
Correspondence-Free Domain Alignment for Unsupervised Cross-Domain Image
Retrieval

Xu Wang1, Dezhong Peng1,3,4, Ming Yan2, Peng Hu1*

1College of Computer Science, Sichuan University, Chengdu, China
2Centre for Frontier AI Research (CFAR), A*STAR, Singapore

3Sichuan Zhiqian Technology Co., Ltd, Chengdu, China
4Chengdu Ruibei Yingte Information Technology Ltd. Company, Chengdu, China

wangxu.scu@gmail.com, pengdz@scu.edu.cn, yanmingtop@gmail.com, penghu.ml@gmail.com

Abstract

Cross-domain image retrieval aims at retrieving images
across different domains to excavate cross-domain classifi-
catory or correspondence relationships. This paper studies a
less-touched problem of cross-domain image retrieval, i.e.,
unsupervised cross-domain image retrieval, considering the
following practical assumptions: (i) no correspondence rela-
tionship, and (ii) no category annotations. It is challenging
to align and bridge distinct domains without cross-domain
correspondence. To tackle the challenge, we present a novel
Correspondence-free Domain Alignment (CoDA) method
to effectively eliminate the cross-domain gap through In-
domain Self-matching Supervision (ISS) and Cross-domain
Classifier Alignment (CCA). To be specific, ISS is presented
to encapsulate discriminative information into the latent com-
mon space by elaborating a novel self-matching supervi-
sion mechanism. To alleviate the cross-domain discrepancy,
CCA is proposed to align distinct domain-specific classifiers.
Thanks to the ISS and CCA, our method could encode the
discrimination into the domain-invariant embedding space for
unsupervised cross-domain image retrieval. To verify the ef-
fectiveness of the proposed method, extensive experiments
are conducted on four benchmark datasets compared with six
state-of-the-art methods.

Introduction
With the rapid growth of images collected from many di-
verse sources (e.g., viewpoints, lightning, artistic styles, and
photograph) on the Internet, there are growing demands
to develop various applications on different domains, such
as domain adaptation (Li et al. 2021b; Singh 2021; Zhu,
Zhuang, and Wang 2019), cross-domain clustering (Li et al.
2021a), and cross-domain image retrieval (CIR) (Huang
et al. 2015; Wang et al. 2019; Paul, Dutta, and Biswas 2021;
Wang et al. 2022; Hu and Lee 2022). In these applications,
CIR has attracted more and more attention in recent years
for its flexible retrieval ways and achieved great success in
numerous application scenarios, e.g., surveillance, mobile
product image search (Shen et al. 2012). Given a query im-
age, CIR aims to correctly retrieve relevant images across
distinct domains, which are with similar visual information
or the same semantics. However, it is challenging to retrieve
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Figure 1: Comparison of cross-domain image retrieval (CIR)
and unsupervised cross-domain image retrieval (UCIR).
Compared with CIR, there is no category annotation or cor-
respondence relationship in UCIR.

images across diverse domains due to the inconsistent image
distributions, namely the so-called “domain gap” or “cross-
domain gap” (Nam et al. 2021).

To bridge the domain gap, extensive efforts have been de-
voted to learning common representations from different do-
mains (Sangkloy et al. 2016; Yu et al. 2016; Sain et al. 2021;
Fuentes and Saavedra 2021). Although the existing cross-
domain image retrieval methods have achieved promising
performance, they implicitly assume that the multi-domain
training data are annotated and aligned well. In practice,
however, it is extremely expensive and even impossible to
label multiple large-scale domains. To alleviate the high la-
beling cost, one advisable solution is to design an unsuper-
vised cross-domain learning paradigm to learn from a large
number of low-cost and highly accessible unlabeled data.
Obviously, compared with CIR, unsupervised cross-domain
image retrieval (UCIR) is more challenging due to unavail-
able category and correspondence information as shown in
Figure 1. Such a UCIR problem is barely touched so far, to
the best of our knowledge.

To overcome the challenges, this paper proposes
a novel approach dubbed Correspondence-free Domain
Alignment (CoDA), which unifies the In-domain Self-
matching Supervision (ISS) and Cross-domain Classifier
Alignment (CCA) to achieve unsupervised cross-domain
image retrieval. Specifically, ISS employs a novel self-
matching supervision mechanism to encapsulate the dis-
criminative information into the shared embedding space.
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Meanwhile, different from previous works which mainly fo-
cus on the distribution alignment, CCA enforces the predic-
tions by different domain-specific classifiers to be consistent
to minimize the cross-domain discrepancy, thus learning the
domain-aligned and domain-invariant representations.

The main novelties and contributions of this work are
summarized as follows:

• We propose a novel method called Correspondence-free
Domain Alignment (CoDA) to tackle a less-touched
problem, i.e., unsupervised cross-domain image retrieval.

• A novel In-domain Self-matching Supervision module
(ISS) is proposed to project the discrimination into
common representations by simultaneously conducting
domain-specific clustering and discriminative learning.

• We present a Cross-domain Classifier Alignment mecha-
nism (CCA) to learn domain-invariant representations by
minimizing the discrepancy across domain-specific clas-
sifiers.

• Extensive experiments are conducted on four bench-
marks, demonstrating the effectiveness of the proposed
approach for unsupervised cross-domain image retrieval.

Related Work
Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) aims to trans-
fer knowledge learned from a source domain with fully-
annotated training examples to a target domain with unla-
beled data only. The key challenge of UDA is having to
counter the inconsistent distributions across different do-
mains, namely the cross-domain gap. To eliminate the do-
main gap, discrepancy-based methods are proposed to min-
imize the Maximum Mean Discrepancy (MMD) (Wynne
and Duncan 2022) or Joint MMD (Long et al. 2017) across
domains. Motivated by the Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014), several GAN-based
methods (Tzeng et al. 2017; Hoffman et al. 2018) are also
presented to perform domain alignment in feature space.
Besides, Saito et al. (2019) propose a novel minimax en-
tropy approach that adversarially achieves domain adapta-
tion. Nevertheless, these UDA methods have supervision on
the source domain. Nevertheless, these UDA methods im-
plicitly assume that the source domain is annotated well,
which inevitably increases the labeling cost. To tackle this
problem, a novel problem is studied in the paper, i.e., the un-
supervised cross-domain image retrieval, where both source
and target domains are unlabeled.

Cross-Domain Image Retrieval
As an extensively studied task in computer vision, content-
based image retrieval (Datta et al. 2008) has been widely
explored, where the query and database are constrained to
the same domain. In practice, however, we often require re-
trieving related images across diverse domains, i.e., cross-
domain image retrieval (CIR). For example, in online shop-
ping, we need to search for products using images captured
by smartphones as the query (Huang et al. 2015), wherein
query and database exist in distinct domains. Compared with

content-based image retrieval, CIR is more challenging due
to the domain gap. To bridge the domain gap, several works
exploit the category information (Sangkloy et al. 2016) for
discriminative feature extraction or cross-domain pairing by
minimizing triplet (Yu et al. 2016) and HOLEF (Song et al.
2017) loss. However, the cross-domain correspondence uti-
lized in these works is labor-intensive, which severely re-
stricts their applications. In this paper, we focus on a more
challenging setting, i.e., unsupervised cross-domain image
retrieval, which is first introduced in a recent work (Kim
et al. 2021) but is still barely touched so far. Different
from this work which trains models by contrasting instance-
instance pairs, ours employs multi-domain classifiers to cap-
ture discrimination and enforce their prediction consistency
to alleviate the cross-domain discrepancy, thus embracing
better performance.

Methodology
Problem Statement
We first give the formal definition of the unsupervised cross-
domain retrieval task. Given two sets of unlabeled train-
ing images DA = {(xA

i )}
NA
i=1 from domain A, and DB =

{(xB
j )}

NB
j=1 from another different domain B, our goal is to

learn an effective feature extractor to transform images from
different domains into a common embedding space, where
the features are discriminative for cross-domain similarity
measuring. During the training stage, the training set is uti-
lized to bridge the domain gap. While during testing, a query
image xA

i ∈ DA with its category label yi is given, the ulti-
mate goal is to correctly retrieve all semantically similar im-
ages in DB , i.e., all xB

k ∈ DB with category label yk = yi.
Under the unsupervised setting, DA and DB share the same
categories, but there are unavailable category annotations or
correspondence relationships between DA and DB . This in-
creases the challenge of how to learn a common space from
unlabeled and unaligned data for cross-domain retrieval.

Overview
To tackle the above-mentioned challenge, we propose a
novel approach named Correspondence-free Domain Align-
ment (CoDA). We firstly adopt a Convolutional Neural Net-
work (CNN) backbone f(·;Θ) pretrained on ImageNet to
extract the features. Formally, given an image point xi, the
embedded feature vi could be obtained by:

vi = f(xi;Θ) ∈ RL, (1)

where Θ is the parameter set of CNN. L denotes the dimen-
sionality of the common space.

As illustrated in Figure 2, our CoDA contains two parts:
(1) In-domain Self-matching Supervision (ISS). By

performing domain-specific clustering and in-domain self-
matching with the soft label, ISS could encapsulate the dis-
criminative information of image data into the embedding
space.

(2) Cross-domain Classifier Alignment (CCA). By min-
imizing the discrepancy among different domain-specific
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Figure 2: The pipeline of our CoDA for unsupervised cross-domain image retrieval. The ResNet-50 network is adopted to
learn the feature embeddings for different domains. ISS performs domain-specific clustering and in-domain self-matching with
the soft-label, thus encapsulating the discrimination into the embedding space. CCA minimizes cross-domain discrepancy by
enforcing the predictions of different domain-specific classifiers to be consistent.

classifiers, CCA achieves domain alignment through enforc-
ing the predictions by different domain-specific classifiers to
be consistent.

To learn discriminative common representations, our
CoDA unifies ISS and CCA to encapsulate discrimination
while eliminating the cross-domain discrepancy in the latent
common space. The overall objective function could be for-
mulated as:

Ljoin = Lin + λLcross, (2)
where Lin and Lcross are the objectives of ISS and CCA,
respectively. λ is the parameter to balance the contribution
of Lcross. Due to the randomness of clustering, we perform
k-means on the samples R times with different numbers of
clusters {kr}Rr=1 for relatively stable results. In summary,
the objective function of CoDA can be rewritten as:

L =
1

R

R∑
r=1

L(r)
join (3)

To train the proposed method, we adopt a gradient descent
optimizer to minimize the objective function in a batch-by-
batch manner. Algorithm 1 briefly summarizes the optimiza-
tion procedure of the proposed CoDA approach.

In-Domain Self-Matching Supervision
In UCIR task, it is important to learn discriminative features.
Intuitively, we expect that the features within the same clus-
ter stay close while those in different clusters are apart from

each other. To this end, we propose a novel In-domain Self-
matching Supervision (ISS) module. There are two key steps
in our ISS: (1) domain-specific clustering and (2) in-domain
self-matching with the soft label.

(1) Domain-specific Clustering. We firstly maintain two
memory banks MA and MB for DA and DB respectively:

MA = [mA
1 , · · · ,mA

NA
],MB = [mB

1 , · · · ,mB
NB

]. (4)

The memory banks are initialized with the features extracted
by f(·;Θ). During training, the features in memory banks
MA and MB are updated with a momentum η after every
batch:

mA
i = ηmA

i + (1− η)vA
i ,

mB
j = ηmB

j + (1− η)vB
j .

(5)

To reduce the high memory cost of gradient computation,
the memory banks are updated without producing gradi-
ents. After initialization, we then respectively perform k-
means clustering on MA and MB to obtain domain-specific
centroids CA = [cA1 , · · · , cAk ] and CB = [cB1 , · · · , cBk ].
Note that, we use the union of the features from two do-
mains and perform k-means to get global clustering cen-
troids, which are leveraged as the initialized centroids of
domain-specific clustering. Meanwhile, different from Deep
Clustering (Caron et al. 2018) which conducts k-means ev-
ery epoch, our method only conducts k-means clustering
once in the first epoch, thus embracing higher efficiency.
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(2) In-domain Self-matching with Soft Label. In order
to learn discriminative representations for each domain, we
design two classifiers σ(gA(·)) and σ(gB(·)) for DA and
DB respectively, where σ(·) denotes the softmax function,
gA(·) and gB(·) are two linear layers with weights WA and
WB , which are respectively initialized with domain-specific
centroids CA and CB . Since there are unavailable labels in
unsupervised cross-domain image retrieval, we need a self-
labeling mechanism to assign the labels automatically. Dur-
ing the self-labeling, the memory bank MA is initialized
with vA

i . Based on the consistency regularization (Bach-
man, Alsharif, and Precup 2014; Sohn et al. 2020), which
holds that the model should output similar predictions when
fed augmented versions of the same image, we regard the
memory feature mA

i as an augmentation of vA
i , proposing

to achieve in-domain self-matching via the loss function:

LA
in =

1

NA

NA∑
i=1

H
(
σ

(
gA(m

A
i )

τ

)
, σ
(
gA(v

A
i

))
, (6)

where σ(
gA(mA

i )
τ ) is the soft label of image xA

i , and H(p, q)
denotes the cross-entropy between two probability distribu-
tions p and q, and τ is the temperature parameter. Similarly,
we have the loss for domain DB as LB

in:

LB
in =

1

NB

NB∑
j=1

H

(
σ

(
gB(m

B
j )

τ

)
, σ
(
gB(v

B
j

))
. (7)

Then the loss of ISS can be written as:

Lin = LA
in + LB

in. (8)

Cross-Domain Classifier Alignment
With ISS, the model is supposed to learn discriminative
features for each domain. However, it ignores the domain
invariance, which is another important demand for cross-
domain image retrieval. In an unsupervised setting, it is chal-
lenging to learn domain-invariant features since there is no
correspondence between different domains. To encourage
domain-aligned as well as domain-invariant features across
different domains, we propose a Cross-domain Classifier
Alignment mechanism (CCA), which minimizes the dis-
crepancy between different domain-specific classifiers.

For our proposal, we hold that the classifiers which are
trained on different domains have a disagreement on the pre-
dictions of the same feature. The disagreement is especially
obvious when the features are near the class boundaries. To
learn domain-invariant features across different domains, the
predictions by domain-specific classifiers of the same image
should be consistent. Thus, the discrepancy across different
domain-specific classifiers is supposed to be minimized.

Concretely, take the feature vA
i as example, which is feed

into the domain-specific classifiers gA(·) and gB(·) to get
logits. Then we employ the mean absolute values of the dif-
ference between the logits of different domain-specific clas-
sifiers as the cross-domain alignment loss:

LA
cross =

1

NA

NA∑
i=1

∣∣gA(vA
i )− gB(v

A
i )
∣∣ . (9)

Algorithm 1: Optimization procedure of CoDA

Input: The training dataset DA = {(xA
i )}

NA
i=1 from domain

A, and DB = {(xB
j )}

NB
j=1 from domain B, the dimen-

sionality of the common space L, memory bank update
momentum η, batch size nb, balance parameter λ, max-
imal epoch number Ne, numbers of clustering {kr}Rr=1,
temperature parameter τ , and initial learning rate α.

1: Calculate the features for all images from both domains
by using the backbone network f(·,Θ) according to
Equation (1).

2: Initialize memory banks MA and MB with the calcu-
lated features.

3: Perform domain-specific clustering and initialize the
domain-specific classifiers with domain-specific cen-
troids.

4: for 1, 2, · · · , Ne do
5: repeat
6: Randomly select nb images from DA and nb im-

ages from DB to construct mini-batch data.
7: Calculate the representations for all images of the

mini-batch by using the backbone network f(·,Θ)
according to Equation (1).

8: Compute Lin and Lcross according to Equations
(8) and (11) on the mini-batch, respectively.

9: Update network parameters Ψ = {Θ,WA,WB}
by minimizing L in Equation (3) with descending
their stochastic gradient.

10: Update memory banks according to Equation (5).
11: until all images are selected
12: end for
Output: Optimized network parameters {Θ,WA,WB}.

Similarly, we have the cross-domain alignment loss for vB
j

as follows:

LB
cross =

1

NB

NB∑
j=1

∣∣gA(vB
j )− gB(v

B
j )
∣∣ . (10)

Finally, the loss of CCA can be written as:

Lcross = LA
cross + LB

cross. (11)

Experiments
Datasets
To verify the effectiveness of the proposed method, we con-
duct extensive experiments on four benchmark datasets, i.e.,
Office31 (Saenko et al. 2010), Image-CLEF (Long et al.
2017), OfficeHome (Venkateswara et al. 2017), and Adap-
tiope (Ringwald and Stiefelhagen 2021). For each dataset,
we randomly partition the data into training and test sets,
with an 80-20 ratio for each category. Office31: This dataset
consists of three real-world object domains: Amazon (A),
Webcam (W), and DSLR (D). It has 4,652 images with 31
categories. We conduct six retrieval tasks: A-D, A-W, D-A,
D-W, W-A, W-D. Image-CLEF: The dataset is a benchmark
dataset for ImageCLEF 2014 domain adaptation challenge.
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Method
Cross-domain Retrieval Task on Office31 and Adaptiope datasets

Office31 Adaptiope
A-D A-W D-A D-W W-A W-D Avg P-R P-S R-P R-S S-P S-R Avg

ImageNet / 0.569 0.500 0.617 0.816 0.552 0.801 0.643 0.400 0.191 0.395 0.137 0.222 0.165 0.252

MMD (Wynne and Duncan 2022) Best 0.426 0.356 0.524 0.716 0.450 0.709 0.529 0.274 0.100 0.244 0.066 0.093 0.090 0.145
Last 0.146 0.126 0.460 0.673 0.319 0.636 0.393 0.016 0.014 0.013 0.013 0.017 0.014 0.015

SimCLR (Chen et al. 2020) Best 0.544 0.496 0.617 0.819 0.543 0.812 0.638 0.362 0.202 0.343 0.135 0.211 0.156 0.235
Last 0.540 0.473 0.614 0.807 0.535 0.804 0.629 0.254 0.135 0.248 0.091 0.160 0.117 0.168

InstDis (Wu et al. 2018) Best 0.509 0.452 0.640 0.847 0.570 0.812 0.638 0.429 0.222 0.418 0.164 0.241 0.183 0.276
Last 0.329 0.263 0.520 0.704 0.434 0.602 0.475 0.331 0.151 0.325 0.114 0.170 0.135 0.204

CDS(Kim et al. 2021) Best 0.667 0.625 0.709 0.900 0.644 0.884 0.738 0.575 0.352 0.574 0.250 0.361 0.254 0.394
Last 0.520 0.478 0.693 0.864 0.624 0.796 0.663 0.540 0.328 0.549 0.212 0.333 0.228 0.365

PCS (Yue et al. 2021) Best 0.727 0.707 0.753 0.885 0.712 0.892 0.779 0.569 0.348 0.583 0.270 0.337 0.259 0.394
Last 0.711 0.692 0.742 0.875 0.706 0.886 0.769 0.556 0.340 0.561 0.256 0.332 0.244 0.382

CoDA (ours) Best 0.717 0.714 0.749 0.914 0.731 0.902 0.788 0.598 0.376 0.582 0.286 0.393 0.301 0.423
Last 0.709 0.698 0.743 0.914 0.721 0.901 0.781 0.587 0.343 0.574 0.254 0.383 0.281 0.404

Table 1: The mAP@All retrieval performance comparison for the proposed CoDA approach and other compared methods on
Office31 dataset. The best and second best performance results among all methods are in bold and in underline, resp.

Method Cross-domain Retrieval Task on ImageCLEF dataset
B-C B-I B-P C-B C-I C-P I-B I-C I-P P-B P-C P-I Avg

ImageNet / 0.553 0.498 0.432 0.538 0.754 0.654 0.479 0.742 0.635 0.395 0.640 0.619 0.578

MMD (Wynne and Duncan 2022) Best 0.496 0.466 0.363 0.504 0.714 0.558 0.487 0.705 0.554 0.371 0.540 0.558 0.526
Last 0.442 0.414 0.312 0.453 0.620 0.476 0.430 0.600 0.474 0.323 0.460 0.487 0.458

SimCLR (Chen et al. 2020) Best 0.552 0.508 0.431 0.537 0.790 0.667 0.498 0.793 0.647 0.410 0.670 0.640 0.595
Last 0.543 0.503 0.426 0.534 0.780 0.661 0.485 0.792 0.640 0.410 0.669 0.631 0.590

InstDis (Wu et al. 2018) Best 0.521 0.492 0.418 0.530 0.748 0.638 0.487 0.718 0.641 0.404 0.600 0.608 0.567
Last 0.376 0.373 0.314 0.365 0.477 0.383 0.376 0.462 0.470 0.318 0.373 0.455 0.395

CDS (Kim et al. 2021) Best 0.643 0.632 0.532 0.643 0.912 0.778 0.627 0.910 0.796 0.526 0.747 0.768 0.709
Last 0.529 0.541 0.440 0.529 0.779 0.664 0.509 0.787 0.656 0.394 0.652 0.609 0.591

PCS (Yue et al. 2021) Best 0.673 0.635 0.534 0.688 0.918 0.777 0.619 0.903 0.776 0.535 0.749 0.770 0.714
Last 0.625 0.609 0.496 0.661 0.900 0.767 0.576 0.886 0.745 0.461 0.745 0.770 0.687

CoDA (ours) Best 0.688 0.656 0.556 0.705 0.901 0.785 0.661 0.910 0.784 0.552 0.752 0.773 0.727
Last 0.685 0.656 0.556 0.700 0.880 0.774 0.660 0.900 0.778 0.550 0.749 0.771 0.721

Table 2: The mAP@All retrieval performance comparison for the proposed CoDA approach and other compared methods on
ImageCLEF dataset. The best and second best performance results among all methods are in bold and in underline, resp.

It is composed by selecting the 12 common classes shared
by four public domains: Bing (B), Caltech256 (C), Ima-
geNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). For each
domain, there are 50 images in each category. We conduct
12 retrieval tasks on this dataset. OfficeHome: This dataset
contains four domains where each domain consists of 65 cat-
egories. The four domains are Artistic images (A), Clipart
(C), Product images (P), and Real-world images (R). It con-
tains 15,500 images, with an average of around 70 images
per class and a maximum of 99 images in a category. We
also conduct 12 retrieval tasks for this dataset. Adaptiope:
Adaptiope is a dataset that offers 123 classes in three dif-
ferent domains. The domains are Synthetic (S), Product (P),
and Real life (R). There are totally 36,900 images, with a
maximum of 100 images in a category. We also conduct six
retrieval tasks for this dataset.

Implementation Detail
In CoDA, a ResNet-50 network pre-trained on ImageNet
is utilized to initialize the backbone. Meanwhile, we re-
place the last FC layer with a 512-D randomly initialized
linear layer. The features are ℓ2-normalized. To obtain sta-
ble performance, four k-means are conducted on the ob-
tained features, of which cluster numbers respectively are
{nk, 2nk, 3nk, 4nk}, where nk could be empirically set as

50 (for Office31 and ImageCLEF datasets) and 100 (for Of-
ficeHome and Adaptiope datasets). Stochastic Gradient De-
scent (SGD) optimizer is adopted to train our CoDA. For a
fair comparison, the hyper-parameters are set as η = 0.95
nb = 16, λ = 0.01, Ne = 20, τ = 0.01, and α = 0.003
for all datasets. The proposed approach is implemented by
PyTorch with two Nvidia GeForce RTX 2080 GPUs.

Experimental Setup
In the experiments, we evaluate the effectiveness of the pro-
posed approach compared with several state-of-the-art base-
lines. The compared methods are as follows: 1) ImageNet
is a commonly-used baseline that is trained on ImageNet.
2) MMD (Wynne and Duncan 2022) is a kernel-based ap-
proach aimed at measuring the distance between two prob-
ability distributions in a reproducing kernel Hilbert space.
3) InstDis (Wu et al. 2018) exploits instance discrimination
to achieve unsupervised representation learning. 4) Sim-
CLR (Chen et al. 2020) learns representations by maximiz-
ing agreement between differently augmented views of the
same example via a contrastive loss in the latent space. 5)
CDS (Kim et al. 2021) is designed for cross-domain self-
supervised pre-training. 6) PCS (Yue et al. 2021) is a cross-
domain self-supervised learning method for few-shot unsu-
pervised domain adaptation. We adopt mean average pre-
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Method Cross-domain Retrieval Task on OfficeHome dataset
A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

ImageNet / 0.200 0.325 0.387 0.196 0.246 0.268 0.329 0.261 0.478 0.362 0.247 0.438 0.311

MMD (Wynne and Duncan 2022) Best 0.163 0.252 0.325 0.150 0.170 0.208 0.243 0.187 0.358 0.295 0.208 0.354 0.243
Last 0.083 0.112 0.155 0.075 0.039 0.054 0.137 0.046 0.087 0.148 0.062 0.080 0.090

SimCLR (Chen et al. 2020) Best 0.211 0.314 0.374 0.191 0.229 0.265 0.299 0.251 0.459 0.347 0.257 0.440 0.303
Last 0.200 0.300 0.364 0.165 0.196 0.226 0.282 0.212 0.429 0.329 0.222 0.424 0.279

InstDis (Wu et al. 2018) Best 0.242 0.348 0.395 0.220 0.253 0.277 0.334 0.277 0.477 0.365 0.271 0.447 0.326
Last 0.221 0.278 0.331 0.173 0.191 0.216 0.203 0.205 0.326 0.268 0.218 0.335 0.247

CDS (Kim et al. 2021) Best 0.330 0.44.5 0.514 0.324 0.403 0.418 0.452 0.415 0.608 0.511 0.420 0.588 0.452
Last 0.327 0.438 0.492 0.282 0.360 0.381 0.402 0.377 0.542 0.441 0.397 0.523 0.414

PCS (Yue et al. 2021) Best 0.343 0.463 0.516 0.323 0.405 0.406 0.470 0.421 0.613 0.516 0.428 0.601 0.459
Last 0.335 0.458 0.513 0.306 0.390 0.398 0.452 0.412 0.605 0.492 0.405 0.597 0.447

CoDA (ours) Best 0.347 0.496 0.532 0.332 0.429 0.447 0.504 0.452 0.652 0.531 0.460 0.652 0.486
Last 0.347 0.494 0.530 0.329 0.421 0.440 0.502 0.446 0.648 0.531 0.457 0.650 0.482

Table 3: The mAP@All retrieval performance comparison for the proposed CoDA approach and other compared methods on
OfficeHome dataset. The best and second best performance results among all methods are in bold and in underline, resp.

Method Cross-domain Retrieval Task on OfficeHome dataset
A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

CoDA (with Lin only) Best 0.323 0.464 0.518 0.313 0.377 0.411 0.476 0.403 0.637 0.537 0.422 0.626 0.459
Last 0.320 0.463 0.518 0.311 0.374 0.395 0.476 0.390 0.628 0.537 0.408 0.613 0.453

CoDA (with Lcross only) Best 0.114 0.182 0.238 0.100 0.074 0.097 0.179 0.092 0.196 0.225 0.099 0.149 0.145
Last 0.101 0.141 0.158 0.084 0.041 0.054 0.145 0.047 0.149 0.158 0.036 0.075 0.099

CoDA (full) Best 0.347 0.496 0.532 0.332 0.429 0.447 0.504 0.452 0.652 0.531 0.460 0.652 0.486
Last 0.347 0.494 0.530 0.329 0.421 0.440 0.502 0.446 0.648 0.531 0.457 0.650 0.482

Table 4: The mAP@All retrieval performance comparison for the CoDA (full version) and its two variants on OfficeHome
dataset. The best performance results among all methods are in bold.

cision on all retrieved results (mAP@All) as the evaluation
metric to measure the performance of the methods. For a fair
and comprehensive comparison, we report the best and last
mAP@All results among all epochs.

Comparison With State-of-the-Art Methods
We conduct unsupervised cross-domain image retrieval on
the four datasets to evaluate the performance of our CoDA
and the compared methods. The experimental results are re-
ported in Tables 1, 2, and 3. From the experimental results,
one could obtain the following observations: (1) Our CoDA
outperforms other methods on all datasets, in almost all re-
trieval cases. The results demonstrate the superiority of the
proposed method for unsupervised cross-domain image re-
trieval. For example, in Table 2 and Table 3, our CoDA re-
spectively surpasses PCS by 1.8% and 5.9% in terms of av-
erage mAP@All. The reason is that our CoDA can elimi-
nate the cross-domain gap by encapsulating the discrimina-
tion into the domain-invariant embedding space. (2) Self-
supervised representation learning methods are specifically
designed for the single-domain task, and cannot achieve sat-
isfactory performance for cross-domain retrieval, e.g., In-
stDis (Wu et al. 2018) and SimCLR (Chen et al. 2020).
The results indicate that the cross-domain gap impedes their
performance when applied to multi-domain data. (3) Com-
pared to self-supervised representation learning methods,
CDS (Kim et al. 2021) and PCS (Yue et al. 2021) achieves
better performance. The results indicate that exploiting both
in- and cross-domain learning could boost the performance
of unsupervised cross-domain image retrieval.

Ablation Study
In this section, we evaluate the contributions of the proposed
components (i.e., Lin and Lcross) for unsupervised cross-
domain image retrieval. To this end, we compare our CoDA
with its two variations (i.e., CoDA with Lin only and CoDA
with Lcross only) on the OfficeHome dataset. The exper-
imental results are shown in Table 4. From the table, one
could observe that the performance of our CoDA will de-
grade significantly in the absence of Lin or Lcross, which
demonstrates that both the two losses contribute to unsuper-
vised cross-domain image retrieval in our framework. Fur-
thermore, the method will fail to work without Lin, demon-
strating that in-domain discrimination excavation is crucial
for cross-domain retrieval.

Effect of Coefficient λ
To investigate the impact of the coefficient λ in Eq. (3), we
conduct parameter analysis experiments on OfficeHome and
Adaptiope as shown in Figure 3. The figure plots mAP@all
scores w.r.t. different values of λ. In the figure, one could
find that setting λ = 0.01 achieves the best performance on
both OfficeHome and Adaptiope. Based on the observation,
we set λ = 0.01 in all experiments.

Visualization of the Learned Embeddings
To demonstrate the discriminative information of the learned
embeddings, we plot the learned embeddings of ImageNet-
pretraining, CDS, and CoDA with t-SNE (Van der Maaten
and Hinton 2008) on the Amazon-to-DSLR setting in Of-
fice31. The illustrations are shown in Figure 4. From the fig-
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(a) OfficeHome (b) Adaptiope

Figure 3: Unsupervised cross-domain image retrieval perfor-
mance of CoDA in terms of mAP@All scores versus differ-
ent values of λ on OfficeHome and Adaptiope datasets.
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Figure 4: 2-d t-SNE visualizations using 512-d feature rep-
resentations learned by ImageNet pre-pretraining, CDS, and
the proposed CoDA on the testing set of Office31. Each sam-
ple is represented by a marker and colored by its correspond-
ing label. Best viewed in color.

ure, one could observe that: (1) Compared with ImageNet-
pretraining and CDS, the proposed approach well clusters
the features with the same class from both domains, demon-
strating that our CoDA favors more discriminative features.

Figure 5: Top-10 UCIR results obtained by CDS and CoDA
on OfficeHome dataset. Retrieval is performed by nearest
neighbors search using cosine distance on 512-d real value
feature vectors. Green borders denote correctly retrieved re-
sults, and the red borders demonstrate incorrect retrieved
candidates.

(2) The features of CoDA from the two domains are well
aggregated, which demonstrates that CoDA learns better
domain-alignment for different domains.

Example of Retrievals
In Figure 5, we visually show the top 10 unsupervised cross-
domain image retrieval results using CDS and CoDA ap-
proaches. The retrievals are conducted on the OfficeHome
with 512-D real value features for task C-A (Clipart-Art).
The red borders indicate wrongly retrieved results while the
green borders denote correctly retrieved results. From these
examples, we can observe that the proposed method obtains
promising results in most cases compared to CDS. For ex-
ample, in the third query, given the “ruler” query, CDS fails
to retrieve correct images, while our CoDA could find the
correct ones in top-3 retrievals. In the wrongly retrieved re-
sults, CoDA fails to search for the correct images since the
queries and the retrieved images are visually similar. For in-
stance, given the “fan” image (in the first query), a “scissor”
image is wrongly retrieved, which shares some visual simi-
larities with the “fan” image.

Conclusion
This paper proposes a novel method called CoDA for
unsupervised cross-domain image retrieval. The proposed
method is designed to bridge the domain gap through In-
domain Self-matching Supervision (ISS) and Cross-domain
Classifier Alignment (CCA). Specifically, ISS encapsulates
discriminative information into common representations by
self-matching. Meanwhile, CCA aligns the features from
different domains by minimizing the discrepancy among dif-
ferent domain-specific classifiers. Thanks to ISS and CCA,
CoDA enjoys more discriminability in the common space
and embraces the domain invariance in unsupervised cross-
domain image retrieval. Experimental results on four bench-
marks have verified the effectiveness of CoDA.
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