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Abstract
Multi-task learning (MTL) models have demonstrated impres-
sive results in computer vision, natural language processing,
and recommender systems. Even though many approaches
have been proposed, how well these approaches balance dif-
ferent tasks on each parameter still remains unclear. In this
paper, we propose to measure the task dominance degree of a
parameter by the total updates of each task on this parameter.
Specifically, we compute the total updates by the exponen-
tially decaying Average of the squared Updates (AU) on a
parameter from the corresponding task. Based on this novel
metric, we observe that many parameters in existing MTL
methods, especially those in the higher shared layers, are still
dominated by one or several tasks. The dominance of AU is
mainly due to the dominance of accumulative gradients from
one or several tasks. Motivated by this, we propose a Task-
wise Adaptive learning rate approach, AdaTask in short, to
separate the accumulative gradients and hence the learning
rate of each task for each parameter in adaptive learning rate
approaches (e.g., AdaGrad, RMSProp, and Adam). Compre-
hensive experiments on computer vision and recommender
system MTL datasets demonstrate that AdaTask significantly
improves the performance of dominated tasks, resulting SOTA
average task-wise performance. Analysis on both synthetic
and real-world datasets shows AdaTask balance parameters in
every shared layer well.

Introduction
Multi-task learning (MTL) has emerged as a promising ap-
proach to jointly learning multiple tasks together by sharing
structure across tasks in computer vision (Misra et al. 2016;
Zamir et al. 2018; Liu, Johns, and Davison 2019), natural
language processing (Dong et al. 2015; Radford et al. 2019),
and recommender systems (Ma et al. 2018a,b; Pan et al. 2019;
Tang et al. 2020). However, due to optimizing different tasks
simultaneously, MTL is prone to be dominated by one or sev-
eral tasks, leading to the performance deterioration of other
tasks (Tang et al. 2020).

While there have been a significant number of approaches
to MTL, it is still unclear to what extent these approaches
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resolve the task dominance of parameter optimization during
MTL training. This is due to the fact that there are currently
no metrics to quantify the degree of task dominance in MTL.
To fill this gap, in this paper, we propose to calculate the total
updates of a parameter from a specific task by the exponen-
tially decaying Average of the squared parameter Updates
(AU in short) from this task. The dominance of a task on a
given parameter is then measured by the ratio of AU from
this task against the overall AU from all tasks. Intuitively, for
a parameter, if a task has a much larger AU ratio than other
tasks, then this parameter can be regarded as being dominated
by this task. Based on this metric, we observe that all existing
MTL methods still suffer from task dominance on shared
parameters, especially on those in higher shared layers.

We suspect that the dominance of accumulative gradients
may be one of the main reasons for the task dominance issue
in MTL. Modern adaptive learning rate optimizers commonly
used in deep learning adaptively adjust the learning rate of
each parameter during the model training process, which
is usually better than the gradient descent optimizer with a
global learning rate (see our full version (Yang et al. 2022b)
for details). The adaptive learning rate is usually proportional
to the inverse of the accumulative gradients, and both the
learning rate and accumulative gradients are computed across
all tasks for shared parameters in MTL. Therefore, for a
given parameter, if a task provides much larger gradients
than other tasks, then this task would dominate both the
overall accumulative gradients and the learning rate.

Motivated by this, we propose AdaTask to separate the
accumulative gradients of each task for each shared parameter
in MTL optimizers. By doing this, no task would dominate
the overall accumulative gradients as well as the learning rate
anymore since each task accumulates and computes its own
ones. Almost all modern adaptive learning rate optimizers
and their variants (Duchi, Hazan, and Singer 2011; Zeiler
2012; Kingma and Ba 2015; Reddi, Kale, and Kumar 2018;
Zhuang et al. 2020; Zou et al. 2019; Chen et al. 2022a,b, 2021;
Zou et al. 2018), such as AdaGrad, AdaDelta, RMSProp,
Adam, AMSGrad, etc., can utilize AdaTask to resolve the
task dominance issue in MTL training. The contribution of
this work is summarized as follows:

(1) We quantify the task dominance of a parameter by the
task-wise exponentially decaying average of the squared
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updates(AU) in MTL and observe that existing MTL meth-
ods still suffer from task dominance.

(2) We propose a Task-aware Adaptive Learning Rate method
(AdaTask) to separate the accumulative gradients of each
task during optimization in the MTL models.

(3) Extensive experiments on the synthetic and three public
datasets from the CV and recommendation demonstrate
that AdaTask significantly improves the performance of
the dominated task(s), while achieving SOTA average
task-wise performance. Analysis shows that AdaTask bal-
ances parameters in all shared layers well.

Related Work
Multi-Task Learning Architecture. Shared Bottom (Caru-
ana 1997) is the most basic and commonly used MTL struc-
ture. With hard parameters shared across tasks, it suffers
from the negative transfer. Cross-stitch network (Misra et al.
2016) and Sluice network (Ruder et al. 2019) were proposed
to learn weights of linear combinations to fuse representa-
tions from different tasks selectively. However, the weights
for different tasks are static for all samples. MOE (Shazeer
et al. 2017) first proposed to share some experts at the bottom
and combine experts through a gating network. MMOE (Ma
et al. 2018a) extends MOE to utilize different gates for each
task to obtain different fusing weights in MTL. Similarly,
MRAN (Zhao et al. 2019) applied multi-head self-attention
to learn different representation subspaces for different fea-
ture sets. PLE (Tang et al. 2020) develops both shared experts
and task-specific experts, together with a progressive routing
mechanism to further improve learning efficiency. In addition,
there have been some studies of the adaptive selection of lay-
ers or neurons instead of experts. AdaShare (Sun et al. 2020)
selects some layers for each task from multiple shared layers.
TAAN (Liu et al. 2020) adopts a task adaptive activation
network to enable flexible and low-cost MTL. MTAN (Liu,
Johns, and Davison 2019) uses the attention mechanism to
extract the feature representation corresponding to the task
from the shared backbone. In contrast to the above, which
focuses on the shared module design, some works explicitly
accomplish knowledge transfer between tasks at the output
layer. ESSM (Ma et al. 2018b) models the sequential pat-
tern of impression → click → conversion. CrossDistil (Yang
et al. 2022a) proposes to enhance knowledge transfer between
tasks through distillation.
Multi-Task and Multi-Objective Optimization. There are
also many MTL works to revolve negative transfer by either
balancing the gradients of all tasks (Kendall, Gal, and Cipolla
2018; Liu, Johns, and Davison 2019; Liu, Liang, and Gitter
2019; Chen et al. 2018) or avoiding gradient conflicts (Yu
et al. 2020; Chen et al. 2020; Liu et al. 2021). UW (Kendall,
Gal, and Cipolla 2018) calculates the weights based on ho-
moscedastic uncertainty, while DWA (Liu, Johns, and Davi-
son 2019) and LBTW (Liu, Liang, and Gitter 2019) are based
on the rate of change of loss for each task. GradNorm (Chen
et al. 2018) proposed adding a regularization term to the
loss function to balance the training rates of all tasks. Gra-
dientSurgery (Yu et al. 2020) proposes gradient surgery to
avoid interference between task gradients. GradDrop (Chen

et al. 2020) samples gradients based on their level of consis-
tency. CAGrad (Liu et al. 2021) seeks the gradient update
direction by maximizing the task with the least loss reduc-
tion. In addition, some works formulate multi-task learning
as a multi-objective optimization problem and seek discrete
or continuous Pareto optimal solutions (Sener and Koltun
2018; Ma, Du, and Matusik 2020; Lin et al. 2019b; Xie et al.
2021). Finally, some works in MTL attempt to balance the
interference of auxiliary tasks with the main task (Lin et al.
2019a; Navon et al. 2021; He et al. 2022).

Rethinking Task Dominance in MTL
In this section, we want to answer the following questions:
(RQ1) How can we quantify the task dominance of a parame-
ter in MTL models? (RQ2) To what extent do existing MTL
approaches tackle the task dominance issue? (RQ3) How
does task dominance impact the training of MTL models?

Synthetic Dataset Setting
To answer the above research questions, we generate a syn-
thetic MTL dataset with two regression tasks, following Grad-
Norm (Chen et al. 2018). Specifically, the ground truth for
task k ∈ {A,B} is obtained as follows:

yk(x) = Wk
1x+Wk

2x
2 +W3x

3 + ϵ, (1)

where WA
1 and WA

2 are constant matrices with elements
sampled from N (1, 1), WB

1 , WB
2 and W3 are constant

matrices with elements sampled from N (10, 10), and ϵ is
a Gaussian noise sampled from N (0, 0.1). Note that WB

1 ,
WB

2 is roughly ten times as much as WA
1 and WA

2 , making
the dataset dominated by task B. Moreover, x ∈ R250 and
yk(x) ∈ R100. The MTL model is a 4-layer fully connected
neural network with ELU (Clevert, Unterthiner, and Hochre-
iter 2016) as the activation function. We use the RMSProp
optimizer for parameter optimization.

(RQ1) How Can We Quantify the Task Dominance
of Parameters in MTL Model?
We quantify the task dominance of a parameter by dividing
the accumulative updates from the corresponding task by the
overall updates from all tasks for this parameter. Here we
choose the exponentially decaying Average of the squared
Updates (AU) to measure the accumulative updates, another
choice may also be feasible. Note that we mainly focus on
the shared parameters rather than the task-specific parameters
since the latter is designed to be only updated and therefore
dominated by the corresponding task.

Given a shared parameter θi, the AU at step t from task k
is defined as:

AU(i, t, k) :=G
[
∆θ2

]k
t,i

=γG
[
∆θ2

]k
t−1,i

+(1−γ)[∆θkt,i]
2 (2)

where ∆θkt,i denotes the update of parameter θi at setp t from
task k. In RMSProp, ∆θkt,i = − η√

Gt,i+ϵ
gkt,i.

The dominance of task k on a parameter i at step t can
therefore be defined as the ratio of its AU over the total AU
of all tasks, i.e.,

rAU(i, t, k) :=
AU(i, t, k)∑
k′ AU(i, t, k′)

=
G
[
∆θ2

]k
t,i∑

k′ G [∆θ2]k
′

t,i

(3)
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Figure 1: Illustration of rAU(i, T,B) as a metric to measure
the task dominance for shared parameters in MTL.

We denote this AU ratio w.r.t. task k, or rAU(i, t, k) in short.
In order to verify whether AU indeed measures the domi-

nance of a specific task, we conduct the following analysis.
On the one hand, we pick up the Top-1% parameters w.r.t.
rAU(i, T,B), i.e., the Top-1% parameters that are treated as
being dominated by task B at the last step T according to
our definition. Random Gaussian noises with mean 0 and
various variances of {0.01, 0.02, 0.03, 0.04, 0.05} are added
to these parameters; on the other hand, we select the Top-x%
(x ∈ {1, 5, 10, 20}) w.r.t. rAU(i, T,B), and add Gaussian
noise with a mean of 0 and a variance of 0.01. We then eval-
uate the performance of these models on task A and task
B, and check their performance degradation, compared with
the original model. If a parameter is dominated by task B,
then adding Gaussian noise may lead to a more significant
performance deterioration on task B than on task A.

We plot the relative root mean square error (RMSE) in-
crement of these models in Fig. 1. We observe that (1)
With Gaussian noise added to the Top-1% parameters w.r.t.
rAU(i, T,B), the loss increases much more on task B than
task A. Specifically, the loss is increased by 175.13% on task
B, but only 3.23% on task A, with a N (0, 0.05) Gaussian
noise. (2) By adding a N (0, 0.01) Gaussian noise to the the
Top-1% to the Top-20% parameters w.r.t. rAU(i, T,B), the
performance deteriorates much more on task B than on task
A. With more parameters with high rAU(i, T,B) polluted by
the noise, the performance deteriorates more. For example,
the loss is increased by 7.20% when only the Top-1% param-
eters w.r.t. rAU(i, T,B) is polluted, while it’s increased by
72.62% with the Top-20% polluted. This concludes that the
rAU(i, t, k) is a reasonable metric to measure the dominance
of a task on a shared parameter: a parameter with a high
rAU(i, t, k) for one task becomes much more important for
that task, while less important for the remaining tasks.

(RQ2) To What Extent Do Existing MTL
Approaches Tackle the Task Dominance Issue?
In order to quantify to what extent existing MTL approaches
tackle the task dominance issue (taking the dominance of task
B as an example here), we calculate the percentage of shared
parameters based on their rAU(i, T,B) using the following
pre-defined thresholds: {0%, 20%, 40%, 60%, 80%, 100%}.
If rAU(i, T,B) ∈ (80%, 100%], we regard the parameter i as
being dominated by task B. In addition, if both rAU(i, T, A)
and rAU(i, T,B) are in (40%, 60%], we can say that param-
eter i is roughly balanced. Without loss of generality, we pick

up Shared Bottom as the backbone MTL model architecture.
Please note that other MTL structures, such as MMOE, PLE,
or MTAN are also feasible. Following (Chen et al. 2018), we
then pick up UW, CAGrad, and GradNorm as representative
MTL balancing methods. We name the vanilla Shared Bottom
method as EqualWeight since it corresponds to weighting all
tasks equally.

The percentage of shared parameters of each model w.r.t.
rAU(i, T,B) in different buckets is shown in Fig. 2. We
observe that: (1) Almost all shared parameters in Equal-
Weight are dominated by task B, in the sense that the red area
(rAU(i, t, B) ∈ (80%, 100%]) is always close to 100%. This
result is because these two methods either use the original
gradient directly or use the projected gradient direction, and
they have a serious gradient dominance problem when the
magnitudes of the gradients of the two tasks are different. (2)
In UW and CAGrad, some of the parameters are dominated
by task B. This can be explained as both methods adjust the
magnitude of the gradient by weighting the loss or weighting
the gradient, thus alleviating the problem of accumulative
gradient dominance. However, their weights are designed in
terms of learning speed or gradient direction optimization
and are not directly related to the magnitude of the gradient,
thus only slightly mitigating task dominance. (3) In contrast,
around 78% percent of shared parameters in GradNorm are
not dominated by any task. This is because the weights of
the loss in GradNorm are designed to balance the overall
gradient magnitude of the task.

We further split the shared parameters into layers, and
calculate the rAU(i, t, B) for parameters from each layer,
respectively. In EqualWeight, PCGrad and UW, parameters
from all layers are dominated by task B in the sense param-
eters from all layers are with rAU(i, t, B) ∈ (80%, 100%].
CAGrad and GradNorm are both balanced at some level.
Specifically, In GradNorm, only the first layer is balanced
well in the sense that around 90% of the parameters with
rAU(i, t, B) ∈ (40%, 60%]. However, this percentage drops
to around 62%, 61%, and 40%, respectively for the 2nd, 3rd,
and 4th layers. Such failure in balancing shared parameters
from higher layers may be due to that the lower layers learn
more general representations while the higher layers learn
task-specific representations (Yosinski et al. 2014).

(RQ3) How Does Task Dominance Impact the
Training of MTL Models?
We have observed that some parameters, especially those
in higher layers, are still dominated by task B. We then
wonder what would happen due to such dominance? Or more
specifically, what will happen if the Accumulative Updates
(AU) are dominated?

In modern optimizers, the accumulative gradients are used
to adjust the learning rate of each parameter during model
training. Then dominance of accumulative gradients may
lead to a dominance of learning rate(LR) in MTL. For ex-
ample, in a MTL setting with only two tasks A and B, the
accumulative gradients of task A is small, and it would have
a large LR if it’s trained on its own. However, if task B has
larger accumulative gradients, then the overall accumulative
gradients in MTL would also be large, leading to a small
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Figure 2: rAU(i, T,B) of all shared parameters on the synthetic dataset for five MTL models: (a) EqualWeight (PCGrad is close
to EqualWeight, it was removed due to page limitations.), (b) UW, (c) CAGrad, (d) GradNorm and (e) our AdaTask. The green
area denotes the percentage of parameters dominated by task A, the red area denotes the percentage of parameters dominated by
task B, and the yellow area denotes the percentage of balanced parameters.

overall learning rate. With a much smaller learning rate in
MTL than in training task A alone, task A may be optimized
much slower, leading to performance deterioration.

To verify this, we randomly select multiple parameters
from each layer. We then calculate the separate and whole
accumulative gradients, as well as the overall LR when train-
ing two tasks simultaneously in MTL, as well as the separate
LR for each task if it’s trained independently. We find that
the whole LR is dominated by task B in the sense it’s very
close to the separate LR of task B (see (Yang et al. 2022b)
for details).

Our Proposed Method: AdaTask
It is observed in the above section existing MTL optimization
methods still suffer from task dominance, and such domi-
nance leads to the dominance of learning rate in optimizers.
In order to tackle such dominance, in this section, we propose
a Task-wise Adaptive learning rate approach, to separate the
accumulative gradients of each task for each shared parame-
ter. We name this approach as AdaTask.
Preliminaries Adaptive learning rate optimizers adjust the
learning rate of each parameter based on some statistics Gt,i

of history gradients w.r.t. this parameter: θt+1,i = θt,i −
η√

Gt,i+ϵ
gt,i, where η is a hyper-parameter representing the

initial global learning rate, ϵ is a small number used to avoid
a zero denominator. In AdaGrad, Gt,i is defined as the sum
of all history gradient squares, i.e., Gt,i = Gt−1,i + (gt,i)

2,
where gt,i denotes the gradient of this parameter at step t. In
AdaDelta, Adam or RMSProp, it’s defined as the exponential
moving average, i.e., Gt,i = γGt−1,i+(1−γ)(gt,i)

2, where
γ is a decaying coefficient.

When optimizing shared parameters in MTL models, these
statistics are aggregated over all tasks, i.e.:

Gt,i = Gt−1,i + (gt,i)
2 AdaGrad in MTL

Gt,i = γGt−1,i + (1− γ)(gt,i)
2 RMSProp in MTL

(4)

where gt,i = gt−1,i +
∑

(gkt,i)
2 and k ∈ {1, 2, . . . ,K} rep-

resents the k-th task.
AdaGrad, RMSProp with AdaTask. As discussed in the
above section, the accumulative gradients across tasks in
Eq. 4 tend to be dominated by some tasks, which in turn
leads to the dominance of the adaptive learning rate. We
propose to separate the accumulative gradients of different

tasks for each shared parameter. Formally, we maintain task-
wise accumulative gradients Gk

t,i for parameter i and task k
at step t. Each such variable only aggregates gradients from
the corresponding task, i.e.,

Gk
t,i = f(Gk

t−1,i, (g
k
t,i)

2) (5)

where f(·) denotes the corresponding aggregation function
in each method, i.e., average in AdaGrad, and exponentially
decaying average in RMSProp. During MTL model training,
when optimizing a sample from one task, only the accumula-
tive gradients w.r.t. that task are used to calculate the learning
rate. Therefore, AdaGrad with AdaTask and RMSProp with
AdaTask in MTL can then be formulated as:

θt+1,i = θt,i −
∑
k

η√
Gk

t,i + ϵ
gkt,i

Gk
t,i=Gk

t−1,i+(gkt,i)
2
AdaGrad with AdaTask in MTL

Gk
t,i=γGk

t−1,i+(1− γ)(gkt,i)
2
RMSProp with AdaTask in MTL

Adam with AdaTask. The Adam (Kingma and Ba 2015) in-
cludes the decayed average of both past gradient squares Gt,i

as AdaDetla (Zeiler 2012) (or RMSProp) and past gradients
mt,i as momentum (Qian 1999). Adam’s update rule in MTL
is as follows:

θt+1,i = θt,i −
η√

Gt,i + ϵ
mt,i

gt,i = gt−1,i +
∑

(gkt,i)
2

Gt,i = γ1Gt−1,i + (1− γ1)(gt,i)
2

mt,i = γ2mt−1,i + (1− γ2)(gt,i)

(6)

When applying AdaTask to Adam, if we only separate the
Gt,i per task, the accumulation of gradients in mt,i can still
be dominated by one or several tasks due to the different
magnitudes of gkt,i. In order to prevent task dominance in
mt,i, we propose to separate it for each task. Adam with
AdaTask can be formulated as:

θkt+1,i = θt,i −
∑
k

η√
Gk

t,i + ϵ
mk

t,i

Gk
t,i = γ1G

k
t−1,i + (1− γ1)(g

k
t,i)

2

mk
t,i = γ2m

k
t−1,i + (1− γ2)(g

k
t,i)

(7)

In Alg. 1 / Alg. 2, we shown the AdaGrad, RMSProp, and
Adam without / with AdaTask in MTL, respectively.
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Algorithm 1: AdaGrad, RMSProp and Adam in MTL
1: Require γ, γ1, γ2: Exponential decay factors
2: Require η: Initial learning rate
3: Require ϵ: A smoothing factor to avoid division by zero
4: Require fk(θ): Objective function of task k, ∀k ∈

{1, 2, . . . ,K}
5: Require Initialize: G0 = 0,m0 = 0
6: For step t = 1 : T do
7: gt,i = 0
8: For task k = 1 : K do
9: gkt,i = ∇fk

t (θt,i)

10: gt,i = gt,i + gkt,i
11: End For
12: If AdaGrad
13: Gt,i = Gt−1,i +gt,i

2

14: ∆θt,i =
η√

Gt,i+ϵ
gt,i

15: Else If RMSProp
16: Gt,i = γ Gt−1,i +(1− γ)gt,i

2

17: ∆θt,i =
η√

Gt,i+ϵ
gt,i

18: Else If Adam
19: Gt,i = γ1 Gt−1,i +(1− γ1)gt,i

2

20: mt,i = γ2 mt−1,i +(1− γ2)gt,i
21: Ĝt,i = Gt,i /(1− γt

1)
22: m̂t,i = mt,i /(1− γt

2)
23: ∆θt,i =

η√
Ĝt,i+ϵ

m̂t,i

24: End If
25: θt+1,i = θt,i −∆θt,i
26: End For

Efficient AdaTask. In order to separate the Accumulative
Gradients in AdaTask, K−1 times more intermediate vari-
ables are needed during optimization. This is negligible when
there are many shared parameters. We can reduce the num-
ber of variables to store accumulative gradients by group-
ing parameters by some dimensions, e.g., layers or modules.
Without loss of generality, we discuss grouping accumulative
gradients by layers here. That is, all parameters in each layer
(l ∈ {1, . . . , L}) share the same accumulative gradients per
task and formalize it as follows:

Ck
t,l = γCk

t−1,l + (1− γ)h
(
{(gkt,i)

2
, ∀i ∈ l(θ)}

)
, (8)

where h(·) represents an aggregate function, such as mean
or sum operation, which is used to aggregate the gradient
of all parameters at the l-th layer, ∀i ∈ l(θ) represents all
parameters in the l-th shared layer. Therefore, Ck

t,l can be
regarded as the overall contribution of task k to the shared
layer l at step t. The accumulative gradient of task k w.r.t
parameter i is expressed as follows:

Gk
t,i =

Ck
t,l(i)∑

k C
k
t,l(i)

Gt,i, Gt,i = γGt−1,i + (1− γ)(gkt,i)
2
, (9)

where l(i) which layer parameter i belongs to.
Implementation. AdaTask can be implemented in a single
backward propagation by separating and passing through the
partial derivative of each task’s loss.

Algorithm 2: AdaGrad, RMSProp and Adam with AdaTask
in MTL

1: Require γ, γ1, γ2: Exponential decay factors
2: Require η: Initial learning rate
3: Require ϵ: A smoothing factor to avoid division by zero
4: Require fk(θ): Objective function of task k, ∀k ∈

{1, 2, . . . ,K}
5: Require Initialize: Gk

0 = 0,mk
0 = 0, ∀k ∈ {1, 2, . . . ,K}

6: For step t = 1 : T do
7: If AdaGrad with AdaTask
8: For task k = 1 : K do
9: gkt,i = ∇fk

t (θt,i)

10: Gk
t,i = Gk

t−1,i +gkt,i
2

11: ∆θkt,i =
η√

Gk
t,i+ϵ

gkt,i

12: End For
13: Else If RMSProp with AdaTask
14: For task k = 1 : K do
15: gkt,i = ∇fk

t (θt,i)

16: Gk
t,i = γ Gk

t−1,i +(1− γ)gkt,i
2

17: ∆θkt,i =
η√

Gk
t,i+ϵ

gkt,i

18: End For
19: Else If Adam with AdaTask
20: For task k = 1 : K do
21: gkt,i = ∇fk

t (θt,i)

22: Gk
t,i = γ1 Gk

t−1,i +(1− γ1)g
k
t,i

2

23: mk
t,i = γ2 mk

t−1,i +(1− γ2)g
k
t,i

24: Ĝk
t,i = Gk

t,i /(1− γt
1)

25: m̂k
t,i = mk

t,i /(1− γt
2)

26: ∆θkt,i =
η√

Ĝk
t,i+ϵ

m̂k
t,i

27: End For
28: End If
29: θt+1,i = θt,i −

∑
k ∆θkt,i

30: End For

Experiments
In this section, we experimentally verify the effectiveness of
the proposed AdaTask. We conduct experiments on a syn-
thetic dataset, and several real-world datasets: the CityScapes
dataset in computer vision, and the TikTok and WeChat
datasets in recommender systems. For the baseline methods,
we choose two loss weighting approaches GradNorm (Chen
et al. 2018), UW (Kendall, Gal, and Cipolla 2018), and
two gradient conflict-avoiding approaches PCGrad (Yu et al.
2020) and CAGrad (Liu et al. 2021). More details of our ex-
periment, including baselines, datasets, and implementation
details, can be found in our full version (Yang et al. 2022b).

Performance Evaluation
CityScapes Dataset Results. For the CityScapes dataset, we
follow MTAN (Liu, Johns, and Davison 2019) and CAGrad to
use Absolute Error (Abs Err) and Relative Error (Rel Err) to
evaluate the performance of the Depth Estimation task (Task
A) and use Mean Intersection over Union (mIoU) and Pixel
Accuracy (Pix Acc) to evaluate the performance of Semantic
Segmentation task (Task B). Similar to CAGrad, we also
compute the average per-task performance improvement ∆p
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Task A Task B

Method Abs Err↓ Rel Err↓ mIoU↑ Pix Acc↑ ∆p ↑
EqualWeight 0.0152 47.00 75.01 93.40 0.00%
GridSearch 0.0132 41.88 74.13 93.16 5.65%
MGDA 0.0166 33.50 69.42 91.22 2.40%
GradNorm 0.0145 44.16 75.18 93.38 2.71%
UW 0.0134 36.66 74.42 93.05 8.05%
PCGrad† 0.0150 42.52 75.46 93.49 2.88%
CAGrad† 0.0141 38.40 75.30 93.48 6.50%
AdaTask 0.0128 36.85 75.02 93.40 9.34%

+ PCGrad 0.0127 34.46 74.76 93.25 10.52%
+ CAGrad 0.0133 31.50 73.17 92.88 10.59%

Table 1: Performance evaluation on the CityScapes dataset.
The † symbol represents the gradient direction modification
methods, and they are orthogonal to our work. Task A is the
dominated task, and Task B is the dominant task.

of an MTL method m with respect to the EqualWeight base-
line b: ∆p= 1

4

∑
p(−1)Ip (Mm,p−Mb,p)/Mb,p, where Ip=0

if a higher value is better for a criterion Mp on performance
p∈{Abs Err, Rel Err, mIoU and Pix Acc} and 1 otherwise.

As shown in Table 1, GridSearch delivers higher perfor-
mance than Equalweight, but manual weighting may require
efforts to find the proper weights. AdaTask achieved a signif-
icant improvement in two metrics of task A (the dominated
task in this dataset). Specifically, Abs Err is improved by
15.78% compared to EqualWeight, and Rel Err is improved
by 21.59% compared to EqualWeight. Meanwhile, AdaTask
achieves a result close to EqualWeight on task B. In addition,
in terms of the overall performance, AdaTask has achieved
an improvement of 1.29% and 2.84% respectively compared
with the best baseline (UW) and the second-best baseline
(CAGrad), respectively. Notably, AdaTask is orthogonal to
the methods of modifying gradient direction, such as CA-
Grad and PCGrad, so it can be further combined with these
methods to improve performance. When combined with PC-
Grad and CAGrad (The implementation details are in (Yang
et al. 2022b)), the performance can be further improved by
1.18% and 1.25%, respectively. Finally, by comparing MGDA
(which seeks Pareto optimal solutions), we can find that the
solutions of GradNorm, UW, PCGrad, CAGrad, AdaTask,
and MGDA do not dominate each other, that is, none of them
performs better than the other in all metrics.
Synthetic Dataset Results. For the regression tasks on the
synthetic dataset, we follow GradNorm (Chen et al. 2018)
to use Task-Normalized RMSE (Root Mean Square Error)
to evaluate the performance of all methods. As shown in
Table 2, we observe that the proposed AdaTask achieves a
huge RMSE improvement in task A, with an absolute im-
provement of 0.14 and 0.04 compared with the EqualWeight
and the best baseline (GradNorm), respectively. Such a huge
improvement is due to the fact that task A is dominated dra-
matically but task B and our proposed method resolve such
dominance explicitly. The RMSE absolute reduction of task
B is 0.03 compared with EqualWeight. Task B showed some
decline since it already dominates baseline models and is
more inclined by them. For the average results of the two

Method Task A ↓ Task B ↓ Average ↓
EqualWeight 0.2172 0.0113 0.1142
GradNorm 0.1134 0.0226 0.0680
UW 0.2032 0.0100 0.1066
PCGrad 0.2221 0.0155 0.1188
CAGrad 0.1495 0.0140 0.0817
AdaTask 0.0704 0.0417 0.0560

Table 2: Performance on the synthetic dataset. Task A is the
dominated task, and task B is the dominant task.

Method Task A↑ Task B↑ Average↑ Weighted↑
EqualWeight 0.9173 0.7437 0.8305 0.8652(+0.00%)
GradNorm 0.9182 0.7431 0.8307 0.8657(+0.05%)
PCGrad 0.9199 0.7413 0.8306 0.8663(+0.12%)
UW 0.9237 0.7351 0.8294 0.8671(+0.21%)
CAGrad 0.9185 0.7455 0.8320 0.8666(+0.16%)
AdaTask 0.9312 0.7399 0.8356 0.8738(+0.99%)

Table 3: Performance evaluation on the TikTok. Task A is the
dominated task, and task B is the dominant task.

tasks, AdaTask achieved the best performance.
TikTok Dataset Results. For the MTL classification tasks on
the TikTok dataset, we evaluate Area under the ROC curve
(AUC) (Fawcett 2006) of each task, as well as the average
and weighed AUC, with weights specified by the provider.
As shown in Table 3, similar to the observation on the syn-
thetic dataset, AdaTask gets a significant AUC lift on the
dominated task (A in this case). The improvement on task
A is 1.51% and 0.81%, compared with EqualWeight and the
best baseline (CAGrad). While on task B, there is a slight per-
formance drop of 0.51%, compared with EqualWeight. Such
performance drop may be due to a strong preference for task
B in these baseline methods. Compared with EqualWeight,
AdaTask improves the Average AUC and Weighted AUC
by 0.61% and 0.99%, respectively. While against the best
baseline model, AdaTask improves the Average AUC and
Weighted AUC by 0.59% (against GradNorm), 0.6% (against
PCGrad), and 0.43% (against CAGrad).
WeChat Dataset Results. For the WeChat dataset, similar to
Tiktok, we used average AUC and weighted AUC to measure
the overall performance. As shown in Table 4, we observed
a similar phenomenon with the above three datasets, that is,
AdaTask improved significantly in the dominated tasks (Task
A, B, and C), while its performance decreased slightly in
the dominate task (Task D). Compared to the best baseline
method, i.e., CAGrad, AdaTask slightly outperformed it by
0.22% on average AUC. However, w.r.t. the weighted AUC,
CAGrad outperforms AdaTask by 0.28%. This is because
AdaTask usually performs worse on the dominant task, but in
the WeChat dataset the dominant one, i.e., Task D, gets a high
weight (The weights for task A, B, C, and D is 1:2:3:4).

Overall Results
Multi-Task Overall Performance Perspective. Experiments
on four datasets demonstrate that our proposed AdaTask
model achieves state-of-the-art performance w.r.t. Average

10750



Method Task A↑ Task B↑ Task C↑ Task D↑ Average AUC↑ Weighted AUC↑
EqualWeight 0.9080 0.8912 0.8881 0.9514 0.9097(+0.00%) 0.9160(+0.00%)
GradNorm (Chen et al. 2018) 0.9408 0.9072 0.8840 0.9462 0.9196(+1.08%) 0.9192(+0.34%)
UW (Kendall, Gal, and Cipolla 2018) 0.9645 0.9187 0.8654 0.9451 0.9234(+1.51%) 0.9179(+0.19%)
PCGrad (Yu et al. 2020) 0.9182 0.8987 0.8942 0.9520 0.9158(+0.67%) 0.9206(+0.50%)
CAGrad (Liu et al. 2021) 0.9462 0.9313 0.9040 0.9538 0.9338(+2.65%) 0.9336(+1.91%)
AdaTask 0.9643 0.9391 0.8920 0.9480 0.9359(+2.87%) 0.9311(+1.63%)

Table 4: Performance evaluation on the WeChat. Task A, B, and C are the dominated tasks, and task D is the dominant task.

Dataset Task A Task B Average Weighted
Synthetic 0.0989 0.0285 0.0637 -
TikTok 0.9196 0.7446 0.8321 0.8671

Table 5: Performance evaluation of efficient AdaTask (i.e.,
LAdaTask) on the synthetic dataset (Lower Better) and Tik-
Tok dataset (Higher Better).

and Weighted metrics. Compared with baselines, our results
show a certain decrease in the dominant tasks because base-
lines are heavily skewed toward the dominant task, resulting
in better performance for the dominant task. However, our
method restricts the shared parameters to be skewed to the
dominant task to a certain extent, so the performance of the
dominant task will be slightly degraded, but we achieve the
overall optimal performance.
Multi-Objective Pareto Solution Perspective. According
to the definition of the Pareto stationary solution, solution
θ∗ is said to belong to the Pareto stationary solution set if
there is no solution θ that outperforms θ∗ in all tasks. So
we can consider that the solution found by AdaTask also be-
longs to Pareto stationary solution because there is no method
(such as MGDA, GradNorm, UW, PCGrad, or CAGrad) that
outperforms AdaTask on all task metrics.

Study on Efficient AdaTask (LAdaTask)
We conduct experiments on Synthetic and TikTok datasets
to evaluate LAdaTask, and the results are shown in Table 5.
We observe that LAdaTask is better than EqualWeight on
the dominated task (Task A), but the improvement is not as
significant as AdaTask. Specifically, on the synthetic dataset,
LAdaTask achieves an average Task-Normalized RMSE of
0.0637 (lower better), while EqualWeight and AdaTask are
0.1142 and 0.0560 (Table 2), respectively. On TikTok, the av-
erage AUC of LAdaTask is 0.8321 (weighted AUC is 0.8671),
and the higher the two evaluation metrics, the better the per-
formance. The EqualWeight and AdaTask are 0.8305(0.8652)
and 0.8356(0.8738), in Table 3, respectively.

Study on Task Dominance
Task Dominance on AU. We study whether the proposed
AdaTask approach indeed resolves the task dominance w.r.t.
AU. We calculate the percentage of shared parameters from
all layers w.r.t. their rAU(i, T,B) using some pre-defined
thresholds: {0%, 20%, 40%, 60%, 80%, 100%}. The result of
AdaTask is shown in Fig. 2(e) for the synthetic dataset. Very
few parameters in AdaTask are dominated by task B (red area
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Figure 3: The rAU(i, T,B) on the CityScapes dataset.

in (e)). We then further split the parameters into four layers in
the synthetic dataset (see (Yang et al. 2022b) for details). The
proposed AdaTask achieves a decent balance of AU: after
the first several epochs, more than 98% of shared parameters
in all four layers have rAU(i, T,B) in (40%, 60%]. We also
show that task dominance is a real problem in the real-world
dataset (CityScapes). As shown in Fig. 3, we calculate the
AU of EqualWeight and GradNorm on the CityScapes dataset
and do observe that 99% and 95% of shared parameters in
these two methods are dominated by task B. After applying
AdaTask, only 7% of parameters are slightly dominated by
task B, while 93% of shared parameters are balanced well.
Task Dominance on LR. There is no such learning rate
(LR) dominance problem in our proposed AdaTask since
we separate learning rates between tasks for each param-
eter. Therefore a parameter can be optimized toward each
task’s objective based on its own learning rate, without any
intervention from other tasks.

Conclusion and Future Works
In this work, we quantify the dominance of parameter training
and demonstrate that such dominance still occurs in exist-
ing works and it leads to a serious optimization problem
using adaptive learning rate methods for optimization. We
propose a Task-wise Adaptive Learning Rate Method, named
AdaTask, to use task-specific accumulative gradients when
adjusting the learning rate of each parameter. Comprehen-
sive experiments on synthetic and three real-world datasets
demonstrate that AdaTask achieves comparable performance
with state-of-the-art MTL approaches.

There are several potential directions for future research.
First, when AdaTask significantly improves the performance
of dominated task, it could damage the performance of the
dominant task, so further research is needed to ensure the
performance of the dominant task. Second, deep multi-task
learning is a highly nonconvex problem, making convergence
analysis quite challenging. Therefore, we expect to perform
a theoretical convergence analysis for AdaTask in the future.
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