ML,
we only plug an ML model in the most challenging stage —
online updating of the Lagrangian multiplier λt needed to
solve the relaxed problem in Eqn. (3).

As shown in Algorithm 1 and illustrated in Fig. 1, the de-
cision pipeline at step t can be decomposed into three stages
as follows.

Updating λt. At the beginning of step t = 1, · · · , N , the
ML model takes the parameter ct, the remaining budget bt =
[bt,1, · · · , bt,m]⊤ and the normalized number of remaining
steps t̄ = N−t

N as the inputs, and outputs the Lagrangian
multiplier λt = [λt,1, · · · , λt,m]⊤. Letting fθ denote the ML
model parameterized by θ, we have λt = fθ (bt, ct, t̄) .

Optimization layer. In the optimization layer, we solve a
relaxed convex problem formulated in Eqn. (3). The natural

Figure 1: Architecture of LAAU. The red lines indicate the
flows that need back propagation.

constraints on the remaining resource budgets ensure that
the strict inventory constraints are always satisfied by LAAU.
We denote the optimization layer as p(ct, λt, bt) and thus
have:

xt = p(ct, λt, bt)=argmin
x

(
l(x, ct) + λ⊤

t g(x, ct)
)
,

s.t., g(x, ct) ≤ bt.
(4)

Updating resource budgets. In the last stage, the remain-
ing resource budgets serve as an input for the next recur-
rence and are updated as bt+1 = B −

∑t
s=1 g(xs, cs) =

bt − g(xt, ct)..
Each episode includes N recurrences, each for one de-

cision step. The cost for step t is calculated after the op-
timization layer as l(xt, ct). Note that in the N -th recur-
rence which is the final stopping step, the remaining budget
br = bN − g(xN , cN ) will be wasted if not used up. Thus,
we directly set λN = 0 for the N -th unrolling unit.

Training the Unrolling Architecture
To clearly explain the back propagation of the unrolling
model, we first consider the offline training where offline
distribution information is available. Then we extend to the
online training setting where the data is collected online.

Offline Training
Training Objective For the ease of notation, we de-
note the online optimizer as hθ (B, c). For offline train-
ing, we are given an unlabeled training dataset S =
{(c1,B1) , · · · , (cn,Bn)}, with n samples of (c,B). The
training dataset can be synthetically generated by sampling
from the target distribution for the online input (c,B),
which is a standard technique in the context of learn-
ing to optimize (Chen et al. 2021; Dai et al. 2017; Li
and Malik 2017; Alomrani, Moravej, and Khalil 2021;
Du, Wu, and Huang 2019). By forward propagation,
we can get the empirical training loss as L(hθ, S) =
1
n

∑n
i=1

∑N
t=1 l(xi,t, ci,t) where xi,t is the output of the on-

line optimizer hθ regarding ci and Bi. By minimizing the
empirical loss, we get θ̂ = argminθ L(hθ, S).
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Backpropagation Typically, the minimization of the
training loss is performed by gradient descent-based algo-
rithms like SGD or Adam, which need back propagation to
get the gradient of the loss with respect to the ML model
weight θ. Nonetheless, unlike standard ML training (e.g.,
neural network training with only linear and activation oper-
ations), our unrolled recurrent architecture includes an im-
plicit layer — the optimization layer (Kolter, Duvenaud,
and Johnson 2022). Additionally, the unrolling architecture
has multiple skip connections. Thus, the back-propagation
process is dramatically different from that of standard re-
current neural networks. Next, we derive the gradients for
back propagation in our unrolling design. Note that the loss
l(xt, ct) for any t = 1, · · · , N is directly determined by the
output of the optimization layer xt and the parameter ct, and
xt needs back propagation. Thus, by the chain rule, we have

▽θl(xt, ct)=▽xtl(xt, ct)(▽λtxt▽θ λt+▽btxt▽θ bt) . (5)

To get ▽λt
xt and ▽bt

xt in Eqn. (5), we need to perform
back propagation for the optimization layer p(ct, λt, bt).
This is a challenging task and will be addressed in Section .
The other gradients in Eqn. (5) include ▽θλt and ▽θbt.
Note that λt, which is the ML model output directly deter-
mined by its ML model weight θ, and the remaining budget
bt both need back propagation. Thus, the gradient of λt with
respect to the ML model weight θ is expressed as

▽θλt = ▽θfθ (bt, ct, t̄) +▽bt
fθ (bt, ct, t̄)▽θ bt, (6)

Now, it remains to derive ▽θbt, which is important since
bt is the signal connecting two adjacent recurrences. By the
expression of bt in Line 4 of Algorithm 1, we have

▽θbt = ▽θbt−1+▽xt−1
g(xt−1, ct−1)▽λt−1

xt−1▽θλt−1,
(7)

Combining Eqn. (5), (6) and (7), we get the recurrent expres-
sion for back propagation. Then, by adding up the gradients
of the losses over N time steps, we get the gradient of the
total loss as ▽θL(hθ, S) =

1
n

∑n
i=1

∑N
t=1 ▽θl (xi,t, ci,t).

Differentiating the Optimization Layer It is challenging
to get the close-form solution and its gradients for many con-
strained optimization problems. One possible remedy is to
use some black-box gradient estimators like zero-order op-
timization (Liu et al. 2020; Ruffio et al. 2011). However,
zero-order gradient estimators are not computationally effi-
cient since many samples are needed to estimate a gradient.
Another method is to train a deep neural network to approxi-
mate the optimization layer in Eqn. (4) and then calculate the
gradients based on the neural network. However, we need
many samples to pre-train the neural network, and the gra-
dient estimation error can be large. To address these chal-
lenges, we analytically differentiate the solution to Eqn. (4)
in the optimization layer with respect to the inputs λt, and
bt by exploiting KKT conditions (Kolter, Duvenaud, and
Johnson 2022; Boyd, Boyd, and Vandenberghe 2004). The
KKT-based differentiation method, given in Proposition 0.1,
is computationally efficient, explainable and accurate (under
mild technical conditions).
Proposition 0.1 (Back-propagation by KKT). As-
sume that xt and µt are the primal and dual

solutions to Eqn. (4) , respectively. Let ∆11 =

▽xtxt l (xt, ct) +
∑M

m=1 (λm,t + µm,t)▽xtxt gm(xt, ct),
∆12 = [▽xtg (xt, ct)]

⊤, ∆21 = diag(µt) ▽xt g (xt, ct),
and ∆22 = diag (g (xt, ct)−Bt). If the conditions
in Proposition 0.2 are satisfied, the gradients of the
optimization layer w.r.t. λt and bt are

▽λt
xt=−

(
∆−1

11 +∆−1
11 ∆12Sc (∆,∆11)

−1
∆21∆

−1
11

)
∆12,

▽btxt = −∆−1
11 ∆12Sc (∆,∆11)

−1
diag(µt),

where Sc (∆,∆11) = ∆22−∆21∆
−1
11 ∆12 denotes the Shur-

complement of ∆11 in ∆ = [[∆11,∆12]; [∆21,∆22]]. □

We find that to get truly accurate gradient computation by
Proposition 0.2, the Shur-complement Sc (∆,∆11) and ∆11

should be invertible. Otherwise, we can get approximated
gradients by taking pseudo-inverse of Sc (∆,∆11) and ∆11.
The sufficient conditions to guarantee perfectly accurate gra-
dient computation are given in Proposition 0.2.

Proposition 0.2 (Sufficient Conditions of Accurate Differ-
entiation). Assume that the problem in Eqn. (4) satisfies
strong duality. The loss l or one of the constraints gm,m =
1, · · · ,M is strongly convex with respect to x. Denote A as
the index set of constraints that are activated (i.e., equality
holds) under the optimal solution. µm,t ̸= 0, ∀m ∈ A, the
size of the activation set satisfies |A| ≤ d with d as the ac-
tion dimension, and the gradients ▽xtgm(xt),m ∈ A are
linearly independent and not zero vectors, the gradients in
Proposition 0.1 are perfectly accurate.

Remark 1. To derive the gradient of Eqn. (4) with respect
to an input parameter, we take gradients on both sides of the
equations in KKT conditions by the chain rule and get new
equations about the gradients. By solving the obtained set
of equations and exploiting the block matrix inversion, we
can derive the gradients with respect to the inputs in Propo-
sition 0.1.

The conditions in Proposition 0.2 are mild in practice.
First, strong duality is easily satisfied for the considered
convex optimization in Eqn. (4) given the Slater’s condi-
tion (Boyd, Boyd, and Vandenberghe 2004). Besides, the re-
quirement of strong convexity excludes linear programming
(LP). Actually, LP problems with resource constraints are
usually solved by other relaxations other than our consid-
ered relaxation in Eqn. (2) (Devanur et al. 2019). The other
conditions are related to activated constraints. According to
the condition of complementary slackness (Boyd, Boyd, and
Vandenberghe 2004), the condition that optimal dual vari-
ables corresponding to the activated constraints are not zero
typically holds. We also require that the number of activated
constraints is less than the action dimension, and the gradi-
ent vectors of the activated constraint functions under opti-
mal solutions should be independent from each other. Given
that at most a small number of constraints are activated in
most cases, the two conditions are easily satisfied. Actually,
the independence condition requires that the activated con-
straints are not redundant — an activated constraint function
is not a linear combination of any other activated constraint
functions; otherwise, it can be replaced by other constraints.
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Online Training
In practice, we may have a cold-start setting without many
offline samples. An efficient approach for this setting is on-
line stochastic gradient descent (SGD) with its algorithm
in Appendix. Concretely, when the i-th instance arrives,
we perform online inference by Algorithm 1. After the in-
stance with N steps ends, we collect the context and bud-
get data of this episode and update the ML model weight θ̂i
by performing one-step gradient descent, i,e, θ̂i = θ̂i−1 −
ᾱ▽θL(hθ̂i−1

, ci) where L(hθ̂i−1
, ci) is the loss of the un-

rolling model for the ith instance and ᾱ is the stepsize. The
back propagation method is the same as the offline training.
Then, with the updated θ̂i, we perform inference by Algo-
rithm 1 for the instance in the (i+1)-th round. We will show
by analysis that the average cost decreases with time.

Performance Analysis
In this section, we bound the expected cost when the trained
ML model fθ is used in LAAU.

Definition 1. The weight in the ML model fθ (and also
the online optimizer hθ) that minimizes the expected loss
E [L(hθ, c)] with respect to the distribution of (c,B) ∼ P
is defined as θ∗ = argminθ∈Θ E [L(hθ, c)] , and the weight
that minimizes the empirical loss L(hθ, S) is defined as
θ̂∗ = argminθ∈Θ L(hθ, S), where Θ is the weight space.

In Definition 1, given the weight space Θ, hθ∗ is the best
online optimizer based on the unrolling architecture in terms
of the expected cost. hθ∗ is not the offline-optimal policy,
but it is close to the policy that performs best given avail-
able online information when the capacity of the ML model
and weight space Θ are large enough. Next, we show the
performance gap of LAAU compared with hθ∗ .

Theorem 0.3. By the optimization layer in Eqn. (4), LAAU
satisfies the inventory constraints for each OOBC instance.
Suppose that θ̂ is the ML model weight by offline training on
dataset S with n samples, and that we plug it into the online
optimizer hθ̂. With probability at least 1− δ, δ ∈ (0, 1),

E
[
L(hθ̂)

]
−E [L(hθ∗)] ≤ E

(
hθ̂, S

)
+ 4Rn(L ◦H)

+2 (ΓL,cωc + ΓL,bωb)

√
ln(2/δ)

n
,

(8)

where E
(
hθ̂, S

)
= L(hθ̂, S)−L(hθ̂∗ , S) is the training er-

ror, Rn(L ◦H) is the Rademacher complexity regarding the
loss space L ◦ H = {L(h),h ∈ H} with H being the ML
model set, ωc = maxc,c′∈C ∥c− c′∥ is the size of the pa-
rameter space C, ωb = maxB,B′∈B ∥B −B′∥ is the size of
the capacity constraint space B, ΓL,c and ΓL,b are the Lip-
schitz constants of the total loss L(hθ, c) =

∑N
t=1 l(xt, ct)

with respect to c and B, respectively.

Proposition 0.4. If a linear model fθ(v) = θ⊤ϕ(v), ∥θ∥ ≤
Z is used as the ML model in LAAU, the Rademacher com-
plexity Rn(L ◦ H) is bounded ny O

(
ZW√

n

)
, where W =

supv
√
ϕ(v)⊤ϕ(v). If a neural network, where the depth

is K, the width is less than u, activation functions are Γα-
Lipschitz continuous, and the spectrum norm of the weight
matrix in layer k with is less than Zk, is used as the ML
model, the Rademacher complexity Rn(L◦H) is bounded by

Rn(L ◦ H) ≤ O
(

K3/2uΓα(βb+βc)
∏K

k=1 Zk√
n

)
, where βb, βc

are the largest l2-norm of B and c. The notation O in this
proposition indicates the scaling relying on M , N , the Lip-
schitz constants of loss function l, constraint function g, op-
timization layer p and neural network f .

Remark 2. Theorem 0.3 shows that the performance gap be-
tween LAAU and the pseudo-oracle hθ∗ in terms of expected
loss is bounded by the empirical training error, plus a gen-
eralization error which relies on the Radmacher complex-
ity, the LipSchitz constant of the online optimizer, and the
number of training samples. The Radmacher complexity in-
dicates the richness of the loss function space with respect
to the online optimizer space H and the distribution P and
is further bounded in Proposition 0.4. From the bound of
Radmacher complexity, we find that for both linear model
and neural network, the generalization error increases with
episode length N and the number of constraints M . Besides,
the Rademacher complexity relies on the ML model designs.
For example, if a linear model is used as the ML model,
the generalization error relies on the norm bounds of fea-
ture mapping and linear weights, while if a neural network
is used as the ML model, the generalization error is related
to the network length , width, the smoothness of activation
functions, and spectral norm bounds of the weights in each
layer. The last term of the expected cost bound is scaled by
(ΓL,cωc + ΓL,bωb) which indicates the sensitivity of the loss
when the inputs are changed. This term highly depends on
the Lipschitz constants of the total loss regarding the two in-
puts. Our proof in the appendix gives the bound of the Lips-
chitz constants of the loss regarding its inputs. □

Proposition 0.5 (Average Cost of Online Training). As-
sume that for each round i, ▽θE[L(hθ̂i

)] is Γ▽L,θ-
Lipschitz continuous, and the Polyak-Lojasiewicz inequal-

ity is satisfied, i.e. ∃ς > 0,
∥∥∥▽θE[L(hθ̂i

)]
∥∥∥2 ≥

2ς
(
E[L(hθ̂i

)]− E[L(hθ∗)]
)

. Also, assume that for the
distribution of ci,, ∃ιG > ι > 0 such that ∀i,〈
▽θE[L(hθ̂i

)],E
[
▽θL(hθ̂i

, ci)
]〉

≥ ι
∥∥∥▽θE[L(hθ̂i

)]
∥∥∥2
2
,

∥E[▽θL(hθ̂i
, ci)]∥2 ≤ ιG

∥∥∥▽θE[L(hθ̂i
)]
∥∥∥
2
, and there ex-

ist ϖ,ϖV > 0 such that ∀i, Var
[
▽θL(hθ̂i

, ci)
]
≤ ϖ +

ϖV

∥∥∥▽θE[L(hθ̂i
)]
∥∥∥2
2
. Then with the same notations as The-

orem 0.3, for the online setting where LAAU is trained by
SGD with stepsize 0 < ᾱ ≤ ι

Γ▽L,θ(ϖV +ι2G)
, with probability

at least 1− δ, δ ∈ (0, 1), we have for each round i

E
[
L(hθ̂i

)−L(hθ∗)
]
≤ ᾱΓ▽L,θϖ

2ις
+O

(
(1− ᾱις)

i
)
, (9)

where the expectation is taken over the randomness of con-
text c and budget B and the model weight θ̂i by SGD.
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Figure 2: Average utility with different episode lengths

Proposition 0.5 bounds the expected loss gap between the
learned weight θ̂i by SGD and the optimal weight θ∗ in
Definition 1. The first non-reducible term is caused by the
randomness of the context and budget {(ci,Bi)}. The sec-
ond term decreases with time, and the convergence rate de-
pends on the sequence randomness and the parameter ς in
the Polyak-Lojasiewicz inequality.

Numerical Results
Weighted fairness is a classic performance metric in the re-
source allocation literature (Lan et al. 2010), including fair
allocation in computer systems (Ghodsi et al. 2011) eco-
nomics (Hylland and Zeckhauser 1979). Here, we consider a
general online setting. A total of N jobs arrive sequentially,
and job t has a weight ct ≥ 0. The agent allocates resource
xt ≥ 0 to job t at each step t. We consider the commonly-
used weighted fairness

∑N
t=1 ct log(xt) (Lan et al. 2010).

We create the training and testing samples based on the
Azure cloud workload dataset, which contains the average
CPU reading for tasks at each step (Shahrad et al. 2020).

We consider several baseline algorithms as follows. The
Offline Optimal Oracle OPT is the solution to the problem
in Eqn. (1). We consider two heuristics: One is Equal Re-
source Allocation (Equal) which equally allocates the total
resource capacity to N jobs, and another one is Resource
Allocation with Average Long-term Constraints (AVG-LT)
which relaxes the inventory constraints of the weighted fair-
ness problem as EP

[∑N
t=1 xt

]
≤ B and uses the optimal

Lagrangian multiplier for this relaxed problem as λt for on-
line allocation. We consider two algorithms based on dual
mirror descent which are Dual Gradient Descent (DGD) and
Multiplicative Weight (MW ) (Balseiro, Lu, and Mirrokni
2020). To reduce the resource waste after the last step, we
slightly revise DGD and MW by setting the allocation deci-
sion for job N as min (bN , xmax). CR-pursuit (CR-pursuit)
is the state-of-the-art online algorithm that makes online ac-
tions by tracking a pseudo-optimal algorithm with a com-
petitive guarantee (Lin et al. 2019, 2022). We also compare
LAAU with the end-to-end Reinforcement Learning (RL). A
neural network with the same size of the ML model as in
LAAU is used in RL to directly predict the solution xt, given
parameter ct and budget bt as inputs.

Average utility. We first show in Fig. 2 the average util-
ities (per time step). We do not add the average utility of
CR-pursuit in the figure because its average utility for our
evaluation instances is as low as 0.562, exceeding the utility
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Figure 3: Avg. utility with different Wasserstein distances.

range of the figure. Clearly, OPT achieves the highest util-
ity, but it is infeasible in practice due to the lack of complete
offline information. We can observe that the average util-
ities by expert algorithms including AVG-LT, DGD, MW
are even below the average utility by the simple equal al-
location (Equal) when the episode length is N = 10. This
is because all the three algorithms are designed for online
optimizations with long-term constraints, and not suitable
for the more challenging short-term counterparts. By con-
trast, LAAU performs well for all cases with large and small
episode lengths, and outperforms the other algorithms de-
signed for long-term constraints even when N is as large as
40. This demonstrates the power of LAAU in solving chal-
lenging online problems with inventory constraints. More
results are given in the appendix.

OOD testing. In practice, the training-testing distribu-
tional discrepancy is common. We measure the training-
testing distributional difference by the Wasserstein distance
dW . We choose the setting with episode length N = 20
to perform the OOD evaluation. To create the distributional
discrepancy, we add i.i.d. Gaussian noise with different
means and variances to the training data and keep the test-
ing data the same as the default setting. The offline optimal
and MW do not make use of the training distribution, and
hence are not affected. We can see in Fig. 3 that, the OOD
testing decreases the performance of both LAAU and RL,
but LAAU is less affected by OOD testing than RL and is
still higher than that of the baseline MW even under large
Wasserstein distance. This is because the unrolling architec-
ture in LAAU has an optimization layer and a budget update
layer, which are deterministic and have no training param-
eters, so only the ML model to learn the Lagrangian mul-
tiplier is affected by OOD testing. Comparably, RL uses an
parameterized end-to-end policy model trained on the offline
data, so it has worse performance under OOD testing. This
highlights that by the unrolling archietecture, LAAU has bet-
ter generalization performance than end-to-end models.

Conclusion
In this paper, we focus on OOBC and propose a novel ML-
assisted unrolling approach based on the online decision
pipeline, called LAAU. It leverages an ML model for updat-
ing the Lagrangian multiplier online. We derive the gradients
for back-propagation and bound the expected cost. Finally,
we present numerical results on weighted fairness and high-
light LAAU significantly outperforms the existing baselines
in terms of the average performance.

10777



Acknowledgements
This work was supported in part by the NSF under grant
CNS-1910208.

References
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