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Abstract

Off-policy evaluation (OPE) aims to accurately evaluate the
performance of counterfactual policies using only offline
logged data. Although many estimators have been developed,
there is no single estimator that dominates the others, be-
cause the estimators’ accuracy can vary greatly depending
on a given OPE task such as the evaluation policy, number
of actions, and noise level. Thus, the data-driven estimator
selection problem is becoming increasingly important and
can have a significant impact on the accuracy of OPE. How-
ever, identifying the most accurate estimator using only the
logged data is quite challenging because the ground-truth es-
timation accuracy of estimators is generally unavailable. This
paper thus studies this challenging problem of estimator se-
lection for OPE for the first time. In particular, we enable
an estimator selection that is adaptive to a given OPE task,
by appropriately subsampling available logged data and con-
structing pseudo policies useful for the underlying estima-
tor selection task. Comprehensive experiments on both syn-
thetic and real-world company data demonstrate that the pro-
posed procedure substantially improves the estimator selec-
tion compared to a non-adaptive heuristic. Note that com-
plete version with technical appendix is available on arXiv:
http://arxiv.org/abs/2211.13904.

1 Introduction

Off-Policy Evaluation (OPE) has widely been acknowledged
as a crucial technique in search and recommender sys-
tems (Gilotte et al. 2018). This is because OPE accurately
evaluates the performance of counterfactual policies without
performing costly A/B tests (Saito and Joachims 2021). This
is made possible by leveraging the logged data naturally col-
lected by some logging or behavior policies. For example, a
music recommender system usually records which songs it
presented and how the users responded as feedback valu-
able for estimating the performance of counterfactual poli-
cies (Gruson et al. 2019; Kiyohara et al. 2022). Exploiting
logged data is, however, often challenging, as the reward is
only observed for the chosen action, but not for all the other
actions that the system could have taken (Swaminathan and
Joachims 2015a). Moreover, the logged data is biased due
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to the distribution shift between the behavior and evaluation
policies (Levine et al. 2020).

To deal with the difficult statistical estimation involving
counterfactuals and distributional shift, there has been a
range of estimators with good theoretical properties — some
estimators ensure unbiasedness under the identification as-
sumptions (Strehl et al. 2010; Precup, Sutton, and Singh
2000; Dudik et al. 2014; Jiang and Li 2016; Thomas and
Brunskill 2016), some reduce the variance while being con-
sistent (Swaminathan and Joachims 2015b; Kallus and Ue-
hara 2019), some minimize an upper bound of the mean-
squared-error (MSE) (Wang, Agarwal, and Dudik 2017; Su
et al. 2020; Metelli, Russo, and Restelli 2021). Intuitively,
having more estimators makes it easier to achieve an accu-
rate OPE. However, this also implies that practitioners now
have to carefully solve the estimator selection problem to
pick the most accurate estimator for their particular task. If
we fail to identify an appropriate estimator, OPE may fa-
vor a poor-performing policy that should not be deployed in
the field. Indeed, empirical studies have shown that the es-
timators’ MSE and the most accurate estimator can change
greatly depending on task-specific configurations such as the
evaluation policy (Voloshin et al. 2019), the size of logged
data (Saito et al. 2021b), and the number of actions (Saito
and Joachims 2022). Moreover, Saito et al. (2021b) indicate
that advanced estimators such as DRos (Su et al. 2020) may
still produce an inaccurate OPE compared to the typical es-
timators such as IPS in certain scenarios. These empirical
observations suggest the need of an accurate estimator se-
lection for OPE. However, this estimator selection problem
has remained completely unaddressed in the existing litera-
ture despite its practical relevance.

This paper explores the crucial problem of Estimator Se-
lection for OPE for the first time. Specifically, our goal is
to select the most accurate estimator among several candi-
dates adaptive to a given OPE task. One possible approach
to conduct an estimator selection is to first estimate the esti-
mators’ MSE using only the logged data and then choose
the most accurate. However, estimating the MSE is quite
challenging, because it depends on the ground-truth perfor-
mance of the evaluation policy, which is unavailable to us.
To overcome this issue, we propose a novel estimator selec-
tion procedure called Policy-Adaptive Estimator Selection
via Importance Fitting (PAS-IF). A key trick lies in PAS-IF
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Figure 1: Workflow of Off-Policy Evaluation (OPE) and Selection (OPS) with an Estimator Selection Procedure

is to subsample and divide the logged data into psuedo sub-
populations so that one of the subpopulations is deemed to
be generated from the evaluation policy. Once we succeed in
creating such subpopulations, we can estimate the candidate
estimators’ MSE based on the empirical average of the re-
ward in that subpopulation. PAS-IF synthesizes appropriate
subpopulations by minimizing the squared distance between
the importance ratio induced by the true evaluation policy
and that induced by the pseudo evaluation policy, which we
call the importance fitting step. A fascinating feature of our
PAS-IF is that it can optimize the subsampling rule differ-
ently for different evaluation policies. In this way, PAS-IF is
able to find an accurate estimator adaptive to a given OPE
task. This feature is particularly beneficial for the Off-Policy
Policy Selection (OPS) task where we aim to identify the
best policy among several candidates. Typically, OPS has
been solved by applying a single OPE estimator to all candi-
date policies and picking the best-performing policy based
on the OPE results (Doroudi, Thomas, and Brunskill 2017,
Kuzborskij et al. 2021). However, our PAS-IF enables us to
use the most accurate estimator for each candidate policy,
thereby contributing to a much more accurate OPS.

In addition to developing PAS-IF, we empirically compare
it to a non-adaptive heuristic, which estimates the MSE by
naively regarding one of the behavior policies as a pseudo
evaluation policy (Saito et al. 2021a,b). In particular, we
demonstrate that our PAS-IF substantially improves the esti-
mator selection accuracy by picking different estimators de-
pending on a given evaluation policy. In contrast, the non-
adaptive heuristic often fails to identify an accurate estima-
tor when applied to a range of evaluation policies. We also
demonstrate that PAS-IF enables a much more accurate OPS
compared to the non-adaptive heuristic in both synthetic and
real-world experiments.

2 Related Work

Here, we summarize some notable existing works.

Off-Policy Evaluation OPE has extensively been studied
aiming at evaluating counterfactual policies without requir-
ing risky and costly online interactions (Gilotte et al. 2018;
Levine et al. 2020; Saito and Joachims 2021; Kiyohara,
Kawakami, and Saito 2021). Direct Method (DM) (Beygelz-
imer and Langford 2009), Inverse Propensity Scoring
(IPS) (Strehl et al. 2010; Precup, Sutton, and Singh 2000),
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and Doubly Robust (DR) (Dudik et al. 2014; Jiang and Li
2016; Thomas and Brunskill 2016) are the common base-
lines for OPE studies. DM uses some machine learning al-
gorithms to regress the reward to estimate the policy perfor-
mance. DM performs reasonably well when the reward esti-
mation is accurate, however, it is vulnerable to the bias due
to model mis-specification (Voloshin et al. 2019). In con-
trast, IPS enables an unbiased estimation by applying the im-
portance sampling technique. However, IPS can suffer from
a high variance particularly when the behavior and evalu-
ation policies deviate greatly (Dudik et al. 2014). DR is a
hybrid of DM and IPS, and often reduces the variance of
IPS while remaining unbiased. However, DR can still suf-
fer from a high variance especially when the action space is
large (Saito and Joachims 2022). With the goal of achieving
a better bias-variance trade-off, researchers have produced
a number of estimators (Wang, Agarwal, and Dudik 2017;
Kallus and Uehara 2019; Su et al. 2020). For example, Su
et al. (2019) combine DM and IPS via adaptive weighting
while Metelli, Russo, and Restelli (2021) modify the impor-
tance ratio to improve the typical exponential concentration
rate of the error bound to a subgaussian rate. We build on
the vast literature on OPE, but rather focus on the relatively
under-explored problem of selecting the most accurate esti-
mator among many options in a data-driven way.

Hyperparameter Tuning for OPE Hyperparameter tun-
ing (which is fundamentally different from our estima-
tor selection task) often plays a crucial role in OPE. The
bias-variance trade-off of many OPE estimators such as
Switch (Wang, Agarwal, and Dudik 2017) and DRos (Su
et al. 2020) depends heavily on their built-in hyperparam-
eters (Saito et al. 2021a,b). A naive way to tune such hy-
perparameters is to estimate the bias and variance of a given
estimator and construct some MSE surrogates (Thomas and
Brunskill 2016; Wang, Agarwal, and Dudik 2017; Su et al.
2020). However, estimating the bias is equally difficult as
OPE itself because the bias depends on the ground-truth per-
formance of the evaluation policy (Su, Srinath, and Krishna-
murthy 2020). To tackle this issue, Su, Srinath, and Krish-
namurthy (2020) propose a procedure called SLOPE based
on the Lepski’s principle, which was originally proposed for
non-parametric bandwidth selection (Lepski and Spokoiny
1997). Since SLOPE avoids estimating the bias, it theoreti-
cally and empirically works better than the naive tuning pro-



cedure relying on some MSE surrogates (Su, Srinath, and
Krishnamurthy 2020). However, SLOPE is only applicable
to the hyperparameter tuning of a particular estimator class
due to its monotonicity assumption. In contrast, our estima-
tor selection problem aims at comparing different estimator
classes and select the most accurate one, possibly after ap-
plying SLOPE within each estimator class.'

Estimator Selection for OPE Given several candidate
OPE estimators, the estimator selection problem aims to
identify the most accurate one. Although this problem has
remained unexplored in the existing literature, many empir-
ical studies have shown that the quality of estimator selec-
tion can have a significant impact on the accuracy of the
downstream OPE. For instance, Voloshin et al. (2019) thor-
oughly investigate the estimation accuracy of OPE estima-
tors in a range of simulated environments. Their empirical
results demonstrate that the estimators’ MSE and the most
accurate estimator can change greatly depending on the data
size, divergence between the behavior and evaluation poli-
cies, and many other environmental configurations. Saito
et al. (2021b) also demonstrate that recent estimators with
better theoretical guarantees can sometimes produce an in-
accurate OPE compared to the typical estimators, suggesting
the necessity of identifying and using appropriate estimators
adaptive to a given OPE task. We are the first to formally
formulate the important problem of estimator selection for
OPE. We also propose a method to enable an adaptive es-
timator selection and empirically demonstrate that the accu-
racy of estimator selection makes a non negligible difference
in the accuracy of the downstream OPE and OPS.

Off-Policy Policy Selection OPS aims to select the best-
performing policy among several candidate policies using
only the logged bandit data (Paine et al. 2020; Tang and
Wiens 2021; Zhang and Jiang 2021). When applied to OPS,
OPE estimators should work reasonably well among a range
of candidate evaluation policies. However, this desideratum
is often hard to achieve, because an estimator’s accuracy
usually vary substantially when applied to different eval-
uation policies (Voloshin et al. 2019). Existing works on
OPS deal with this instability of OPE by leveraging some
high probability bounds on policy value estimates (Thomas,
Theocharous, and Ghavamzadeh 2015a,b; Kuzborskij et al.
2021; Hao et al. 2021; Yang et al. 2020). In particular,
Doroudi, Thomas, and Brunskill (2017) validate whether a
fair policy comparison is possible based on a concentration
inequality. Yang et al. (2021) estimate a pessimistic pol-
icy performance to alleviate an overestimation, which could
lead to an inaccurate OPS. However, there is no existing
work attempting to switch estimators adaptive to each eval-
uation policy among the set of candidates. As a potential
application of our proposed estimator selection procedure,
we show, in our experiments, that adaptive estimator selec-
tion can also significantly improve the accuracy of the policy
selection task.

"For example, SLOPE can be used to tune the hyperparameters
of Switch and DRos, however, it does not tell us which estimator is
better. Our interest is thus to select the better estimator class.
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3 Problem Formulation

This section first formulates OPE of contextual bandits and
then the corresponding estimator selection problem, which
is our primary interest.

3.1 Off-Policy Evaluation (OPE)

Let x € X be a context vector (e.g., user demographics)
that the decision maker observes when choosing an action.
Let r € [0, 7rq42) be a reward (e.g., whether a coupon as-
signment results in an increase in revenue). Context and re-
ward are sampled from some unknown distributions p(z)
and p(r|z,a), where a € A is a discrete action (i.e., a
coupon). We call a function 7 : X — A(A) a policy, where
m(a|z) is the probability of taking action a given context .

In OPE, we are interested in accurately estimating the fol-
lowing (policy) value:

V(7) = Ep(a)n(ale)p(rie,a) [T]-

The most reliable way to estimate the policy value of evalu-
ation policy m,. is to actually deploy 7. in an online environ-
ment (a.k.a. A/B tests). However, such an on-policy evalua-
tion is often limited in practice, as it incurs large implemen-
tation costs (Matsushima et al. 2021) and there is the risk of
deploying poor policies (Gilotte et al. 2018). Therefore, it is
often desirable to evaluate the policy value via OPE at first
and then pick only a small number of promising policies to
be evaluated via A/B tests (Irpan et al. 2019).

To estimate the policy value, OPE leverages the logged
bandit data Dy, := {(z;, a;,7;)} collected by a behavior
policy as follows.

{(@s, a5, i) ey ~ HP(%) p(Ji)ms, (ailzi) p(ril@i, a:),
wb(ai\wi)

where 7, is the behavior policy, which may consist of
[ (> 1) different data collection policies 7y, - - - , ;.2 Here,

Dy = Ué‘:1 D; can be seen as an aggregate of several
logged datasets, each of which contains n; observations col-
lected by the j-th data collecting policy ;.

The goal of OPE is then to estimate the aforementioned
policy value of evaluation policy using only the logged data:

V(me) = V(7e; Dp). The accuracy of an estimator V' is typ-
ically quantified by the mean-squared-error (MSE):

MSE(V;']T377Tb7n) (1)
.= Ep, [(f/(we;m) — V(m))?
= (Bias(V; 7, m,1))? + Vo, (Vi 7o, mp,n),  (2)

As suggested in Eq. (2), achieving a reasonable bias-
variance tradeoff is critical in enabling an accurate OPE.
This motivates many estimators to be developed, including

This is a general formulation, including the standard setting
with a single data collection policy (I = 1) as a special case. More-
over, our setting is fundamentally different from the multiple logger
setting of Agarwal et al. (2017); Kallus, Saito, and Uehara (2021),
which assume the deterministic behavior policy assignment.



DM (Beygelzimer and Langford 2009), IPS (Precup, Sutton,
and Singh 2000), DR (Dudik et al. 2014), Switch (Wang,
Agarwal, and Dudik 2017), DRos (Su et al. 2020), and DR-
A (Metelli, Russo, and Restelli 2021).3 However, as we have
already argued, many empirical studies imply that there is no
estimator that is universally the best (Voloshin et al. 2019;
Saito et al. 2021a,b). This empirical evidence leads us to
study the data-driven estimator selection problem for OPE,
which we describe in detail below.

3.2 Estimator Selection for OPE

The goal of estimator selection is to select the most ac-
curate estimator (which may change depending on a given
OPE task) from a candidate pool of estimator classes V :=

{Vm}%zl. An ideal strategy for this estimator selection task
would be to pick the estimator achieving the lowest MSE:

3

arg min MSE(Vm; Tey Thy N).
me{l,...,M}

m* =
Unfortunately, however, Eq. (3) is infeasible because the
MSE depends on the policy value of the evaluation policy,
which is arguably unknown. Therefore, we instead consider

performing an offline estimator selection based on an esti-
mated MSE.

arg min m(vm; D).

me{l,...,M}

m =
Although there is no existing literature that formally dis-
cusses this estimator selection problem, the following de-
scribes a (non-adaptive) heuristic as a reasonable baseline.

Non-Adaptive Heuristic One possible approach to esti-
mate the MSE is to naively regard one of the data collection
policies 7; as a pseudo evaluation policy. Then, the non-

adaptive heuristic estimates the MSE of a given estimator 14
as follows.*

MSE(V; Dy)

_ 1 oo (8). yx(s)
se

2
) - VOH(’]T§S); DES))) )
where 7; is a pseudo evaluation policy. Vo, (7;;D;)
>-i, ri/nj is its on-policy policy value estimate. Dy, ; :
Dy \ Dj is the logged data collected by the corresponding
(pseudo) behavior policy. D; indicates bootstrapped sam-
ples of Dy, and S is a set of random seeds for bootstrap. 7;
is either randomly picked among available data collection
policies (Saito et al. 2021b) or is fixed (Saito et al. 2021a;
Saito, Udagawa, and Tateno 2021) for every random seed.
A critical pitfall of this heuristic is that it cannot ac-
curately estimate the MSE when the data collection poli-
cies (one of which is used as the pseudo evaluation pol-
icy) are totally different from 7. In fact, as we will show

3We provide the definition and important statistical properties
of these estimators in Appendix D.

“This heuristic has been used in some empirical studies of
OPE (Saito et al. 2021a; Saito, Udagawa, and Tateno 2021; Saito
et al. 2021b), however, the estimator selection problem itself has
not yet been formally formulated in the OPE literature.
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Figure 2: High level overview of Policy-Adaptive Estimator
Selection via Importance Fitting (PAS-IF)

in the synthetic experiment, the non-adaptive heuristic often
fails to choose an appropriate OPE estimator when there is
a large divergence between the true evaluation policy and
the pseudo evaluation policy. Unfortunately, such an unde-
sirable situation is often the case in practice, because we
usually want to evaluate counterfactual policies that have
never been deployed. This motivates us to develop a novel
adaptive estimator selection procedure that can estimate the
estimators’ MSE by taking the task-specific configurations
(such as the evaluation policy) into account.

4 Our Adaptive Approach

This section proposes a new estimator selection procedure
called Policy-Adaptive Estimator Selection via Importance
Fitting (PAS-IF).

Our key idea is to subsample the logged data and generate
subpopulations to accurately estimate the MSE for a range
of evaluation policies. For this, we introduce a subsampling
rule pg : X x A — (0,1) parameterized by 6. py allocates
each observation in D, to pseudo evaluation dataset D, or
pseudo behavior dataset D, where py(z,a) € (0,1) is the
probability of the data (z, a, -) being allocated to D,. Under
this formulation, the pseudo datasets can be seen as gener-
ated by the following pseudo policies:

__p@a)
Er,(alz) [po(,a)]’

1 - po(z,a)
1- Eﬂb(a|$) [pG (:E7 a’)] ’

This formulation allows us to control the data generation
process of D, and D, adaptive to a given OPE task by appro-
priately optimizing the subsampling rule pg. In particular,
when optimizing pg, we try to imitate the true importance ra-
tio w(x, a) := w.(alx)/mp(alx), as it plays a significant role
in determining the bias-variance tradeoff of OPE (Voloshin
etal. 2019). Specifically, we minimize the following squared
distance between the importance ratio induced by the true
policies and that induced by the pseudo policies:

D(?T, 7~r) = Ep(m)ﬂb(alm)[(w(mv a) - "D(mv a))Q]a

Te(alz) := mp(alz)

o(alr) = mp(alz)



Algorithm 1: Policy-Adaptive Estimator Selection via Im-
portance Fitting (PAS-IF)

Input: a candidate set of OPE estimators V), logged bandit
dataset Dy, evaluation policy 7, target partition rate k,
learning rate 7, regularization coefficient A, maximum
steps 7', a set of random seeds S

Output: selected OPE estimator Vm

1: form=1,..., M do

2: forseSdo

3 DZ(S) + Bootstrap(Dy; s)

4: Initialize subsampling parameters 6

5: fort=1,...,T do

6: 0« 0—n (%—? + /\%—?) >importance fitting
7 end for_

8: ;) D)« Subsample(D;*); py)
90 zg & (Vin(@e: Dp) = Vou (7es DEC)))?
10:  end for

11: MSE(Vp;Dp) <= > s 2s/|S|

12: end for

13: M < argmin,, ¢y

,,,,,

where we define w(x, a) := 7.(a|x)/7p(alx). We minimize
this importance fitting objective by gradient decent where
the gradient of d(x, a) := (w(z,a) —w(z,a))? is given as:

ad(z, a) ( 1 - 1)
).

dpe Exr,[po(z,a)]
| (1  mle,a)pele, a)(1 - pa(e,a))
(Ex, [po(z, @)])(1 — Ex, [po(z, a)])
This importance fitting step enables PAS-IF to estimate
the MSE adaptive to a range of evaluation policies while pre-
serving a bias-variance tradeoff of a given OPE task, thereby
improving the quality of estimator selection compared to the
non-adaptive heuristic. A potential concern is that the size
of the pseudo behavior dataset D, may deviate greatly from
that of the original logged data D, depending on py. If the
size of Dy, is much smaller than that of Dy, PAS-IF may pri-
oritize the variance more than necessary when performing
estimator selection. To alleviate this potential failure, we set
a target partition rate k£ and apply the following regulariza-
tion when optimizing pg.

R(7, k) = Epa) [(Eﬂb(am) [po(x, a)] — k)ﬂ '

where we impose regularization on every context to preserve
p(z) between D, and Dy,

Combining the importance fitting objective D(-) and reg-
ularization R(-), our PAS-IF optimizes the subsampling rule
pe by iterating the following gradient update.

oD 8R>

— 4+ A—
3 Appendix A provides how we derive these gradients.

(w(z,a) — w(z,a))
(1 = po(z,a))?

9<—9_"<39 Y
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where A is a regularization coefficient and 7 is a learning
rate. Note that, in our experiments, we pick the regulariza-
tion coefficient \ so that E, 4|0 [po(2,a)] € [0.18,0.22].
By doing this, we ensure that |ﬁb\ becomes sufficiently close
to | Dy |, while making Vo, (m¢; D.) =~ V() reasonably ac-
curate. We later demonstrate that this heuristic tuning proce-
dure works reasonably well in a range of settings.

Once we optimize py for a given OPE task, we subsample
the logged data to create pseudo datasets and estimate the
MSE of an estimator V' as follows.

MSE(V; Dy)

- ﬁ > (VED D) = Van (71 D2
seES

2

where S is a set of random seeds for bootstrap sampling,
and DZ(S) is the s-th bootstrapped logged dataset sampled

from Dy. D;*) and D} are subsampled from D;*) based

on ﬁés) and ﬁés), respectively. This bootstrapping procedure

aims to stabilize PAS-IF. Algorithm 1 summarizes the whole
estimator selection procedure based on PAS-IF.

5 Synthetic Experiments

This section compares our PAS-IF with the non-adaptive
heuristic in terms of estimator selection and OPS. Note
that our synthetic experiment is implemented on top of
OpenBanditPipeline (Saito et al. 2021a).” Our experiment
code is available at https://github.com/sony/ds-research-
code/tree/master/aaai23-pasif and Appendix E describes
some additional experiment details.

5.1 Setup

Basic setting. To generate synthetic data, we first ran-
domly sample 10-dimensional context x, independently
and normally distributed with zero mean. We also set
|A] = 10. The binary rewards r are sampled from the
Bernoulli distribution as r ~ Bern(q(x,a)) where q(z, a)
is obp.dataset.logistic_reward_function.

Data Collection We define our behavior policy 7, based
on the two different data collection policies 71 and 7o:

exp(B; - q(x, a))
>aweaexp(B; - q(z,a’))’

where j € {1,2} and ¢(z,a) := E[r|z, a] is the expected
reward. 3; is an inverse temperature parameter of the soft-
max function. A positive value of J leads to a near-optimal
policy, while a negative value leads to a bad policy. When
B = 0, 7; is identical to uniform random. The logged dataset
contains n = 2,000 observations with p(j = 1) = p(j =
2) = 1/2, and we try two different sets of data collection

policies: (i) (81, f2) = (—2,2) and (ii) (81, B2) = (3,7).

%In addition to the primary benefit (i.e., adaptive estimator se-
lection), PAS-IF is also able to relax some assumptions about the
data collection policies compared to the non-adaptive heuristic.
Appendix B discusses this additional benefit of PAS-IF in detail.

"https://github.com/st-tech/zr-obp

“4)

mi(alz) =



Evaluation Policies We also follow Eq. (4) to define eval-
uation policies and vary 8. € {—10,—9,--- ,10} in the es-
timator selection task to evaluate the estimator selection ac-
curacy for various evaluation policies. For the policy selec-
tion task, we prepare 20 candidate policies learned by differ-
ent policy learning methods to make OPS reasonably hard.
We describe how to define the candidate policies for the pol-
icy selection experiment in detail in Appendix E.

Candidate OPE Estimators We construct the candidate
set of estimator classes (V) by DM, IPSps, DRps, SNIPS,
Switch, DRos, IPS-)\, and DR-).% We also use three differ-
ent models to constract § for model-based estimators such as
DM and DR, which results in a total of M = 21 candidate
OPE estimators. Note that we perform SLOPE (Su, Srinath,
and Krishnamurthy 2020) to tune each estimator’s built-
in hyperparameter before performing estimator selection to
simulate a realistic situation where we combine SLOPE and
PAS-IF to improve the end-to-end OPE pipeline.

Compared Methods We compare PAS-IF with the non-
adaptive heuristic. For PAS-IF, we set S = {0,1,...,9},
k = 0.2,7 = 0.001, and T" = 5,000, and select the regu-
larization coefficient \ from {10~1,10°,10%, 102,103} by a
procedure described in Section 4.

Evaluation Metrics We quantify the estimator selection
accuracy of PAS-IF and the non-adaptive heuristic by the
following metrics.

» Relative Regret (e) (lower is better): This evaluates the
accuracy of the estimator selected by each method com-
pared to the most accurate estimator.

rRegret(®
o MSE(Vm; Tey Tp,N)) — MSE(Vm*;We, T, 1)
) MSE(Vm* ey Thy 1) .

e Rank Correlation (e) (higher is better): This is the
Spearman’s rank correlation between the true and esti-
mated MSE. This metric evaluates how well each method
preserves the ranking of the candidate estimators in terms
of their MSE.

In addition to the above metrics regarding estimator selec-
tion, we also evaluate PAS-IF and the non-adaptive heuristic
in terms of the quality of the resulting OPS. Note that OPS
is an important application of estimator selection whose aim
is to select the best-performing policy based on OPE as:

e 1= argmax Vi, (7e; Dy),
me €Il

where Vj;, is the OPE estimator selected either by PAS-IF
or the non-adaptive heuristic. We can evaluate the estimator
selection methods with respect to their resulting OPS quality
using the following metrics (Paine et al. 2020).

* Relative Regret (p) (lower is better): This metric mea-
sures the performance of the policy 7. selected based

8 Appendix D defines and describes these OPE estimators in de-
tail.
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on PAS-IF or the non-adaptive heuristic compared to the
best policy 7 among the candidates in II,.

V(rz) — V(%)
V(r) ’

* Rank Correlation (p) (higher is better): This
is the Spearman’s rank correlation between the
ground-truth performance of the candidate policies
({V(7e)}r.em,.) and those estimated by the selected

estimator ({ Vi, (7e) }roern.)-

rRegret® :=

5.2 Result

Figure 3 shows Relative Regret (e) in estimator selection
where the results are averaged over 100 simulations per-
formed with different seeds. The result clearly demonstrates
that our PAS-IF substantially improves relative regret com-
pared to the non-adaptive heuristic for a range of evaluation
policies (5.). In particular, we observe that PAS-IF is able
to identify an accurate OPE estimator (that has a low regret)
even in cases where the behavior and evaluation policies de-
viate greatly (i.e., 5 is different from 31 and (33), while the
non-adaptive heuristic fails dramatically. We also observe
the similar trends in terms of the rank correlation metric,
which we report in Appendix E. These results demonstrate
that being adaptive to a given OPE task such as evaluation
policy is crucial for effective estimator selection.

Table 2 compares PAS-IF and the non-adaptive heuristic
in terms of their OPS quality when (1, 32) = (—2.0,2.0).°
The results indicate that PAS-IF is better in terms of both
relative regret and rank correlation. Moreover, PAS-IF has
a smaller standard deviation for both metrics, suggesting its
stability. These observations indicate that an adaptive esti-
mator selection also has a substantial positive benefit on the
downstream OPS task.

6 Real-World Experiment

In this section, we apply PAS-IF to a real e-commerce appli-
cation and demonstrate its practical benefits.

Setup For this experiment, we conducted a data collection
A/B test in April 2021 on an e-commerce platform whose
aim is to optimize a coupon assignment policy that facilitates
user consumption. Thus, a is a coupon assignment variable
where there are six different types of coupons (|.A| = 6). r is
the revenue within the 7-day period after the coupon assign-
ment. During data collection, we deployed three different
coupon assignment policies (71, 72, and 7r3) and assign them
(almost) equally to the users, resulting in n = 40, 985.1°
We compare PAS-IF with the non-adaptive heuristic for
three different settings (j° = 1,2, 3). Each setting regards
;s as the evaluation policy and Dy, = D \ D;/ as the logged
data. For example, when we consider m; as an evaluation
policy, Dy is Dy U D3. Then, we use Vo (775 D) (which

“We observe the similar results when (81, 82) = (3.0,7.0) in
Appendix E.
Up(i=1)~p(i=2)

~
~

p(j=3)~1/3.
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Figure 3: Relative Regret (e) with varying evaluation policies (8.) in the synthetic experiment.

policy | j=1 j=2 j=3

metric ‘ rRegret (e) Correlation (e) ‘ rRegret (e) Correlation (e) ‘ rRegret (e) Correlation (e)
Heuristic | 1.755 (£ 1.03) -0.034 (+0.50) | 1.827 (£3.04) 0.192 (£0.37) | 3.580 (£ 1.67) 0.015 (+0.23)
PAS-IF | 1.609 (+0.66) 0.002 (£ 0.28) | 0.691 (+0.70) 0.342 (+=0.54) | 1.889 (+1.32) 0.124 (£ 0.31)

Table 1: Relative Regret (e) and Rank Correlation (e) in estimator selection in the real-world experiment. A lower value is better
for Relative Regret (e), while a higher value is better for Rank Correlation (e). The values in parentheses indicate the standard

deviation of the metrics estimated over 10 experiment runs.

‘ rRegret (p) Correlation (p)
Heuristic | 0.0341 (£ 0.062) 0.7452 (£ 0.621)
PAS-IF | 0.0077 (£ 0.014) 0.9619 (4 0.021)

Table 2: Relative Regret (p) and Rank Correlation (p) in OPS
in the synthetic experiment: (51, 82) = (—2.0,2.0). A lower
value is better for Relative Regret (p), while a higher value
is better for Rank Correlation (p). The values in parentheses
indicate the standard deviation of the metrics.

is not available to PAS-IF and the non-adaptive heuristic) to
estimate the true MSE of an estimator V' as follows.

st Z (Vs D) = Vil D)

where S := {0, ..., 9} is a set of random seeds for bootstrap
sampling. We evaluate the estimator selection performance
of PAS-IF and the non-adaptive heuristic by calculating the
metrics regarding estimator selection using MSE,,,(-). The
other experimental setups are the same as in Section 5.1.

MSEon ( V: D)

Result Table 1 summarizes the mean and standard devia-
tion of Relative Regret (e¢) and Rank Correlation (e) for
the three evaluation policies (7' = 1,2, 3). Similarly to the
synthetic experiment, the results demonstrate that PAS-IF
improves both relative regret and rank correlation in estima-
tor selection for every evaluation policy. Moreover, the stan-
dard deviation of PAS-IF is smaller than the non-adaptive

2
’
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heuristic in almost all cases, indicating the stability of the
proposed method. These results provide promising empirical
evidence that our PAS-IF also works fairly well in practical
situations by being adaptive to an OPE problem instance.

7 Conclusion

We explored the problem of estimator selection for OPE,
which aims to identify the most accurate estimator among
many candidate OPE estimators using only the logged data.
Our motivation comes from the fact that the non-adaptive
heuristic becomes virulent when applied to a range of evalu-
ation policies, which is especially problematic in OPS. With
the goal of enabling a more accurate estimator selection, we
proposed PAS-IF, which subsamples the logged data and im-
itates the importance ratio induced by the true evaluation
policy, resulting in an adaptive estimator selection. Compre-
hensive synthetic experiments demonstrate that PAS-IF sig-
nificantly improves the accuracy of OPE and OPS compared
to the non-adaptive heuristic, particularly when the evalua-
tion policies are substantially different from the data collec-
tion policies. The real-world experiment provides additional
evidence that PAS-IF enables a reliable OPE in a real bandit
application. We hope that this work would serve as a build-
ing block for future studies of estimator selection for OPE.
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