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Abstract

Graph neural networks (GNNs) have shown their superiority
in modeling graph data. Owing to the advantages of feder-
ated learning, federated graph learning (FGL) enables clients
to train strong GNN models in a distributed manner with-
out sharing their private data. A core challenge in federated
systems is the non-IID problem, which also widely exists
in real-world graph data. For example, local data of clients
may come from diverse datasets or even domains, e.g., social
networks and molecules, increasing the difficulty for FGL
methods to capture commonly shared knowledge and learn
a generalized encoder. From real-world graph datasets, we
observe that some structural properties are shared by vari-
ous domains, presenting great potential for sharing structural
knowledge in FGL. Inspired by this, we propose FedStar, an
FGL framework that extracts and shares the common under-
lying structure information for inter-graph federated learning
tasks. To explicitly extract the structure information rather
than encoding them along with the node features, we de-
fine structure embeddings and encode them with an indepen-
dent structure encoder. Then, the structure encoder is shared
across clients while the feature-based knowledge is learned
in a personalized way, making FedStar capable of captur-
ing more structure-based domain-invariant information and
avoiding feature misalignment issues. We perform extensive
experiments over both cross-dataset and cross-domain non-
IID FGL settings, demonstrating the superiority of FedStar.

Introduction
Graph neural networks (GNNs) have been widely used to
model graph-structured data in a variety of scenarios and ap-
plications, such as recommender systems (Wu et al. 2020a),
drug discovery (Gaudelet et al. 2021), and traffic (Bai et al.
2020). Most existing GNNs follow a centrally training prin-
ciple where graph data need to be collected together before
training (Kipf and Welling 2017; Xu et al. 2019). However,
nowadays, a large number of graph data are generated from
edge devices and may contain private data of users, hinder-
ing the traditional GNNs from training strong models by col-
lective intelligence (Zhang et al. 2021a).

Federated learning (FL), as a new machine learning
paradigm, allows clients to collaboratively train a globally
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Figure 1: (a) Performance comparison of local training and
FL/FGL methods (McMahan et al. 2017; Xie et al. 2021)
in three cross-dataset/domain non-IID settings. (b) The
heatmap of Jensen-Shannon divergence of degree distribu-
tions among six real-world graph datasets from different do-
mains and random graphs. The random graphs are generated
with Erdős–Rényi model (Erdős, Rényi et al. 1960).

shared model or personalized models in a decentralized
manner while not sharing the local data of clients (Yang
et al. 2019). Due to the advantages of FL, it is natural to
apply FL to graph data to mitigate the data isolation and pro-
tect the security of graph data owned by end users, such as
molecule graphs owned by pharmaceutical companies and
social networks located in the social app of end users. Col-
laboratively training GNN models with an FL framework,
federated graph learning (FGL) has emerged to be a promis-
ing direction to further explore the potential of GNNs on
decentralized graph data.

An important challenge in FL is the non-IID data prob-
lem where local datasets of clients can be extremely differ-
ent due to their diverse behaviors or preferences. This differ-
ence may lead to unstable training and performance drop in
some extreme cases, e.g., the data of clients are from differ-
ent domains (Li et al. 2020c; Kairouz et al. 2021). The non-
IID data problem, unfortunately, also naturally exists in FGL
owing to the diversity of graph data. For example, differ-
ent companies/platforms maintain rich social networks data,
which are of great heterogeneity (i.e., diverse feature spaces
and connection rules) due to different data collection man-
ners and purposes. It is beneficial to overcome the non-IID
issue, enabling these companies to collaboratively provide
better online social network service without sacrificing data
security. Furthermore, it is of great potential to explore the
underlying knowledge commonly shared by heterogeneous
graph domains, e.g., social networks and molecules.
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An emerging branch of studies has attempted to allevi-
ate the influence of non-IID graphs (Xie et al. 2021; Wang
et al. 2020a). They take conventional GNNs (e.g., Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) and GIN (Xu
et al. 2019)) as local encoders and introduce various tech-
niques to local training or global aggregation, such as clus-
tering and meta-learning. Based on the conventional GNNs,
existing FGL methods still generate representations via a
feature-based message passing scheme, deteriorated by the
feature heterogeneity (i.e., different feature spaces and di-
mensions) across graphs from multiple domains. In FGL
procedures, aggregating GNN models trained upon diverse
feature spaces may fail to capture useful underlying knowl-
edge shared over non-IID graphs, which in turn unexpect-
edly hurts the personalized performance of local models.
As shown in Fig. 1(a), in non-IID FGL settings, the per-
formance of federated methods, i.e., FedAvg and GCFL, is
sometimes even worse than local training.

Although feature information tends to be heterogeneous
across different graph domains, some structural properties
underlying graphs can be universally shared across different
domains (Qiu et al. 2020; Leskovec, Kleinberg, and Falout-
sos 2005; Xie et al. 2021), inspiring us to exploit the poten-
tial of sharing structural knowledge with FGL. As shown in
Fig. 1(b), compared with random graphs, real-world graphs
share more inherent structural properties even if they are
from different domains. Nevertheless, it is difficult for ex-
isting FGL frameworks to capture and communicate such
structural knowledge. Firstly, these methods usually depend
on conventional GNNs where the structure information is
implicitly encoded into feature-based node representations;
thus, heterogeneous features inevitably affect the quality of
structural knowledge learning. Moreover, most FGL meth-
ods still perform parameter aggregation over all learnable
parameters, making it hard to extract and share structure-
specific knowledge across clients. Hence, a natural research
question to ask is “how to insulate structure information
from the heterogeneous features during local training and
how to perform federated knowledge sharing?”

To answer the aforementioned question, in this work, we
propose Federated graph learning via Structure knowledge
sharing (FedStar for short), a framework that takes full ad-
vantage of natural structure information in graphs to deal
with inter-graph FL tasks. Our theme is to capture and share
the universal structural knowledge across multiple clients to
boost the local performance of clients in FGL. Specifically,
we first introduce a vectorial structure embedding that ex-
plicitly represents the inherent structural properties shared
across different domains. Then, to avoid interference by
feature heterogeneity, we design a feature-structure decou-
pled GNN to capture high-level structural knowledge with
an independent channel while learning attributive knowl-
edge with another one. Finally, we design an FL framework
with structural knowledge sharing, where domain-agnostic
structural information is shared across different clients and
feature-based representations are learned locally. As a re-
sult, clients are capable of learning generalized structure en-
coders as well as personalized feature encoders simultane-
ously. The contributions of our work are three-fold:

• We study the non-IID problem in federated graph learn-
ing with tremendous heterogeneous graph data from
a new perspective, i.e., structural knowledge sharing,
which sheds good light on the future research in this field.

• We propose a novel federated graph learning frame-
work, namely FedStar, enabling clients to learn domain-
invariant structural knowledge globally while capturing
domain-specific feature-based knowledge locally.

• We conduct extensive experiments on four cross-
dataset/domain non-IID settings and show that FedStar
consistently outperforms baselines by a large margin.

Related Work
Graph Neural Network. Graph neural networks (GNNs)
are a family of neural models for modeling graph-structured
data (Wu et al. 2020b). Most GNNs follow a message pass-
ing scheme, where node representation is learned by aggre-
gating and transforming the embeddings of its neighbors and
itself (Hamilton, Ying, and Leskovec 2017; Xu et al. 2019).
For instance, GCN (Kipf and Welling 2017) aggregates mes-
sages via averaging the neighboring representations, and
GIN (Xu et al. 2019) leverages a summation function for ag-
gregation. Thanks to such a message passing scheme, GNNs
can achieve excellent performance when learning from a
single graph (Veličković et al. 2018; Liu et al. 2022) or a
set of graphs with shared feature space (Hu et al. 2020a,b).
However, the feature-based message initialization mecha-
nism makes the feature space and learnable parameters in
GNNs tightly coupled, leading to the difficulty of training
GNNs on graph data in multiple domains (Qiu et al. 2020;
Zhu et al. 2021; Liu et al. 2023a). Besides, a branch of GNNs
extracts structural/positional encoding to explicitly represent
the structure information (Li et al. 2020a; Dwivedi et al.
2021), inspiring us to capture universal structural patterns
across different domains by GNNs.

Federated Learning. Federated learning (FL) has at-
tracted much attention recently owing to its potential to
enable collaborative training while protecting data pri-
vacy (Kairouz et al. 2021; Yang et al. 2019; Lyu et al. 2022).
The standard FL algorithm, namely FedAvg, iteratively con-
ducts local training at clients and global parameter averaging
at central server (McMahan et al. 2017). A number of meth-
ods are proposed to improve FedAvg in terms of communi-
cation efficiency (Hamer, Mohri, and Suresh 2020), general-
ization ability (Yuan et al. 2021; Qu et al. 2022), robustness
to heterogeneity (Wang et al. 2020b; Tan et al. 2022a; Chen
et al. 2022a), etc. One of the existing challenges in real-
world FL is the data heterogeneity, also known as the non-
IID problem, where clients may have diverse label and/or
feature distributions due to their various behaviours and
habits (Luo et al. 2021; Tan et al. 2022b; Chen et al. 2022b).
To tackle this, clustering-based FL methods propose to di-
vide clients according their similarity (Ghosh et al. 2020;
Long et al. 2022; Ma et al. 2022). Multiple works leverage
meta-learning to improve the personalized ability of the lo-
cal model (Fallah, Mokhtari, and Ozdaglar 2020; Jiang et al.
2019) or introduce model decoupling scheme to enable bet-
ter personalization (Chen and Chao 2022).
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Federated Graph Learning. Federated graph learning
(FGL) supports distributed GNN training, extending its orig-
inal application scenarios. So far, existing FGL studies can
be categorized into three types, i.e., inter-graph, intra-graph,
and graph-structured FGL (Zhang et al. 2021a). In inter-
graph FGL, each client owns a set of graphs and participates
in FL training to learn a better GNN to model local data (Xie
et al. 2021), learn a generalizable model (Zhu, Luo, and
White 2022), or to model spatial-temporal graph data (Jiang
et al. 2022; Lou et al. 2021). In intra-graph FGL, instead
of complete graphs, each client only owns a subgraph of the
entire graph and the learning scheme is to deal with the miss-
ing links (Chen et al. 2021), i.e., generating missing neigh-
bors (Zhang et al. 2021b), community discover (Baek et al.
2022). Intra-graph FGL can be applied to financial crimes
detection (Suzumura et al. 2019), In graph-structured FGL,
graphs are used to model the inherent relationship among
clients and can be applied to various data types, such as im-
ages (Chen et al. 2022c) and traffic data (Meng, Rambhatla,
and Liu 2021). In this paper, we consider inter-graph FGL
and focus on learning a better local model for each client
rather than training a global GNN model.

Preliminaries
Graph Neural Networks
Let G = (V,E) be a graph consisting of a set of nodes
V and a set of edges E connecting these nodes. Each node
v ∈ V has a feature vector xv . Based on the graph structure
and node features, GNNs can be used to learn the node-level
representation vector hv of node v ∈ V and/or the graph-
level representation vector hG of graph G. Existing GNNs
usually follow the message passing scheme where hv is it-
eratively updated by aggregating the representations of node
v’s neighbors. Formally, for an L-layer GNN, its l-th layer
can be formulated as

a(l)v = AGGREGATE(l)
({

h(l−1)
u : u ∈ N (v)

})
, (1)

h(l)
v = UPDATE(l)

(
h(l−1)
v ,a(l)v

)
, (2)

where h
(l)
v is the representation vector of node v out-

put by the l-th layer, N (v) is the set of node v’s neigh-
bors. Different AGGREGATE and UPDATE strategies
are adopted in different GNN variants and sometimes can be
integrated together (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Gilmer et al. 2017; Xu et al. 2018).

Specifically, for graph classification, the graph represen-
tation hG can be further obtained by aggregating all the node
representations involved in graph G via various graph-level
readout functions, such as summation and mean pooling.

Federated Learning
In a vanilla FL setting with M clients, the m-th client owns
a private dataset Dm. The global objective of the FL frame-
work is

min
(w1,w2,··· ,wM )

1

M

M∑
m=1

|Dm|
N
Lm (wm;Dm) , (3)

whereN is the total number of instances over all clients, Lm

and wm are the loss function and model parameters of client
m, respectively.

Standard FL methods aim to learn a globally shared model
w = w1 = w2 = · · · = wM . The representative method is
FedAvg (McMahan et al. 2017) which periodically aggre-
gates the model parameters of all clients at the server by

w ←
M∑

m=1

|Dm|
N

wm (4)

and return the averaged model back to clients. However, this
kind of methods may have poor performance due to non-
identical distributions across clients. Recent studies address
this problem by applying personalized techniques to local
training and/or global aggregation procedure, which allows
wm to perform better on the local data of client m.

In a federated graph learning (FGL) framework, wm and
Dm refer to the parameter set of GNN model and the graph
dataset at client m, respectively. Since we focus on classifi-
cation tasks over non-IID graph datasets in this paper, e.g.,
protein function prediction, the loss function Lm in Eq. 3 is
the commonly used cross-entropy loss.

Methodology
In this section, we present our FedStar framework in detail.
Given a set of clients that own various graph datasets in the
federated graph learning (FGL) framework, our goal is to en-
able each client to achieve higher performance on their own
dataset by exploring universally shared underlying knowl-
edge with other clients. To achieve the above goal by sharing
structural knowledge across clients, we need to answer the
following three questions:

• How to model structure information and capture univer-
sal structural patterns across different domains?

• How to design the GNN architecture to encode the fea-
ture and structure information, respectively?

• How to conduct structural knowledge sharing during the
federated learning stage?

To answer the above questions, we first provide the defi-
nition of structure embedding and how it is initialized in our
proposed method. Next, we illustrate the proposed feature-
structure decoupled GNN architecture that learns attributive
and structural knowledge with two channels, respectively.
Finally, we discuss how to share structural knowledge with
our proposed FedStar framework.

Structure Embedding Initialization
In most conventional GNNs, the structure information is im-
plicitly encoded into node representations along with fea-
ture information through the procedure of feature aggrega-
tion. However, in non-IID FGL scenarios where features
are usually heterogeneous across domains, it is difficult to
uniformly encode general structure information (e.g., node
degree) into feature-based representations from different
spaces. To bridge the gap, we introduce a novel type of node-
level information carrier, namely structure embedding, to
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(a) Feature-structure decoupled GNN
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(b) Model aggregation scheme

Figure 2: (a) An overview of the local GNN architecture in our proposed FedStar. Blue boxes correspond to the models that are
trained locally, and personalized for each client. Orange boxes correspond to the models that are aggregated at the server, with
knowledge shared across clients. (b) An illustration of the data distribution and model aggregation scheme.

explicitly represent the universal structural knowledge in a
vectorial form. The structure embedding can be initialized
from the graph structure, and plays the role of “features”
during message aggregation. In this case, the structure infor-
mation is learned independently to feature information.

To capture general and comprehensive structure informa-
tion, in FedStar, we construct structure embedding that in-
corporates both local and global structural patterns. In par-
ticular, to capture local structural knowledge, we introduce
a degree-based structure embedding (DSE) which uses ver-
tex degrees in the form of one-hot encoding. For node v in a
graph, its DSE is denoted as

sDSE
v = [I(dv = 1), I(dv = 2), · · · , I(dv ≥ k1)] ∈ Rk1 ,

(5)
where dv is the degree of node v, I is the identity function,
and k1 is the dimension of DSE. The benefit of using DSE
to express local structure information is three-fold. First, de-
gree is a basic geometric property that can be extracted from
graphs of any domain. Second, the distributions of degree on
different graph datasets share some similar properties, e.g.,
the power law of degree distribution with different exponent
values (Albert and Barabási 2002; Qiu et al. 2020). Last but
not least, degree-based one-hot embedding is computation-
ally friendly, which avoids high computational costs for em-
bedding initialization.

In the meantime, to capture global structural knowledge,
we introduce a random walk-based structure embedding
(RWSE) which is computed based on the random walk diffu-
sion process (Tong, Faloutsos, and Pan 2006; Dwivedi et al.
2021; Liu et al. 2023b). Concretely, RWSE is denoted as

sRWSE
v =

[
Tii,T

2
ii, · · · ,T

k2
ii

]
∈ Rk2 (6)

where T = AD−1 is a random walk transition matrix com-
puted by binary adjacency matrix A and diagonal degree
matrix D, i is the index of node v, and k2 is the dimension of
RWSE, denoting that neighbors within k2 hops are involved
during the diffusion process and contribute to the structure
representation sRWSE

v (Dwivedi et al. 2021). The k-th ele-
ment of sRWSE

v refers to the landing probability of node v to

itself at a k-step random walk. Different from DSE that fo-
cuses on local geometric property, RWSE characterizes the
unique role (e.g., tail node or central node) of nodes from
a global perspective. Moreover, RWSE is capable of incor-
porating domain-invariant structure information, such as the
distribution of neighborhoods at different hops.

Finally, the structure embedding can be obtained by con-
catenating both DSE and RWSE and represented as

sv = concat[sDSE
v , sRWSE

v ]. (7)

It is worth noting that FedStar is agnostic to the con-
struction of structure embedding, indicating that FedStar can
be equipped with more types of structure-related embed-
dings, such as Laplacian eigenvectors (Dwivedi et al. 2021)
and distance-based embeddings (You, Ying, and Leskovec
2019)]. We leave this exploration for future work.

Feature-Structure Decoupled GNN
In most existing federated graph learning (FGL) frame-
works (Xie et al. 2021; Zhang et al. 2021b), the local en-
coders are usually defined as single-channel GNNs, such
as GraphSAGE (Hamilton, Ying, and Leskovec 2017) and
GIN (Xu et al. 2019), where the only pathway to generate
node representations starts from the raw features. However,
in FGL, especially the inter-graph task over non-IID graphs,
the local datasets of clients are usually from different do-
mains e.g., molecules, protein, and social networks (Morris
et al. 2020), resulting in their diverse feature distributions.
In this case, if we directly build and share the feature-based
encoders across heterogeneous clients, the personalized per-
formance would be seriously hurt due to the misaligned fea-
ture/representation spaces. Moreover, although we have al-
ready obtained the structure embeddings containing share-
able structure information, how to further extract universal
high-level structural knowledge apart from domain-specific
features still remains challenging for single-channel GNNs.

To address the above limitations, inspired by (Dwivedi
et al. 2021), we propose a feature-structure decoupled GNN
that learns attributive and structural knowledge separately
with two parallel channels. In the feature-based channel, the
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feature encoder learns from raw node features and generates
hidden embeddings by aggregating neighboring attributive
and structural information in each layer. Meanwhile, in the
structure-based channel, the structure encoder learns on top
of structure embeddings and propagates structure informa-
tion over the graph. An overview of the proposed GNN is il-
lustrated in Fig. 2(a). The GNN model is composed of three
parts, (i) f (0)h and f (0)g : linear layers with learnable param-
eters w(0)

h and w(0)
g ; (ii) f (l)h and f (l)g , l ∈ {1, · · · , L}: L

stacked feature-structure decoupled GNN layers with each
layer parameterized by w(l)

h and w(l)
g ; (iii) f (C)

h : the classi-
fier parameterized by w(C)

h .
Given an input graph G = (V,E), we take a node v ∈ V

with feature vector xv and structure embedding sv as an ex-
ample. At the first step, we transform xv and sv into the
corresponding input embeddings h

(0)
v and g

(0)
v by two par-

allel linear layers f (0)h and f (0)g , respectively. With such lin-
ear layers, the inputs of two channels are unified into vectors
with a consistent dimension.

Then, the feature and structure embedding h
(0)
v and g

(0)
v

are fed into the L-layer GNN. At the l-th layer of structure
encoder, denoted as f (l)g , the output hidden structure embed-
ding gl

v is generated by aggregating and transforming the
hidden structure embeddings output by the previous layer,
i.e., g(l−1)

v and {g(l−1)
u : u ∈ N (v)}. Note that the struc-

ture encoder is only used to learn structural knowledge and
hence would not take any signal from features as its input.
Meanwhile, f (l)h , the l-th layer of feature encoder, takes the
concatenation of hidden structure embeddings and hidden
feature embeddings output by the previous layer as its input,
and produces its output hidden feature embedding h

(l)
v with

a message propagation-based GNN layer. In this way, the
structural knowledge learned by the structure encoder can
be further leveraged to generate feature embeddings, provid-
ing supplementary information for representation learning.
Through our dual-channel GNN, the structure information
can be learned independently, benefiting the feature learn-
ing procedure.

After the L stacked layers, all the node-level hidden fea-
ture/structure embeddings output by the last GNN layer, de-
noted by {h(L)

v : v ∈ V } and {g(L)
v : v ∈ V }, are first

concatenated together and then transformed to the graph-
level embedding hG of graph G with a readout function.
In the final step, we optimize the local model with a cross-
entropy loss Lm following the procedures of graph classi-
fication tasks. The set of learnable parameters at the m-th
client is denoted bywm = {wh,m, wg,m}wherewh,m refers
to the parameters in both the feature encoder and the classi-
fier and wg,m refers to those in the structure encoder. They
are updated during the local training process as

w∗h,m, w
∗
g,m = argmin

wh,m,wg,m

Lm(wm;Dm). (8)

Discussion: Compared to conventional single-channel
GNNs, the feature-structure decoupled GNN enjoys the fol-
lowing advantages in non-IID FGL scenarios. First, through

learning structure embeddings with an independent structure
encoder, the structure information of data in various domains
can be projected into the same representation space. In this
case, the structural knowledge can be universally shared
across different domains without the side-effect of unaligned
feature space. Moreover, the feature encoder can focus on
learning the domain-specific knowledge from the local fea-
ture space, and further benefit from structural knowledge.

Structural Knowledge Sharing

Based on the universal structure information captured by
structure embeddings and structure encoders, FedStar aims
to share the learned structural knowledge across clients with
data from diverse domains. Fig. 2(b) illustrates the pipeline
of our learning paradigm, where clients own graph datasets
from different domains and the same model architecture. For
the m-th client, the local model with parameters wm can be
explicitly decoupled as two submodels, i.e., the feature en-
coder with parameters wh,m and the structure encoder with
parameters wg,m. Our core idea is to share wg,m with the FL
framework while keeping wh,m being trained locally.

The overall training procedure of FedStar is similar to Fe-
dAvg (McMahan et al. 2017) where the local training at the
client-side and central aggregation at the server are itera-
tively conducted. First, clients transmit their structure en-
coder parameters {wg,m}|Mm=1 to the server. Next, the server
performs a weighted average of these local parameters to ob-
tain the global structure encoder wg ,

wg =

M∑
m=1

|Dm|
N

wg,m, (9)

where |Dm| refers to the number of graphs in the local
dataset of client m and N refers to the total number of
graphs across all clients. Then, the server returns wg to
clients, and clients update their local structure encoder by
wg and start local training for the next round.

Such a structural knowledge sharing scheme helps clients
to build a generalized structure encoder. Since the struc-
tural encoder is purely based on the structural information
without any feature information, it is prone to capture more
domain-invariant patterns behind the graphs. Then, with the
aggregation at the server, FedStar tends to extract the com-
mon knowledge maintained by these structure encoders.
Through iterative training and aggregating the structure-
based encoder, the structural knowledge is generalized over
non-IID graphs from various domains. Meanwhile, globally
shared structural knowledge can further benefit the specific
learning tasks at each client. With the shortcut that connects
structure-based embedding to feature-based embedding at
each layer, the underlying globally shared structural knowl-
edge further guides the feature learning process as additional
structure-aware information. To sum up, with our proposed
structural knowledge sharing scheme, the FGL framework
is capable of exploring the common structural knowledge
as well as boosting the representation ability of domain-
specific feature learning.
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Setting (# domains) SM(1) BIO-SM(2) BIO-SM-SN(3) BIO-SN-CV(3)

# datasets 7 10 13 9

Accuracy avg. avg. gain avg. avg. gain avg. avg. gain avg. avg. gain

Local 75.38±2.26 - 71.09±1.21 - 69.37±3.05 - 66.91±2.84 -

FedAvg 75.26±2.00 -0.13 70.65±2.73 -0.44 68.92±2.12 -0.45 64.86±2.73 -2.05
FedProx 75.30±2.00 -0.08 70.75±2.26 -0.34 69.21±2.63 -0.16 65.18±2.01 -1.72
FedPer 77.09±3.36 1.70 71.97±1.97 0.88 69.37±2.92 -0.01 62.23±3.76 -4.67

FedSage 75.90±1.85 0.51 70.34±1.87 -0.74 69.55±2.15 0.18 67.95±1.87 1.04
GCFL 76.49±1.23 1.11 71.60±2.20 0.51 70.65±1.84 1.28 66.31±2.36 -0.60

FedStar (Ours) 79.79±2.44 4.41 74.54±2.50 3.46 72.16±2.43 2.78 69.49±1.81 2.58

Table 1: Performance on different federated graph classification tasks. In each task/setting, there are multiple datasets owned
by different clients. These datasets come from one or multiple domains.

Experiments

Experimental Setup

Datasets. Following the settings in (Xie et al. 2021),
we use 16 public graph classification datasets from four
different domains, including Small Molecules (MUTAG,
BZR, COX2, DHFR, PTC MR, AIDS, NCI1), Bioinformat-
ics (ENZYMES, DD, PROTEINS), Social Networks (COL-
LAB, IMDB-BINARY, IMDB-MULTI), and Computer Vi-
sion (Letter-low, Letter-high, Letter-med) (Morris et al.
2020). To simulate the data heterogeneity in FGL, we create
four non-IID settings, i.e., (1) cross-dataset setting based on
seven small molecules datasets (SM); (2)-(4) cross-domain
setting based on datasets from two or three domains (BIO-
SM, BIO-SM-SN, BIO-SN-CV). In each of the settings, a
client owns one of the corresponding datasets and randomly
splits it into three parts: 80% for training, 10% for valida-
tion, and 10% for testing.

Baselines. We compare FedStar with six baselines includ-
ing (1) Local where clients train their model locally; (2) Fe-
dAvg (McMahan et al. 2017), the standard FL algorithm;
(3) FedProx (Li et al. 2020b) and (4) FedPer (Arivazha-
gan et al. 2019) that deal with heterogeneity issues in FL;
(5) FedSage (Zhang et al. 2021b) and (6) GCFL (Xie et al.
2021), two state-of-the-art FGL methods.

Implementation Details. We use a three-layer GCN (Kipf
and Welling 2017) as the structure encoder and a three-
layer GIN (Xu et al. 2019) as the feature encoder, both
with the hidden size of 64. The dimension of DSE and
RWSE, denoted as k1 and k2, are both set to be 16. The
local epoch number and batch size are 1 and 128, respec-
tively. We use an Adam (Kingma and Ba 2014) optimizer
with weight decay 5e-4 and learning rate 0.001. The num-
ber of communication rounds is 200 for all FL methods.
We report the results with the average over 5 runs of dif-
ferent random seeds. We implement all the methods using
PyTorch and conduct all experiments on one NVIDIA Tesla
V100 GPU. More implementation details about the model
architecture, datasets, hyper-parameters, and baselines can
be found in Appendix A. The code of FedStar is available at
https://github.com/yuetan031/FedStar.

Sharing DC Setting (# domains)
BIO-SM BIO-SM-SN BIO-SN-CV

All - 70.86±2.25 69.32±2.42 65.23±2.52
None - 71.59±1.93 69.42±3.06 68.17±3.04
All X 71.97±2.14 69.85±2.43 65.78±4.25

None X 74.08±2.45 71.30±1.89 68.76±2.24
FE X 71.00±3.51 68.53±2.74 64.14±2.73

SE(Ours) X 74.54±2.50 72.15±2.43 69.49±1.81

Table 2: Ablation studies on the effects of decoupling and
sharing mechanisms. FE and SE stand for feature encoder
and structure encoder, respectively. FE: feature encoder; All:
all learnable parameters; DC: decoupling.

Experimental Results
Performance Comparison. We show the federated graph
classification results of all methods under four non-IID set-
tings, including one cross-dataset setting (SM) and three
cross-domain settings (BIO-SM, BIO-SM-SN, BIO-SN-
CV). We summarize the final average test accuracy and its
average gain compared with Local in Table 1. It suggests
that FedStar outperforms all the baselines by a notable mar-
gin. Conventional FL methods such as FedAvg and FedProx
fail to surpass Local due to their inevitable performance de-
terioration in non-IID settings, while personalized FL algo-
rithm FedPer achieves better performance because only par-
tial learnable parameters are aggregated at the server, alle-
viating the deterioration issue. Two FGL methods, i.e., Fed-
Sage and GCFL, perform better than Local in most cases,
owing to their unique designs for FGL tasks. For example,
GCFL introduces the clustering scheme to aggregate within
similar clients.
Convergence Analysis. Fig. 3 shows the curves of the av-
erage test accuracy with standard deviation during the train-
ing process across five random runs, including the results
of all the baselines. It can be observed that in all the four
non-IID settings, FedStar dominates the other methods on
the average test accuracy and achieves a faster convergence,
suggesting that it is much easier to align the structure-based
encoder compared with aligning the feature-based encoder.

Effects of Decoupling and Sharing Mechanisms. We
compare several variants of FedStar by sharing different
components of the local GNN (i.e., all parameters, fea-
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Figure 3: Test accuracy curves of our proposed FedStar and five FL/FGL methods along the communication rounds. Each
subfigure corresponds to a specific cross-dataset (a) or cross-domain (b,c,d) non-IID settings.

DSE RWSE Setting (# domains)
BIO-SM BIO-SM-SN BIO-SN-CV

- - 69.51±2.25 69.64±1.92 66.05±2.92
X - 74.42±3.15 72.05±2.82 69.25±2.41
- X 72.74±3.44 70.48±3.37 67.23±2.74
X X 74.54±2.50 72.15±2.43 69.49±1.81

Table 3: An ablation study on varying structure embeddings.

Epochs 1 2 3 4

FedAvg 75.26 76.59 76.96 76.36
GCFL 76.49 76.23 75.88 76.27

FedStar 79.79 80.26 79.90 80.58
Table 4: The performance on cross-dataset non-IID setting
(SM), with varying local epochs.

ture encoder, structure encoder, and none) and/or involv-
ing feature-structure decoupled scheme or not. For the vari-
ants without decoupling scheme, we alternatively remove
the structure encoder and concatenate the structure embed-
ding with the raw feature for once. In Table 2, we observe
that the feature-structure decoupling scheme brings about
0.5%-2.4% improvement to the cases without it, indicating
that independently learning structural and attributive knowl-
edge can improve FGL performance in general. Moreover,
compared with pure local training, sharing all parameters
or the feature encoder results in performance degradation.
Such an observation illustrates that sharing feature informa-
tion across heterogeneous datasets perturbs the FGL proce-
dure, supporting our interpretation in Fig. 1(a). Finally, we
find that only sharing the structure encoder leads to the best
result, validating the effectiveness of the structural knowl-
edge sharing paradigm.

Effects of Different Structure Embeddings. To under-
stand how the explicit structure embedding contributes to the
final performance, we carry out an ablation study by vary-
ing the components of structure embeddings. For the vari-
ant without DSE and RWSE, we take all-ones vectors as the
structure embedding. As shown in Table 3, by concatenat-
ing DSE and RWSE, the best performance is achieved in all
the three non-IID settings. It also suggests that, DSE plays
a more important role than RWSE when considering only
one structure embedding, which means that local structural
information is more prone to be globally shared by different
domains than global structural information. Moreover, the
contribution made by RWSE is still not negligible and can
benefit the structure learning.
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Figure 4: The performance on cross-dataset non-IID setting
(SM), with varying numbers of clients.

Varying Local Epochs. In FL, clients can perform multi-
ple local training epochs before global aggregation to reduce
the communication costs. In Table 4, we provide the results
of FedAvg, GCFL, and FedStar on the non-IID setting SM
where there are seven clients in total, each of which owns
a unique small molecule dataset. The results show that Fed-
Star benefits more from the increasing local epochs and thus
more communication-efficient.
Varying Numbers of Clients. To test the performance of
FedStar in a larger FGL framework, we increase the num-
ber of clients from 7 to 84 under the SM non-IID setting
where each of the seven small molecules datasets are split to
1-12 shards and then each shard is assigned to one client. In
Fig. 4, as the number of clients increases, the performance
of all the three algorithms first drops because of the further
divergence when there are more clients participating train-
ing, and then improves because the local task in each client
becomes easier when the local dataset is small enough. It
suggests that FedStar outperforms the other two algorithms
in both small- and large-scale FGL systems.

Conclusion
In this paper, we propose a novel federated graph learning
(FGL) framework, namely FedStar, that solves the non-IID
issues via structural knowledge sharing. Based on structure
embeddings and feature-structure decoupled GNN, struc-
tural knowledge is explicitly represented and well captured
without being influenced by the feature-based information.
Through sharing the structure encoder within the FL frame-
work, our proposed framework enables clients from dif-
ferent domains to learn domain-agnostic structural knowl-
edge globally while keeping their feature-based node repre-
sentation learning personalized. Experimental results illus-
trate that FedStar consistently outperforms the state-of-the-
art methods in various non-IID FGL scenarios.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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