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Abstract
The study of generative models is a promising branch of deep
learning techniques, which has been successfully applied to
different scenarios, such as Artificial Intelligence and the In-
ternet of Things. While in most of the existing works, the
generative models are realized as a centralized structure, rais-
ing the threats of security and privacy and the overburden of
communication costs. Rare efforts have been committed to
investigating distributed generative models, especially when
the training data comes from multiple heterogeneous sources
under realistic IoT settings. In this paper, to handle this chal-
lenging problem, we design a federated generative model
framework that can learn a powerful generator for the hierar-
chical IoT systems. Particularly, our generative model frame-
work can solve the problem of distributed data generation on
multi-source heterogeneous data in two scenarios, i.e., feature
related scenario and label related scenario. In addition, in our
federated generative models, we develop a synchronous and
an asynchronous updating methods to satisfy different appli-
cation requirements. Extensive experiments on a simulated
dataset and multiple real datasets are conducted to evaluate
the data generation performance of our proposed generative
models through comparison with the state-of-the-arts.

Introduction
Generative models have become a popular research direc-
tion in the field of deep learning thanks to its compelling
ability to generate realistic data plausibly drawn from an ex-
isting data distribution. Different from discriminative mod-
els, a generative model can generate unlimited synthetic data
to fulfill expected tasks by using the trained generator once
it has been trained. So far, the breakthrough brought by gen-
erative models has rapidly produced a revolutionary impact
on different fields, and this impact has already flourished in
various real applications in the Internet of Things (IoT). In
IoT environments, a variety of devices are interconnected to
generate, collect, share, and process heterogeneous data for
data-driven applications (Liu et al. 2023; Xiong et al. 2021a;
Cai et al. 2021). With the help of the generative models, the
generated data can facilitate the procedures of data collec-
tion and process in different aspects, such as reducing te-
dious data collection time, imputing missing data, augment-
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ing data quality, and detecting abnormal samples. In (Lv
et al. 2018; Tschuchnig, Ferner, and Wegenkittl 2020; Chen
et al. 2021; Mohammadi, Al-Fuqaha, and Oh 2018; Wu,
Huang, and Heng 2023), generative models have been used
for traffic data generation, traffic modeling, traffic predic-
tion, and traffic control in smart cities. Generative Adversar-
ial Networks (GANs)-based models have been designed to
generate and analyze medical data in smart medication sys-
tems (Vaccari et al. 2021; Chang et al. 2020; Qu et al. 2020).
In video surveillance systems, many generative models are
designed to support object recognition (Fabbri, Calderara,
and Cucchiara 2017), movement capture (Shi, Liu, and Li
2017), anomaly detection (Ganokratanaa, Aramvith, and
Sebe 2019), and super resolution tasks (Lee et al. 2018).

Yet, most of the existing works implement the central-
ized generative models, which first collect data from IoT de-
vices to a central server and then train generative models to
achieve generation goals. These centralized generative mod-
els may be vulnerable to the issues of single point failure
and privacy leakage. Moreover, users’ willingness to share
data with a central server may be declined because of their
privacy concerns, increasing the difficulty in data collection
and hindering the further development of IoT applications.
On the other hand, transmitting such a massive amount of
data to a central server brings expensive communication
cost to IoT. To break down the obstacles of privacy con-
cerns and communication cost, designing distributed gen-
erative models should be a better solution. The integration
of distributed generative models into IoT can benefit indi-
viduals and society in many aspects. For examples, in smart
health, distributed generative models can be used to synthe-
size the pattern of a special tumor’s MRI/CT scanning re-
sult without privacy violation, where the synthetic data can
be used for data visualization and training dataset for other
tasks; due to the existence of unaccessible data, pre-training
a distributed generative model to collect features from un-
derlying datasets can help model developers understand the
dataset, such as checking the data sanity, detecting bias in
the dataset, and debugging misclassified samples (Augen-
stein et al. 2019); and when multiple datasets on IoT de-
vices are non-i.i.d. distributed, learning a distributed gener-
ative model can learn a mixed distribution and generate data
with more diversity (Li et al. 2019; Hong et al. 2022).

Currently, only limited works have developed the dis-
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tributed generative models but overlook the following cru-
cial issues in practical IoT scenarios: (i) most of the existing
works adopt the federated learning style that needs to upload
large-size model parameters, which burdens limited network
resources; (ii) all of the existing works mainly focus on i.i.d.
data for model training without studying non-i.i.d. data sce-
narios; and (iii) no work considers the heterogeneity of data
domain in different IoT devices. Therefore, how to design
a distributed generative model to realize data generation ef-
fectively and efficiently in IoT is still a challenging problem.

To solve this problem, we design a novel distributed gen-
erative model framework, taking into account the essential
properties of IoT devices, including wide geographic distri-
bution, low computation power, non-i.i.d. data, and hetero-
geneous data domains. Considering the data distribution and
correlation in IoT devices under different applications, the
problem of distributed data generation is studied in two sce-
narios: (i) feature related scenario, where the data of differ-
ent communities has the same features but different labels;
and (ii) label related scenario, where the data of different
communities has the same labels but different features. The
major contributions of this paper are summarized below.
• Based on the features of IoT applications, we design a

three-layer hierarchical framework to deploy federated
generative models, which is the first work to consider
multi-source heterogeneous data for distributed data gen-
eration, to our best knowledge.

• According to the data scenarios in real IoT applications,
we propose two generative models for multi-source data
generation under our proposed hierarchical framework.

• We devise synchronous and asynchronous updating
strategies for training the generators on the edges, which
can be adopted by different application requirements.

• Intensive experiments are conducted on different datasets
from multiple data domains, which can illustrate the per-
formance of our data generation models compared with
the state-of-the-arts.

Related Works
Generative adversarial networks (GANs) (Goodfellow et al.
2014) originally focused on data generation in a single
dataset. In multi-source data scenarios, two or more data
sources are provided to train variants of GANs, which is
studied in conditional generation and joint generation. The
conditional generation methods aim at learning a conditional
distribution of one data source given other data source(s)
as the additional information (Zhu et al. 2017; Isola et al.
2017). Differently, the joint generation methods try to learn
the joint distribution of multiple data sources (Yoon, Jordon,
and Schaar 2018; Pu et al. 2018). However, existing gener-
ative models on multiple data sources are centralized mode,
which limits their applicability on distributed data silos.

For generative models in distributed setting, Genera-
tive Adversarial Parallelization (Im et al. 2016) is the first
work applying GANs in a distributed setting, where each
GAN model is trained on a distributed dataset. Similar idea
is adopted by Hardy et al. (Hardy, Le Merrer, and Sericola
2018) in Gossip GAN, but the generators and discriminators

are gossiped among neighborhood for adapting the global
distribution. Durugkar et al. (Durugkar, Gemp, and Mahade-
van 2017) and Hardy et al. (Hardy, Le Merrer, and Sericola
2019) simplify the previous structure via changing multi-
ple generators to one while keeping multiple discriminators
for training, which can provide the aggregated discrimina-
tor loss to the generator for better generation quality. Along
with this line, in (Yonetani et al. 2019), authors consider
the distributed data generation on multiple datasets, where
the multiple discriminators are weighted averaged accord-
ing to their loss values. Since the federated learning (Bren-
dan McMahan et al. 2016) paradigm was proposed, it has
been leveraged to develop various GANs, in which the mi-
nor difference among these methods is whether to aggre-
gate generators (Triastcyn and Faltings 2019), discrimina-
tors (Augenstein et al. 2019), or both (Fan and Liu 2020;
Rasouli, Sun, and Rajagopal 2020; Xin et al. 2020; Hong
et al. 2021). However, a high communication cost for these
generative models is transmitting model parameters itera-
tively. To circumvent, reformed methods in (Chang et al.
2020) and (Qu et al. 2020) set a central generator and update
it with the loss value of local discriminators, where the data
volume transmitted between server and local clients is much
smaller than transferring models. But their solutions are not
specified for non-i.i.d data, lacking a solid ground for land-
ing practical applications. Above methods work well on a
single data source but are not applicable on multiple hetero-
geneous data sources.

System Framework

As shown in Fig. 1, our federated generative model frame-
work is built as a three-layer hierarchical structure consist-
ing of IoT devices at bottom layer, edge servers in the middle
layer, and a cloud server at the top layer. Particularly, each
edge server is co-located at a base station covering a local re-
gion, in which the edge server and the covered IoT devices
form a local community. For the purpose of data generation,
a discriminator is deployed in every IoT device, a commu-
nity generator is deployed in every edge server, and a global
generator is deployed in the cloud server. Let K be the set of
local communities, Gk be the community generator of com-
munity k ∈ K, Jk be the set discriminators in community
k, and Dkj be the discriminator of IoT device j ∈ Jk in
community k.

The training process of our federated generative frame-
work consists of two stages: (i) local community training
for updating Gk at the edge servers, and (ii) global aggrega-
tion for updating G at the cloud server. In local community
training, the IoT devices and the edge-side generators are
trained to capture homogeneous data distribution; and then
in global aggregation, the local trained results are transmit-
ted to the cloud to obtain the global data distribution. The
global aggregation is performed by Igl iterations, each of
which contains Ilo iterations of local community training.
Due to the closely distributed locations, the data within a
local community usually has the same features (i.e., feature
related scenario) or class labels (i.e., label related scenario).
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Figure 1: Example of the feature related data generation.

Feature Related Data Generation
In the feature related scenario, our objective is to learn a
mixed data distribution of all communities via the global
generator G in the cloud server, where the datasets from dif-
ferent communities have the same features but different la-
bels. As shown in the illustrative example of Fig. 1, the three
communities have the same feature (i.e., gray scale pixel
value in [0, 1]) and different data labels (i.e., digit labels in
{0, 1, . . . , 9} and cloth labels in {t-shirts, shoes,. . . , pants}).
Finally, the global generator in the cloud server can gener-
ate the complete dataset with all labels including digits and
clothes. This scenario commonly exists in real IoT applica-
tions. For example, medical data of a surgical hospital and a
cancer hospital may cover different disease classes. IoT sen-
sors in different locations can sense different air quality in-
dices. Generating data from these different datasets through
our framework can get a complete research dataset. The de-
sign of the generators and the discriminators, and their inter-
actions is detailed in the following.

Generator
In our framework, there are two types of generators, i.e., the
community generator Gk and the global generator G. Simi-
lar to the original GANs, the community generator Gk pro-
duces two batches of data Gk(zd) and Gk(zg) with latent
vector zd and zg drawn from N (0, 1). Then, these data is
sent to local IoT devices, where Gk(zd) is served as fake
data to update Dkj as shown in Eq. (2), and Gk(zg) is em-
ployed to calculate the loss function value LDkj

(Gk) of Gk

on Dkj for back propagation as shown in Eq. (3). In the
cloud server, the global generator G has the same network
structure as Gk, and its parameters are aggregated from all
the community generators via Eq. (1).

G =
∑
k∈K

exp(LD∗(Gk))∑
k′∈K exp(LD∗(Gk))

Gk, (1)

where the loss function LD∗(Gk) can be computed by ei-
ther LDsync

in Eq. (4) or LDasync
in Eq. (5) as specified in

Synchronous Updating and Asynchronous Updating.

Discriminator
Corresponding to community generator Gk, in each iter-
ation of the local community training, the discriminator
Dkj performs two-step operations: (i) discriminator updat-
ing and (ii) loss function computation. At the first step, Dkj
is trained via the IoT device’s real local data x that follows

distribution pkj(x) and the fake data Gk(zd) that is gener-
ated by Gk, which is expressed in Eq. (2).

max
Dkj

L(Dkj) =Ex∼pkj(x)[logDkj(x)]+

Ezd∼pz(z)[log(1−Dkj(Gk(zd)))].
(2)

After Dkj is updated, Gk(zg) is input to Dkj to calculate
the loss function value of Gk as follows,

LDkj (Gk) = Ezd∼pz(z)[log(1−Dkj(Gk(zg)))]. (3)

Next, the loss value LDkj
(Gk) is sent back to Gk for the

purpose of calculating gradients and updating Gk.

Updating Strategy
Considering the diversity of IoT devices (e.g., laptops and
smart phones) and the requirement of IoT applications, ei-
ther synchronous or asynchronous methods can be adopted
to update Gk during our local community training process.

Synchronous Updating In the synchronous manner, Gk
is updated after collecting the loss value LDkj

(Gk) from all
the local discriminators within the community k during each
updating period, where the length of a unit updating period
can be pre-determined by the system. Unlike traditional ag-
gregation methods (Chang et al. 2020; Qu et al. 2020) that
adopt average aggregation of all collected values, our syn-
chronous aggregation can work well when the local distri-
bution pkj(x) is non-i.i.d. The aggregated loss LDsync

(Gk)
is computed as follows:

LDsync(Gk) =
∑
j∈Jk

e
LDkj

(Gk)∑
j′∈Jk

e
LDkj

(Gk)
LDkj (Gk). (4)

In Eq. (4), a larger value of LDkj
(Gk) means the gener-

ated data Gk(zd) is more realistic as judged by Dkj , thus
a bigger weight is assigned to LDkj

(Gk) for aggregation.
The effectiveness of such an exponential weighted aggre-
gation method has been verified in the existing works (Yo-
netani et al. 2019) on non-i.i.d. data. After LDsync

(Gk) is
obtained, the community generator Gk can be updated ac-
cordingly through the gradient ascending method.

Asynchronous Updating Since the IoT devices may have
different capacities, such as computation rate and transmis-
sion power, there might be some stragglers reducing the time
efficiency of generator updating in the synchronous manner.
To overcome this weakness, we propose an asynchronous
aggregation method to update Gk.

Basically, in the asynchronous manner, Gk is updated im-
mediately once a loss function value is received from a lo-
cal discriminator so that there is no need to wait the slow-
est discriminators for updating. Notice that with respect to
Gk, the received loss function value with a smaller degree
of staleness has more contribution to accurate updating. By
considering the impact of reception time on the updating
performance, the “staleness” of LDkj

(Gk) is defined to be
skj = T rec

kj − T lat
k , where T rec

kj is the time when LDkj
(Gk)

is received by Gk, and T lat
k is the latest updating time of Gk.

Accordingly, Gk can be updated with obtained loss function
values asynchronously through Eq. (5).

LDasync(Gk) =
1

|Mk|
∑
j∈Mk

e−skjLDkj (Gk), (5)
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where Mk is the set of local IoT devices whose loss function
values are received by Gk at the same time. As indicated in
Eq. (5), a smaller degree of staleness is assigned a bigger
weight on the aggregated loss value for updating Gk.

Training Process
At the beginning of the global training process, the param-
eters of G, Gk, and all the discriminators are initialized. In
each global training iteration, Gk is updated via Ilo itera-
tions of the local community training and then is sent to the
cloud server for aggregation. Specifically, in each commu-
nity k, Gk generates two batches of data and sends them
to the discriminators within the same local community. The
discriminators update weight parameters based on Gk(zd)
and calculate the loss values based on Gk(zg) as feedback
to Gk. After this step, the loss value LDkj

(Gk) is sent to the
edge servers for updating Gk, where the aggregated loss can
be LDsync

in the synchronous updating method or LDasync

in the asynchronous updating method, which can be pre-
determined by application requirements. After local com-
munity training stops, Gk is sent to the cloud server for the
global aggregation that follows Eq. (1). At the end of each
global training iteration, G is distributed back to local com-
munities, preparing for the next iteration of global training
process. After Igl iterations of the global training process,
G is output for feature related data generation. Obviously,
when Igl (resp. Ilo) is increased, the training result of G
(resp. Gk) will become better with a longer training dura-
tion. Therefore, Igl and Ilo can be set by considering the
trade-off between training result and training time.

Label Related Data Generation
In the label related scenario, the distributed datasets in dif-
ferent communities have different feature distribution but
the same labels; that is, the data in different communities be-
longs to different domains. Generally, the label related sce-
nario can help applications that need data from distributed
storage for domain adaption problem (Long et al. 2015).
In vehicular networks, camera data captured by vehicles in
one community and LiDAR data in another community may
have the same object labels (Xiong et al. 2021b), which is
similar to our label related scenario.

Take Fig. 2 as an example, where the data in the three
communities shares the same digit labels {0, 1, 2, . . . , 9} but
differs in data features, such as background color, and lumi-
nance. The global generator G in the cloud aims at generat-
ing data from different domains with the same label. To this
end, a domain classifier C is added in the cloud server to dis-
tinguish the original source of the generated data under our
framework as presented in Fig. 2. More details of generators,
discriminators, domain information, and training process are
introduced as follows.

Generator
In the label related scenario, the generator is expected
to generate multi-domain data distribution under various
domain conditions, where in each community k, the do-
main condition, denoted by ck, indicates the origin of

G

G1

G2

GK

𝐷𝐷11

𝐷𝐷12

𝐷𝐷13
𝐷𝐷𝐾𝐾𝐾

𝐷𝐷𝐾𝐾𝐾

𝐷𝐷𝐾𝐾𝐾

𝐷𝐷22

𝐷𝐷23

𝐷𝐷24

𝐷𝐷21

C

𝓛𝓛𝒊𝒊𝒊𝒊𝒊𝒊
𝓛𝓛𝒔𝒔𝒔𝒔𝒔𝒔

𝑐𝑐1

z

𝑐𝑐2

z

Figure 2: Example of the label related data generation.

the generated data. To achieve this purpose, the model of
cGANs (Mirza and Osindero 2014) is adopted to embed the
latent vector z as the domain invariant of all data domains
(e.g., the common class labels in {0, 1, 2, . . . , 9}) and to em-
bed the domain condition ck as the domain specific of each
data domain (e.g., background color, and luminance).

Specifically, the community generator Gk takes the latent
vector z and the domain specific condition ck as its inputs for
data generation. During the local community training pro-
cess, two batches of fake data, Gk(zd, ck) and Gk(zg, ck),
are generated by Gk and sent to Dkj to update the discrimi-
nator and to calculate the loss function value LDkj

(Gk) for
back propagation. In the cloud server, the global generator
G has the same structure as Gk and is also aggregated by
community generators as shown in Eq. (1).

Discriminator
The discriminators are set with two major operations, in-
cluding discriminator update and loss function computation.

For discriminator update, Dkj is trained by the real data,
x ∼ pkj(x), and the generated data, Gk(zd, ck), through
Eq. (6), which is the same as the training process of cGANs

max
Dkj

L(Dkj) =Ex∼pkj(x)[logDkj(x|ck)]+

Ez∼pz(z)[log(1−Dkj(Gk(zd, ck)|ck))].
(6)

After Dkj is updated, the loss function value of Gk,
LDkj

(Gk), is calculated based on Gk(zg, ck) as follows,
LDkj (Gk) = Ez∼pz(z)[log(1−Dkj(Gk(zg, ck)|ck))]. (7)

Then, LDkj
(Gk) is sent back to edge server to update Gk.

The updating process of Gk in the label related scenario can
be performed using either synchronous or asynchronous up-
dating methods as feature related scenario does.

Domain Invariant & Specific
The same class labels of all communities’ data is so-called
“domain invariant” that normally exists in high-level repre-
sentation space (Mao and Li 2018; Wang and Deng 2018).
For a generator that maps latent vectors to high-dimension
space, the output of its first layer denotes its high-level rep-
resentation. The distance between the first-layer output of
G under two different domain conditions can be defined as
the “domain invariant loss” as shown in Eq. (8), which can
guide the generator to produce the required high-level rep-
resentation.

Linv(G) =
∑

k ̸=k′∈K

∥G1st(z, ck)−G1st(z, ck′)∥2. (8)
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Since the global generator G is obtained on cloud server,
with the domain condition ck (k ∈ K), G can gener-
ate G(z, ck) falling into different data domains. Accord-
ingly, we can obtain the corresponding first-layer out-
put, G1st(z, ck), to calculate the domain invariant loss via
Eq. (8), where L2 norm is adopted to measure the difference
in the high-level representation space. Through minimizing
this distance, the generated result G(z, ck) with different do-
main conditions are forced to possess the same information
with respect to z (i.e., the same labels).

Domain specific is the special information that belongs
to each domain. Here, the different domain condition ck is
used to represent domain specific. With the domain condi-
tion ck, the generated data G(z, ck) is actually self-labeled,
and thus can be used as the training dataset to fulfill a su-
pervised domain classifier training. The domain classifier
C in the cloud server is modeled as a multi-class classi-
fier that predicts the generated data to corresponding data
domains. Concretely, C is constructed as a neural network
with considering cross entropy loss and is trained on the la-
beled dataset {G(z, ck), ck|k ∈ K}, where ck is used as the
domain label. During the evaluation phase of C, we can use
the loss value of C as the domain specific loss of G, which
is computed in Eq. (9):

Lspe(G) =
∑
k∈K

H(C(G(z, ck)), ck), (9)

where Lspe(G) denotes the domain specific loss, and H(·, ·)
represnts the cross entropy measurement. Since G is ex-
pected to produce more realistic data based on the domain
condition ck, minimizing Lspe(G) can force G to embed do-
main specific semantics into ck.

Training Process
In each global training iteration, all local communities pro-
ceed their local community training to update Gk with Ilo it-
erations. During each location training iteration, two batches
of generated data are sent to the local IoT devices to update
discriminators and calculate loss function values. Then, the
calculated loss values are transmitted to the edge servers for
updating Gk based on Eq. (4) in a synchronous manner or
Eq. (5) in an asynchronous manner, which can be decided by
the system requirements. After Gk is trained and received
by the cloud server, aggregation is performed to obtain G
as shown in Eq. (1). Then, we can train the domain classi-
fier C based on the dataset {G(z, ck), ck|k ∈ K} generated
by G, and calculate the domain invariant loss Linv(G) and
domain specific loss Lspe(G). Thereafter, G, Linv(G), and
Lspe(G) are sent back to community generators for mini-
mizing λ1Linv(G) + λ2Lspe(G) and next local training it-
eration. Particularly, λ1, λ2 ∈ (0, 1] are two pre-determined
hyperparameters used as the weights of loss functions. When
the global training process ends, G is output to generate
multi-domain data with the domain condition ck.

Experiments
In this section, we investigate the quality of the generated
data from both visualization and statistic aspects through
comparison with the state-of-the-art models.

c. gan fed. gan md gan FR (s) FR (as)

IS 3.386 4.215 4.228 4.363 3.208
FID 19.84 17.14 14.69 13.82 52.24
Acc 82.21% 87.84% 90.60% 90.65% 53.17%

IS 3.386 2.281 2.839 3.875 2.922
FID 19.84 74.80 96.12 26.15 77.18
Acc 82.21% 42.37% 45.22% 86.05% 51.20%

Table 1: Quantitative comparison of different models on
MNIST and Fashion-MNIST in feature related scenario.

Experiment Settings
System Structure. The network environment is simulated
on one server, where each community has 1 edge server
and 5 IoT devices. Considering the available real datasets,
the number of community varies with the scenario settings,
which is demonstrated as follows.

Datasets. For the feature related scenario, we choose two
types of data in the experiments: (i) simulated gaussian
mixed data, where the datasets of all local communities
have the same feature (i.e., variance) but different mean val-
ues; and (ii) MNIST dataset and Fashion-MNIST dataset,
where both datasets have the same features but different
class labels. For the label related scenario, we select (i)
MNIST dataset and inverse MNIST dataset; (ii) sketch-
photo dataset (Zhu et al. 2016), each of which has the same
labels or semantic information but different domains.

Data Distribution. Both the i.i.d. data distribution and the
non-i.i.d. data distribution are considered for the feature re-
lated and the label related scenarios in our experiments. Ac-
cordingly, by combining the two types of data distribution
and the two scenarios, we have the following four types of
settings for evaluation: (i) feature related scenario with i.i.d.
data distribution, (ii) feature related scenario with non-i.i.d.
data distribution, (iii) label related scenario with i.i.d. data
distribution, and (iv) label related scenario with non-i.i.d.
data distribution.

Baselines. Since our distributed generative models in the
feature related and the label related scenarios are designed
with different ideas and goals, we pick different base-
lines for the two scenarios. In the feature related sce-
nario, centralized GAN (Cent. GAN), federated GAN (Fed.
GAN) (Fan and Liu 2020), and multi-discriminator GAN
(M-D GAN) (Chang et al. 2020) are used for performance
comparison. In the label related scenario, RegGAN (Mao
and Li 2018) (a centralized model to generate multi-domain
data) and a federated GAN (FED GAN) model are selected
as the baseline models.

Feature Related Data Generation
Fig. 3 displays the generated data of baselines and our fea-
ture related (FR) data generation model with synchronous
and asynchronous updating methods, in which the black “×”
markers denote the training data points coming from 9 com-
munities, and the blue “·” markers are the generated data
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(a) Cent. GAN. (b) Fed. GAN. (c) M-D GAN. (d) FR (sync). (e) FR (async).

Figure 3: Generated data of different generative models on the simulated gaussian mixed dataset.

(a) Cent. GAN. (b) Fed. GAN. (c) M-D GAN. (d) FR (sync). (e) FR (async).

Figure 4: Generated data of different generative models on MNIST and Fashion-MNIST dataset in i.i.d./non-i.i.d. setting.

points. Thus, if the blue “·” can concentrate to the black “×”
points closer, the generated data is more similar to the real
data, indicating the better performance of generative models.

In Fig. 3(a), the generated data mainly concentrates
around one black data cluster at the bottom right corner,
which means only partial data distribution of entire train-
ing dataset is learned by centralized GAN. Centralized GAN
cannot perform well on such gaussian mixed data due to
mode collapse. Fed. GAN averagely aggregates all the in-
volved generators and discriminators on the server, produc-
ing the data that mainly concentrates around the black data
clusters at the four corners. M-D GAN uses one generator
to receive feedbacks from all discriminators for updating,
which is a good way to learn the multi-source data distri-
bution. But, as shown in Fig. 3(c), it also generates a num-
ber of outliers that are far away from the black data points,
because the discriminators work alone without information
exchange among all communities. Our FR data generation
model is like a combination of Fed. GAN and M-D GAN,
within each community, the GAN structure resembles to M-
D GAN but uses an exponentially weighted aggregation; and
in the cloud server, all community generators are exponen-
tially weighted to obtain the global generator G so that the
information among communities can be exchanged through
distributing G back to communities. From Fig. 3(d), we find
that almost all the generated data can concentrate on the 9
black data clusters accurately, reflecting the best generation
performance when the synchronous updating method is used
in our FR data generation model. While in Fig. 3(e), the ma-
jority of the generated data can concentrate on the 9 black
data clusters closely, reaching a slightly worse generation
performance than our FR (sync) data generation but is still
better than other baselines.

For experiments on MNIST and Fashion-MNIST
datasets, one community holds MNIST data and the other

two hold Fashion-MNIST data. Inception Score (IS) (Sal-
imans et al. 2016), Frechet Inception Distance (FID), and
classification accuracy on generated data are the common
metrics used to measure data generation performance. The
generated images on i.i.d data (marked in green square)
and non-i.i.d. data (marked in red square) are presented in
Fig. 4. From the i.i.d. data of Fig. 4, we can get similar
conclusion as in gaussian mixed data. Centralized GAN
only generates blurred partial Fashion-MNIST data, failing
to generate data from the whole dataset because of model
collapse. Fed. GAN generates almost all labels, but some
data is blurred and unclear, such as the 3rd and 5th rows in
Fig. 4(b), because the average aggregation strategy used in
Fed. GAN may not able to collect all important feedbacks
from local entities. Fig. 4(c) and Fig. 4(d) show that M-D
GAN and our FR (sync) data generation present similar
results, and the result of Fig. 4(e) is slightly worse.

For non-i.i.d. data, by comparing the results of the three
distributed generation models in Fig. 4 and Table 1, it is clear
that our FR (sync) data generation model can achieve the
best generation performance with non-i.i.d. data. Especially,
the performance improvement of our FR (sync) generation
model is more significant under non-i.i.d. setting.

Label Related Data Generation
For the data generation problem in the label related sce-
nario, this paper is the first to propose distributed generative
models, so there is no existing baseline. Instead, we build
a distributed baseline model following the idea of federated
GAN (Fan and Liu 2020) for comparison. The structure of
federated GAN (FED GAN) contains a cloud server and five
local IoT devices. During each training iteration, each lo-
cal device trains a GAN model and upload its generator and
discriminator to the cloud server for aggregation. Then, the
aggregated generator and discriminator are distributed back.
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(a) RegGAN. (b) Federated GAN. (c) LR data generation (sync). (d) LR data generation (async).

Figure 5: Generated data of different generative models on MNIST and inverse MNIST dataset in i.i.d./non-i.i.d. setting.

(a) RegGAN. (b) Federated GAN. (c) LR data generation (sync). (d) LR data generation (async).

Figure 6: Generated data of different generative models on (sketch-photo) Shoe dataset.

RegGan FED GAN LR (s) LR (as)

iid IS 4.037 3.360 3.971 3.041
FID 26.11 33.20 28.56 41.35

non-iid IS 4.037 2.651 3.495 2.452
FID 26.11 53.26 45.22 59.82

Table 2: Quantitative comparison of label related scenario.

The generated data of the MNIST and inverse MNIST
datasets are shown in Fig. 5, where the result of i.i.d. data
is in green square, and non-i.i.d.data is in red square. Reg-
GAN outputs the best generated results compared with the
remaining three distributed models because it is a central-
ized model. Among these three distributed models, the re-
sults of FED GAN and our LR (sync) data generation have
similar visual quality and statistical performance, which are
clear and close to the generated results of RegGAN. On the
other hand, our LR (async) data generation performs a lit-
tle bit worse than FED GAN and LR (sync) data generation.
Notably, the significant difference between our LR (sync)
data generation and FED GAN is whether the generated
data in the same column has the same domain invariant. In
Fig. 5(a), Fig. 5(c), and Fig. 5(d), the generated data in each
column always has the same class label. The reason that our
LR data generation models can produce the same class label
is that we use the domain classifier to minimize the domain
invariant loss, which embeds the class label information into
a domain invariant vector z. But, in Fig. 5(b), the domain in-
variant (i.e., class label) of two images in the same column
are not identical. FED GAN does not deploy any domain
classifiers in the cloud server, and thus it can not guarantee
the same class label with z during data generation. Also, for
the generated data quality of our LR data generation model
with different updating strategies, the synchronous method
performs better than the asynchronous method, which is the
same as the generation performance in the feature related
scenario. Similar results on Shoes datasets can be found in
Fig. 6, where the generated data of our LR data generation
model with different update methods have the same seman-
tic information in each column, but the generated data of

FED GAN does not. More statistical results about the gen-
erated data are presented in Table 2.

The experiments of label related data generation with
non-i.i.d. data are conducted on the MNIST dataset and the
inverse MNIST dataset and shown in red box of Fig. 5. Com-
pared with FED GAN, our LR (sync) data generation can
still produce clear numbers from two different domains as
shown in Fig. 5(c), which is closer to the results of RegGAN
and is better than the results of FED GAN in Fig. 5(b). Simi-
lar to the results in i.i.d. setting, the generated data quality of
our LR (async) data generation is still a little bit worse. But
from the view point of domain invariant, our LR data gener-
ation model with different update methods can produce the
same labels in each column. Yet, in Fig. 5(b), the generated
data of FED GAN in the same column still has different
labels, which demonstrate the effectiveness of the domain
invariant loss function in our LR data generation models.
The above observations validate that our LR data generation
model can work on both i.i.d. and non-i.i.d. data with differ-
ent update methods. In addition, more quantitative results of
label related data generation in non-i.i.d. setting are provided
in Table 2, where the data quality of our LR data generation
model with synchronous update is better than FED GAN and
very close to RegGAN even in such non-i.i.d. setting.

Conclusion
In this paper, we aim to solve the problem of distributed data
generation with multiple heterogeneous data sources in fea-
ture related scenario and label related scenario. To this end,
we design a hierarchical federated generative framework
with the consideration of IoT features, including geographic
distribution, low computation power, non-i.i.d. data, and het-
erogeneous data domains. Based on this framework, feature
related data generation model and label related data gener-
ation model are proposed, which can solve the above data
generation problems successfully in a synchronous manner
or an asynchronous manner. Experiments are conducted on
multiple datasets under different distribution settings to eval-
uate the performance of our models from both visualization
and statistic aspects, which demonstrates the excellence of
our models compared with the start-of-art baselines.
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S.; and Agüera y Arcas, B. 2016. Communication-efficient
learning of deep networks from decentralized data. ArXiv
e-prints, arXiv–1602.
Cai, Z.; Xiong, Z.; Xu, H.; Wang, P.; Li, W.; and Pan,
Y. 2021. Generative Adversarial Networks: A Survey To-
wards Private and Secure Applications. arXiv preprint
arXiv:2106.03785.
Chang, Q.; Qu, H.; Zhang, Y.; Sabuncu, M.; Chen, C.;
Zhang, T.; and Metaxas, D. N. 2020. Synthetic learn-
ing: Learn from distributed asynchronized discriminator gan
without sharing medical image data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13856–13866.
Chen, Q.; Wang, W.; Huang, K.; De, S.; and Coenen, F.
2021. Multi-modal generative adversarial networks for traf-
fic event detection in smart cities. Expert Systems with Ap-
plications, 177: 114939.
Durugkar, I. P.; Gemp, I.; and Mahadevan, S. 2017. Genera-
tive Multi-Adversarial Networks. In 5th International Con-
ference on Learning Representations, ICLR 2017. OpenRe-
view.net.
Fabbri, M.; Calderara, S.; and Cucchiara, R. 2017. Gener-
ative adversarial models for people attribute recognition in
surveillance. In 2017 14th IEEE international conference
on advanced video and signal based surveillance (AVSS),
1–6. IEEE.
Fan, C.; and Liu, P. 2020. Federated generative adversarial
learning. In Chinese Conference on Pattern Recognition and
Computer Vision (PRCV), 3–15. Springer.
Ganokratanaa, T.; Aramvith, S.; and Sebe, N. 2019.
Anomaly event detection using generative adversarial net-
work for surveillance videos. In 2019 Asia-Pacific Signal
and Information Processing Association Annual Summit and
Conference (APSIPA ASC), 1395–1399. IEEE.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks. arXiv preprint
arXiv:1406.2661.
Hardy, C.; Le Merrer, E.; and Sericola, B. 2018. Gossiping
GANs: Position paper. In Proceedings of the Second Work-
shop on Distributed Infrastructures for Deep Learning, 25–
28.
Hardy, C.; Le Merrer, E.; and Sericola, B. 2019. Md-gan:
Multi-discriminator generative adversarial networks for dis-
tributed datasets. In 2019 IEEE international parallel and
distributed processing symposium (IPDPS), 866–877. IEEE.

Hong, J.; Lyu, L.; Zhou, J.; and Spranger, M. 2022.
Outsourcing Training without Uploading Data via Effi-
cient Collaborative Open-Source Sampling. arXiv preprint
arXiv:2210.12575.
Hong, J.; Zhu, Z.; Yu, S.; Wang, Z.; Dodge, H. H.; and Zhou,
J. 2021. Federated adversarial debiasing for fair and trans-
ferable representations. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 617–627.
Im, D. J.; Ma, H.; Kim, C. D.; and Taylor, G. 2016.
Generative adversarial parallelization. arXiv preprint
arXiv:1612.04021.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.
Lee, Y.; Yun, J.; Hong, Y.; Lee, J.; and Jeon, M. 2018.
Accurate license plate recognition and super-resolution us-
ing a generative adversarial networks on traffic surveillance
video. In 2018 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), 1–4. IEEE.
Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; and Ng, S.-K.
2019. MAD-GAN: Multivariate anomaly detection for time
series data with generative adversarial networks. In Interna-
tional Conference on Artificial Neural Networks, 703–716.
Springer.
Liu, Y.; Zhao, S.; Xiong, L.; Liu, Y.; and Chen, H. 2023.
Echo of Neighbors: Privacy Amplification for Personalized
Private Federated Learning with Shuffle Model. In Proceed-
ings of the AAAI Conference on Artificial Intelligence.
Long, M.; Cao, Y.; Wang, J.; and Jordan, M. 2015. Learn-
ing transferable features with deep adaptation networks.
In International conference on machine learning, 97–105.
PMLR.
Lv, Y.; Chen, Y.; Li, L.; and Wang, F.-Y. 2018. Genera-
tive adversarial networks for parallel transportation systems.
IEEE Intelligent Transportation Systems Magazine, 10(3):
4–10.
Mao, X.; and Li, Q. 2018. Unpaired multi-domain image
generation via regularized conditional GANs. In Proceed-
ings of the 27th International Joint Conference on Artificial
Intelligence, 2553–2559.
Mirza, M.; and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Mohammadi, M.; Al-Fuqaha, A.; and Oh, J.-S. 2018. Path
planning in support of smart mobility applications using
generative adversarial networks. In 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), 878–885. IEEE.
Pu, Y.; Dai, S.; Gan, Z.; Wang, W.; Wang, G.; Zhang, Y.;
Henao, R.; and Duke, L. C. 2018. Jointgan: Multi-domain
joint distribution learning with generative adversarial nets.
In International Conference on Machine Learning, 4151–
4160. PMLR.

10544



Qu, H.; Zhang, Y.; Chang, Q.; Yan, Z.; Chen, C.; and
Metaxas, D. 2020. Learn distributed GAN with Temporary
Discriminators. In European Conference on Computer Vi-
sion, 175–192. Springer.
Rasouli, M.; Sun, T.; and Rajagopal, R. 2020. Fedgan: Fed-
erated generative adversarial networks for distributed data.
arXiv preprint arXiv:2006.07228.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for train-
ing gans. Advances in neural information processing sys-
tems, 29: 2234–2242.
Shi, Q.; Liu, X.; and Li, X. 2017. Road detection from
remote sensing images by generative adversarial networks.
IEEE access, 6: 25486–25494.
Triastcyn, A.; and Faltings, B. 2019. Federated generative
privacy. arXiv preprint arXiv:1910.08385.
Tschuchnig, M. E.; Ferner, C.; and Wegenkittl, S. 2020. Se-
quential iot data augmentation using generative adversar-
ial networks. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 4212–4216. IEEE.
Vaccari, I.; Orani, V.; Paglialonga, A.; Cambiaso, E.; and
Mongelli, M. 2021. A Generative Adversarial Network
(GAN) Technique for Internet of Medical Things Data. Sen-
sors, 21(11): 3726.
Wang, M.; and Deng, W. 2018. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312: 135–153.
Wu, X.; Huang, F.; and Heng, H. 2023. Faster Adaptive
Federated Learning. In Proceedings of the AAAI Conference
on Artificial Intelligence.
Xin, B.; Yang, W.; Geng, Y.; Chen, S.; Wang, S.; and Huang,
L. 2020. Private fl-gan: Differential privacy synthetic data
generation based on federated learning. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2927–2931. IEEE.
Xiong, Z.; Cai, Z.; Takabi, D.; and Li, W. 2021a. Privacy
Threat and Defense for Federated Learning with Non-iid
Data in AIoT. IEEE Transactions on Industrial Informat-
ics.
Xiong, Z.; Xu, H.; Li, W.; and Cai, Z. 2021b. Multi-Source
Adversarial Sample Attack on Autonomous Vehicles. IEEE
Transactions on Vehicular Technology, 70(3): 2822–2835.
Yonetani, R.; Takahashi, T.; Hashimoto, A.; and Ushiku,
Y. 2019. Decentralized Learning of Generative Ad-
versarial Networks from Non-iid Data. arXiv preprint
arXiv:1905.09684.
Yoon, J.; Jordon, J.; and Schaar, M. 2018. RadialGAN:
Leveraging multiple datasets to improve target-specific pre-
dictive models using Generative Adversarial Networks.
In International Conference on Machine Learning, 5699–
5707. PMLR.
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