
Sharing Pattern Submodels for Prediction with Missing Values

Lena Stempfle, Ashkan Panahi, Fredrik D. Johansson
Chalmers University of Technology

Department of Computer Science and Engineering, Gothenburg, Sweden
stempfle@chalmers.se, ashkan.panahi@chalmers.se, fredrik.johansson@chalmers.se

Abstract

Missing values are unavoidable in many applications of ma-
chine learning and present challenges both during training
and at test time. When variables are missing in recurring pat-
terns, fitting separate pattern submodels have been proposed
as a solution. However, fitting models independently does not
make efficient use of all available data. Conversely, fitting a
single shared model to the full data set relies on imputation
which often leads to biased results when missingness depends
on unobserved factors. We propose an alternative approach,
called sharing pattern submodels, which i) makes predictions
that are robust to missing values at test time, ii) maintains
or improves the predictive power of pattern submodels, and
iii) has a short description, enabling improved interpretability.
Parameter sharing is enforced through sparsity-inducing reg-
ularization which we prove leads to consistent estimation. Fi-
nally, we give conditions for when a sharing model is optimal,
even when both missingness and the target outcome depend
on unobserved variables. Classification and regression exper-
iments on synthetic and real-world data sets demonstrate that
our models achieve a favorable tradeoff between pattern spe-
cialization and information sharing.

1 Introduction
Machine learning models are often used in settings where
model inputs are partially missing either during training or
at the time of prediction (Rubin 1976). If not handled ap-
propriately, missing values can lead to increased bias or to
models that are inapplicable in deployment without imput-
ing the values of unobserved variables (Liu, Zachariah, and
Stoica 2020; Le Morvan et al. 2020a). When missingness is
dependent on unobserved factors that are related also to the
prediction target, the fact that a variable is unmeasured can
itself be predictive—so-called informative missingness (Ru-
bin 1976; Marlin 2008). Often, imputation of missing values
is insufficient, and it can be beneficial to let models make
predictions based on both the partially observed data and
on indicators for which variables are missing (Jones 1996;
Groenwold et al. 2012). As mentioned in Le Morvan et al.
(2020b), even the linear model—the simplest of all regres-
sion models—has not yet been thoroughly investigated with
missing values and still reveals unexpected challenges.
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Figure 1: Coefficient sharing between a main model θ and
pattern submodels for three clinics with different patterns
in missing values. Without specialization, ∆m, an average
prediction shared by clinics with different patterns may not
lead to an optimal solution for any of them. Conversely, fit-
ting separate models for each clinic does not use all of the
available data efficiently and leads to high variance.

Pattern missingness emerges in data generating processes
(DGPs) where there are structural reasons for which vari-
ables are measured—samples are grouped by recurring pat-
terns of measured and missing variables (Little 1993). In
Figure 1, we illustrate an example of this when observing
patients from three different clinics, each systematically col-
lecting slightly different measurements. Assume for simplic-
ity that the pattern of missing values is unique to each clinic.
In this way, a pattern-specific model is also site-specific.

Pattern submodels have been proposed for this setting, fit-
ting a separate model to samples from each pattern (Mer-
caldo and Blume 2020; Marshall et al. 2002). This solution
does not rely on imputation and can improve interpretability
over black-box methods (Rudin 2019), but can suffer from
high variance, especially when the number of distinct pat-
terns is large and the number of samples for a given pattern
is small. Moreover, if the fitted models differ significantly
between patterns, it may be hard to compare or sanity-check
their predictions. Notably, pattern submodels disregard the
fact that the prediction task is shared between each pattern.
However, in the context of Figure 1, using a shared model
for all clinics may also be suboptimal if clinics take differ-
ent measurements, or treat patients differently (high bias).

We propose the sharing pattern submodel (SPSM) in
which submodels for different missingness patterns share
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coefficients while allowing limited specialization. This en-
courages efficient use of information across submodels lead-
ing to a beneficial tradeoff between predictive power and
variance in the case where similar submodels are desired
and sample sizes per pattern are small. Additionally, models
with few and small differences between patterns are easier
for domain experts to interpret.

We describe SPSM in Section 3, and we prove that in
linear-Gaussian systems, a model which shares coefficients
between patterns may be optimal—even when the predic-
tion target depends on missing variables and on the missing-
ness pattern (Section 4). Finally, we find in an experimental
evaluation on real-world and synthetic data that SPSM com-
pares favorably to baseline classifiers and regression meth-
ods, paying particular attention to how SPSM boosts sample
efficiency and model sparsity (Section 5).

2 Prediction with Test-Time Missingness
Let X = [X1, ..., Xd]

⊤ be a vector of d random variables
taking values in X ⊆ Rd, and M = [M1, ...,Md]

⊤ be a ran-
dom missingness mask in M ⊆ {0, 1}d where Mj = 1 indi-
cates that variable Xj is missing. Next, let X̃ ∈ (R∪{NA})d
be the mixed observed-and-missing values of X according
to M and define X¬M = [Xj : Mj = 0]⊤ ∈ Rd−∥M∥1 to
be the vector of observed covariates under M . The outcome
of interest, Y ∈ R, may depend on all of X , observed or
missing, as well as on M . Let k = |M| denote the num-
ber of possible missingness patterns.1 Further, assume that
variables X,M, Y are distributed according to a fixed, un-
known joint distribution p. The assumed (causal) dependen-
cies of the variables used, coincide most closely with selec-
tion missingness (Little 1993) (Figure 4 in the appendix).

Our goal is to predict Y under missingness M in X using
functions f : (R ∪ {NA})d → R. We aim to minimize risk
with respect to the squared loss on p,

min
f

R(f), where R(f) := EX̃,Y∼p[(f(X̃)− Y )2] . (1)

Under the assumption that Y has centered, additive noise,

Y = g(X,M) + ϵ where E[ϵ] = 0, (2)

the Bayes-optimal predictor of Y is f∗ = E[Y | X¬M ,M ].
In general, observed values X¬M are insufficient for pre-
dicting Y ; f∗ may depend directly on the mask M , even if
Y does not depend directly on M (Le Morvan et al. 2021).

A common strategy to learn f is to first impute the miss-
ing values in X̃ and then fit a model on the observed-or-
imputed covariates XI ∈ R—so-called impute-then-regress
estimation. Even though imputation is powerful, it is not al-
ways optimal under test-time missingness (Le Morvan et al.
2021) and often assumes that data is missing at random
(MAR) (Carpenter and Kenward 2012; Seaman et al. 2013).

2.1 Pattern Submodels
In cases where the number of distinct missingness pat-
terns k is small, it is possible to learn separate predic-

1In practical scenarios, we expect k to be much smaller than the
worst-case number, 2d.

tors fm for each pattern. This idea has been called pat-
tern submodels (PSM) (Mercaldo and Blume 2020; Mar-
shall et al. 2002), a set of models which aim to minimize
the empirical risk under each missingness pattern. Let D =
{(x̃(1),m(1), y(1)), ..., (x̃(n),m(n), y(n))} be a data set of n
samples, with partially observed features x̃(i), correspond-
ing to missingness patterns m(i), drawn independently and
identically distributed from p. PSM may be learned by min-
imizing the regularized empirical risk,

min
{fm}∈Fk

1

n

n∑
i=1

L(fm(i)(x̃(i)), y(i)) +
∑

m∈M
R(fm) (3)

over a suitable class of models F and regularization R. Mer-
caldo and Blume (2020) considered linear and logistic re-
gression models, fm = σ(θ⊤mx) with σ either the identity
or logistic function and loss L chosen to match. The objec-
tive in (3) is separable in m and can be solved independently
for each pattern. However, this often leads to high variance
in the small-sample regime since each pattern accounts for
only a subset of the available samples. Without structural
assumptions, the number of patterns k grows exponentially
with d (see discussion in Section 6).

PSM allows for prediction under test-time missingness
which adapts to the pattern m without relying on imputa-
tion or assumptions on missingness mechanisms like MAR.
However, the prediction target (and the Bayes-optimal
model f∗) may have only a small dependence on the pat-
tern m; the optimal submodels for all m may share signifi-
cant structure. Next, we propose estimators that exploit such
structures to reduce variance and increase interpretability.

3 Sharing Pattern Submodels

We propose sharing pattern submodels (SPSM), linear pre-
diction models, specialized for patterns in variable miss-
ingness, which share information during learning. Sharing
is accomplished by regularizing submodels towards a main
model and solving the resulting coupled optimization prob-
lem. While linear models are limited in expressive power,
they are often found to be useful approximations of nonlin-
ear functions due to their superior interpretability.

Fitting SPSM Let θ ∈ Rd represent main model coeffi-
cients used in prediction under all missingness patterns, and
define θ¬m = [θj : mj = 0]⊤ ∈ Rdm to be the subset of co-
efficients corresponding to variables observed under m. To
emphasize, θ¬m depends only on m in selecting a subset of
θ—the coefficients are shared across patterns. Similarly, de-
fine ∆¬m ∈ Rdm to be pattern-specific specialization of
these coefficients to m. In contrast to θ¬m, the values of
∆¬m are unique to each pattern m. Note, a model fm de-
pends only on the observed components of X . In regression
tasks, we learn sharing pattern submodels on the form

fm(x) := (θ¬m +∆¬m)⊤x¬m, for all m ∈ M (4)

9883



by solving the following problem with λm ≥ 0 and γ ≥ 0,

minimize
θ,{∆¬m}

1

n

n∑
i=1

(
(θ¬m(i) +∆¬m(i))⊤x

(i)

¬m(i) − y(i)
)2

+
γ

n
∥θ∥+

∑
m∈M

λm

nm
∥∆¬m∥1 . (5)

where nm is the number of samples of pattern m. λm > 0
and γ > 0 are regularization parameters. Intercepts (pattern-
specific and shared) are left out for brevity. The optimization
problem is convex, and we find optimal values for θ and ∆m

using L-BFGS-B (Byrd et al. 1995) in experiments. In clas-
sification tasks, the square loss is replaced by the logistic
loss. In either case, we call the solution to (5) SPSM.

For the penalty ∥θ∥, we use either the ℓ1 or ℓ2 norm to
tradeoff bias and variance in the main model. A high value
for λm regularizes the specialization of model coefficients
to missingness pattern m such that high λm encourages
smaller ∥∆m∥1 and greater coefficient sharing. In experi-
ments, we let λm take the same value λ for all patterns. ℓ1-
regularization is used for ∆ as we aim for a sparse solution
where the majority of specialization coefficients are zero.

Consistency For fixed λ, γ, sums of the minimizers of (5),
θ∗¬m + ∆∗

¬m, converge to the best linear approximations of
the Bayes-optimal predictors f∗

m for each pattern m in the
large-sample limit. We state this formally and sketch a proof
in Appendix A.2 using standard arguments. This result is
agnostic to parameter sharing; ∆∗ may not be sparse. In
Section 4, we prove that, in the linear-Gaussian setting, our
method also recovers the sparsity of the true process. In the
large-sample limit, this may not be beneficial for variance
reduction, but sparsity contributes to interpretability.

Why is SPSM Interpretable? Comparing pattern special-
izations allows domain experts to reason about how similar
submodels are, and how they are affected by missing val-
ues. We argue that a set of submodels is more interpretable
if specializations contain fewer non-zero coefficients, ∆¬m

is sparse. Sparsity is a generally useful measure of inter-
pretablity (Rudin 2019), since it results in only a subset of
the input features affecting predictions, reducing the effec-
tive complexity of the model (Miller 1956; Cowan 2010).

4 Optimality of Sharing Models
In this section, we give conditions under which an optimal
pattern submodel has sparse specializations (shares param-
eters between patterns) and when SPSM converges to such
a model in the large-sample limit. We analyze DGPs where
the outcome Y depends linearly on all components of X
(models have access only the observed subset of these) and
on the pattern M , but not on interactions between X and M ,

Y = θ⊤X + αM + ϵ , with ϵ ∼ N (0, σ2
Y ). (6)

Here, αM is a pattern-specific intercept. Without αM , this
is a setting often targeted by imputation methods, since the
outcome is a parametric function of the full X . However,
we know that X will be partially missing also at test time,

and M is allowed to have arbitrary dependence on X . In this
case, imputation need not be necessary or sufficient.

Next, we study this setting with Gaussian X , where we
can precisely characterize optimal models and their sparsity.

4.1 Sparsity in Linear-Gaussian DGPs
Recall that X¬m and θ¬m denote covariates and coefficients
restricted to observed variables under pattern m, and define
Xm and θm analogously for missing variables. For outcomes
which obey (6), the Bayes-optimal model under m is

E[Y | X¬m,M = m] = θ¬m
⊤X¬m + ξm (7)

where ξm = θm
⊤EXm [Xm | X¬m] + αm is the bias of

the naı̈ve prediction made using the coefficients θ¬m of the
true system but restricted to observed variables. Ignoring
ξm coincides with performing prediction following zero-
imputation and is biased in general. ξm thus captures the
specialization required for pattern submodels to be unbiased.
For closer analysis, we study the following setting.

Condition 1 (Linear-Gaussian DGP). Covariates X =
[X1, ..., Xd]

⊤ are Gaussian, X ∼ N (µ,Σ) with mean µ
and covariance matrix Σ. The outcome Y is linear-Gaussian
as in (6) with parameters (θ, {αm}, σY ). M is arbitrary.

In line with Condition 1, let Σ¬m,m be the submatrix
of Σ restricted to the rows corresponding to observed vari-
ables under m and columns corresponding to variables miss-
ing under m. Define Σ¬m,¬m and Σm,¬m analogously.
Throughout, we assume that Σ is invertible so that the dis-
tribution is non-degenerate. In practice, the non-degenerate
case can be handled through ridge regularization.

Proposition 1. Suppose covariates X and outcome Y obey
Condition 1 (are linear-Gaussian). Then, the Bayes-optimal
predictor for an arbitrary missingness mask m ∈ M, is

f∗
m = E[Y | X¬m,m] = (θ¬m +∆¬m)⊤X¬m + Cm

where Cm ∈ R is constant with respect to X¬m and

∆¬m = (Σ−1
¬m,¬m)Σ¬m,mθm .

Proposition 1 states that, for a linear-Gaussian system, the
Bayes-optimal model under missingness pattern m has the
same form as SPSM with pattern-specific intercept, combin-
ing coefficients of a main model θ and specializations ∆¬m.
The result is proven in Appendix A.3.

In nonlinear DGPs, the optimal correction term ∆¬m may
not be constant with respect to X¬m. The NeuMiss model by
Le Morvan et al. (2020a) learns such corrections as func-
tions of the input and missingness mask using deep neural
networks. However, this method lacks the interpretability of
sparse linear models sought here. Even in this more general
case, SPSM may achieve a good bias-variance tradeoff. In-
deed, we find on real-world data, which may not be linear,
that SPSM is often preferable to strong nonlinear baselines.

When is Sparsity Optimal? Like other sparsity-inducing
regularized estimators, such as LASSO (Tibshirani 1996),
SPSM reduces variance by shrinking some model parame-
ters to zero. Under appropriate conditions, when the training
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set grows large, we expect the learned sparsity to correspond
to properties inherent to the DGP. For LASSO, this means re-
covering zeros in the coefficient vector of the outcome. For
SPSM, objective (5) is used to learn submodels on the form
(θ¬m+∆¬m)⊤X¬m where θ is shared between patterns and
∆¬m is sparse. It is natural to ask: When can we expect the
“true” or an “optimal” ∆¬m to be sparse and, if it is, when
can we recover this sparsity with SPSM? Surprisingly, as we
will see, the optimal specialization ∆¬m may be sparse even
if Y depends on all covariates in X .

Assume that Condition 1 (Linear-Gaussian DGP) holds
with system parameters (µ,Σ, θ, {αm}, σY ). We can char-
acterize sparsity in the Bayes-optimal model (θ, {∆¬m}),
see Proposition 1, by the interactivity of covariates. We say
that variables Xj and Xj′ are non-interactive if they are sta-
tistically independent given all other covariates. As is well-
known, for Gaussian X , Xj and Xj′ are non-interactive if
Sj,j′ = 0, where S = Σ−1 is the precision matrix.

Proposition 2 (Sparsity in optimal model). Suppose that a
covariate j ∈ [d] is observed under pattern m, i.e., mj = 0,
and assume that Xj is non-interactive with every covariate
Xj′ that is missing under m. Then (∆¬m)j = 0.

Proposition 2 states that the sparsity in ∆ is partially de-
termined by the covariance pattern of observed and unob-
served covariates. For example, specialization is not needed
for a variable j under pattern m if it is uncorrelated with all
missing variables under m. Conversely, specialization, i.e.,
(∆¬m)j ̸= 0, is needed for features j that are predictive
(θj ̸= 0) and redundant (replicated well by unobserved fea-
tures which are also predictive). This is because in the main
model, redundant variables may share the predictive burden,
but when they are partitioned by missingness, they have to
carry it alone. This shows that prediction with a single model
and zero-imputation is sub-optimal in general.

Consistency of SPSM In the large-sample limit, under
Condition 1, we can prove that SPSM recovers maximally
sparse optimal model parameters. If the true system param-
eters are also sparse, SPSM learns these.

Theorem 1. Suppose that Condition 1 holds with param-
eters (θ, {∆¬m}) as in Proposition 1, such that, for each
covariate j, the number of patterns m for which mj = 0
and (∆¬m)j = 0 is strictly larger than the number of pat-
terns m′ for which m′

j = 0 and (∆¬m′)j ̸= 0. Then, with
γ = 0 and fixed λ > 0, the true parameters (θ, {∆¬m}) are
the unique solution to (5) in the large-sample limit, n → ∞.

Proof sketch. We provide a full proof in Appendix A.5. The
main steps involve showing that the SPSM objective (5) is
asymptotically dominated by the risk term, and the sums of
its minimizers (θ∗¬m + ∆∗

¬m) coincide with optimal regres-
sion coefficients (θ̂¬m) fit independently for each missing-
ness pattern m. For any λ > 0, regularization steers the so-
lution towards one which is maximally sparse in ∆∗

¬m.

4.2 Relationship to Other Methods
For particular extreme values of the regularization parame-
ters γ, λm, SPSM coincides with other methods (Table 1).

γ < ∞ γ → ∞
λm → ∞ Zero imputation Constant

0 < λm < ∞ Sharing model Pattern submodel
λm = 0 No sharing Pattern submodel

Table 1: Extreme cases and equivalences of SPSM, provided
that no pattern-specific intercept is used.

First, the full-sharing model (λm → ∞, γ < ∞) coin-
cides with fitting a single model to all samples after zero-
imputation. To see this, set ∆¬m = 0 for all m and note

θ¬m(i)
⊤x

(i)

¬m(i) = θ⊤I0(x̃
(i))

where I0(x̃) replaces missing values in x̃ with 0. In this set-
ting, submodel coefficients cannot adapt to m. In the imple-
mentation, we allow the fitting of pattern-specific intercepts
which are not regularized by λm. Second, (λm < ∞, γ →
∞) corresponds with the standard PSM without parameter
sharing (Mercaldo and Blume 2020) or the ExpandedLR
method of (Le Morvan et al. 2020b). The precise nature of
this equivalence depends on the choice of regularization.2

In this setting, each submodel f̂m is fit completely indepen-
dently of every other. Finally, an SPSM model with optimal
parameters (θ, {∆¬m}), in the linear-Gaussian case, implic-
itly makes a perfect single linear imputation,

E[Xm | X¬m] = X¬mΣ−1
¬m,¬mΣ¬m,m,

and applies the main model’s parameters θm to the imputed
values. If many samples are available, it may be feasible to
learn the imputation directly. However, if the variables in
X¬m and Xm are never observed together, imputation is no
longer possible. In contrast, SPSM could still learn an opti-
mal submodel for each pattern, given enough samples.

5 Experiments
We evaluate the proposed SPSMmodel3 on simulated and on
real-world data, aiming to answer two main questions: How
does the accuracy of SPSM compare to baseline models, in-
cluding impute-then-regress, for small and larger samples;
How does sparsity in pattern specializations ∆ affect perfor-
mance and interpretation?

Experimental Setup In the SPSM algorithm, before one-
hot-encoding of categorical features, all missingness pat-
terns in the training set are identified. At test time, pat-
terns that did not occur during training, variables are re-
moved until the closest training pattern is recovered. Both
linear and logistic variants of SPSM were trained using the
L-BFGS-B solver provided as part of the SciPy Python
package (Virtanen et al. 2020). Our implementation sup-
ports both ℓ1 and ℓ2-regularization of the main model pa-
rameters θ and ℓ1-regularization of pattern-specific devi-
ations ∆. This includes both the no-sharing pattern sub-
model (λm < ∞, γ → ∞) and full-sharing model (λm →

2Mercaldo and Blume (2020) adopted a two-stage estimation
procedure, the relaxed LASSO (Meinshausen 2007).

3Code to reproduce experiments and the appendix are available
at https://github.com/Healthy-AI/spsm.

9885



∞, γ < ∞) as special cases. In the experiments, γ can take
values within [0, 0.1, 1, 5, 10, 100], and we used a shared
λm = λ ∈ [1, 5, 10, 100, 1000, 1e8] for all patterns. Inter-
cepts were added for both the main model and for each pat-
tern without regularization. We do not require patterns to
have a minimum sample size but support this functionality
(appendix Table 8). For missingness patterns at test time that
did not occur in the training data, variables were removed
until the closest training pattern was recovered.

We compare linear and logistic regression models to the
following baseline methods: Imputation + Ridge / logistic
regression (Ridge/LR), Imputation + Multilayer percep-
tron (MLP) with a single hidden layer, and XGBoost (XGB),
where missing values are supported by default (Chen et al.
2019). Last, we compare the Pattern Submodel (PSM) (Mer-
caldo and Blume 2020). Note, our implementation of PSM is
based on a special case of our SPSM implementation where
regularization is applied over all patterns and not in each pat-
tern separately. Hyperparameters are based on the validation
set. For imputation, we use zero (I0), mean (Iµ) or iterative
imputation (Iit) from SciKit-Learn (Pedregosa et al. 2011;
Van Buuren 2018). XGB’s handling of missing values is de-
noted In. Details about method implementations, hyperpa-
rameters and evaluation metrics are given in Appendix B.2.

5.1 Simulated Data
We use simulated data to illustrate the behavior of sharing
pattern submodels and baselines in relation to Proposition 1,
focusing on bias and variance. We sample d input features
X from a multivariate Gaussian N (0,Σ) with covariance
matrix Σ specified by a cluster structure; the features are
partitioned into k clusters of equal size. The covariance is
defined as Σii = 1, Σi̸=j = 0 if i, j are in different clusters,
and Σi̸=j = c if i, j are in the same cluster, where c is chosen
as large as possible so that Σ remains positive semidefinite.

Each cluster c ∈ {1, ..., k} is represented in the outcome
function Y = θ⊤X + ϵ by a single feature i(c), such that
βi(c) ∼ N (0, 1) and θj = 0 for other features. We let
ϵ ∼ N (0, 1), independently for each sample. We consider
three missingness settings: In Setting A, each variable in
cluster c is missing if Xi(c) > −0.5. In Setting B, each vari-
able in cluster c—except one chosen uniformly at random—
is missing if Xi(c) > −0.5. Both settings satisfy the condi-
tions of Proposition 1 but are designed to violate MAR by
letting the outcome variable depend directly on missing val-
ues which may not be recovered from observed ones. In Set-
ting C, we follow missing-completely-at-random (MCAR),
where variables are missing independently with probability
0.2. We generate samples with d = 20 and k = 5.

In Figure 2, we show the test set coefficient of determi-
nation (R2) for Setting A. Note, that the methods which use
imputation (imputation method selected based on validation
error at each data set size) perform well initially but plateau
quickly, indicating relatively high bias. SPSM and PSM both
achieve a higher R2 for the full sample. SPSM performs bet-
ter than PSM for small samples indicating lower variance.
The SPSM model includes 42 non-zero pattern-specific co-
efficients when the training set size is 0.2 and 68 with the
fraction is 0.8. Results for Setting B and C are presented in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data set fraction

0.0

0.2

0.4

0.6

R
2

PSM
SPSM
MLPR
Ridge
XGBoost

Figure 2: Performance on simulated data Setting A (higher
is better). Error bars show standard deviation over 5 random
data splits. The full data set has n = 2000 samples.

Appendix C.1. Even in the MCAR setting C, PSM performs
considerably worse than alternatives due to excessive vari-
ance from fitting independent pattern-specific models.

5.2 Real-World Tasks
We describe two health care data sets used for classification
and regression. More information on the non-health related
HOUSING (De Cock 2011) data is shown in Appendix C.3.

ADNI The data is obtained from the publicly avail-
able Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database.4 ADNI collects clinical data, neuroimaging and
genetic data (Weiner et al. 2010). In the classification task,
we predict if a patient’s diagnosis will change 2 years after
baseline diagnosis. The regression task aims to predict the
outcome of the ADAS13 (Alzheimer’s Disease Assessment
Scale) (Mofrad et al. 2021) cognitive test at a 2-year follow-
up based on available data at baseline.

SUPPORT We use data from the Study to Understand
Prognoses and Preferences for Outcomes and Risks of Treat-
ments (SUPPORT) (Knaus et al. 1995), which aims to
model survival over a 180-day period in seriously ill hos-
pitalized adults using the Physiology Score (SPS). Follow-
ing Mercaldo and Blume (2020), in the regression task we
predict the SPS while for the classification task, we predict if
a patient’s SPS is above the median; the label rate is 50/50 by
definition. We mimic their MNAR setting by adding 25 units
to the SPS values of subjects missing the covariate ”partial
pressure of oxygen in the arterial blood”.

5.3 Results
We report the results on health care data in Table 2. For re-
gression tasks, we provide the number of non-zero coeffi-
cients used by the linear models. In addition, we study pre-
diction performance as a function of data set size in Figure 3
and in the appendix Figure 7. The statistical uncertainty of
the average error is measured with its square root, which is
a standard deviation and expressed by 95% confidence in-
tervals over the test set. Results of HOUSING data are pre-
sented in Appendix C.3.

4http://adni.loni.usc.edu
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Regression R2 # Coefficients
ADNI
Ridge, Iµ 0.66 (0.59, 0.73) 37 + 0
XGB, Iµ 0.41 (0.31, 0.50) —
MLP, I0 0.62 (0.55, 0.69) —
PSM 0.51 (0.43, 0.60) 0 + 430
SPSM 0.66 (0.59, 0.73) 37 + 21

SUPPORT
Ridge, I0 0.38 (0.35, 0.42) 11 + 0
XGB, In 0.30 (0.27, 0.34) —
MLP, Iµ 0.56 (0.53, 0.59) —
PSM 0.52 (0.49, 0.56) 0 + 188
SPSM 0.53 (0.50, 0.56) 11 + 91

Classification AUC Accuracy
ADNI
LR, I0 0.85 (0.80, 0.90) 0.85 (0.74, 0.94)
XGB, In 0.80 (0.74, 0.86) 0.84 (0.73, 0.94)
MLP, I0 0.86 (0.78, 0.89) 0.84 (0.73, 0.94)
PSM 0.81 (0.75, 0.87) 0.84 (0.74, 0.95)
SPSM 0.86 (0.81, 0.90) 0.85 (0.75, 0.96)

SUPPORT
LR, I0 0.83 (0.81, 0.85) 0.77 (0.74, 0.79)
XGB, I0 0.85 (0.83, 0.87) 0.78 (0.75, 0.81)
MLP, I0 0.86 (0.85, 0.88) 0.79 (0.76, 0.81)
PSM 0.84 (0.83, 0.86) 0.78 (0.75, 0.81)
SPSM 0.85 (0.83, 0.86) 0.78 (0.75, 0.80)

Table 2: Results for ADNI and SUPPORT tasks along with
the respective imputation method (see setup). We also re-
port the number of non-zero coefficients in shared (k) and
pattern-specific models (l) as k + l.

For ADNI regression, SPSM and Ridge are the best per-
forming models with R2 of 0.66 showing the same confi-
dence in the prediction. Validation performance resulted in
selecting γ = 10.0, λ = 50 for SPSM. With an R2 score of
0.51, PSM seems not able to benefit from pattern-specificity
in ADNI. In contrast, SPSM makes use of coefficient shar-
ing which results in a significantly smaller number of coef-
ficients compared to PSM. For SUPPORT regression, PSM
achieves almost the same result as SPSM (R2 of 0.52–0.53)
with partly overlapping confidence intervals for the predic-
tions. Although, the number of coefficients used in SPSM
is smaller than in PSM due to the coefficient sharing be-
tween submodels. The best regularization parameter values
for SPSM were γ = 0.1, λ = 5.0 which is lower than for
ADNI, consistent with the larger data set size. The best per-
forming model is MLP (R2 of 0.56) for SUPPORT regres-
sion. However, the black-box nature of MLP is not conducive
to reasoning about the influence of the missingness pattern.
Mean and zero imputation have the best validation perfor-
mance for Ridge, XGB and MLP. In summary, SPSM is
consistently among the best-performing models in both data
sets, with fairly tight confidence intervals. In ADNI classifi-
cation, SPSM, MLP and LR achieve the highest prediction ac-
curacy (0.84–0.85) and Area Under the ROC Curve (AUC)
(0.85–0.86). All methods perform similarly well on ADNI.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Dataset fraction
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0.2
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0.4
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2
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Figure 3: Performance on ADNI for the regression task. Er-
ror bars indicate standard deviation over 5 random subsam-
ples of the data. Equal performance for SPSM and Ridge
and subpar performance for PSM indicates that for ADNI re-
gression, pattern specialization is mostly irrelevant.

SPSM selected γ = 0 and λ = 1.0 which indicates moderate
coefficient sharing. For SUPPORT data, all models perform
almost at the same level. XGB and MLP perform slightly bet-
ter than SPSM (γ = 0.1, λ = 10.0) and PSM. Across ADNI
and SUPPORT LR, XGB and MLP predominantly use zero
imputation. In all tasks, SPSM performs comparably or fa-
vorably to all other methods. The tight confidence intervals
for classification in both data sets indicate high certainty in
the result averages.

Non-Healthcare Data and Coefficient Specialization In
contrast to the previous data sets, where sharing coefficients
is beneficial, we see for the HOUSING data, a large ad-
vantage from nonlinear estimation: the tree-based approach
XGB (Table 9). It shows an R2 of 0.76 and outperforms the
other baseline methods for the regression task confirming
the non-linearity of that data set. We also do not see the
same positive effect in specializing (PSM, SPSM not better
than Ridge with imputation). None of the missing value in-
dicators show a significant feature importance level in XGB
which might indicate that pattern specialization is not neces-
sary. For results on the HOUSING data, see Appendix C.3.

Performance with Varying Training Set Size Figure 3
shows the test R2 for linear models trained on different frac-
tions of ADNI data. Each set was subsampled into fractions
0.2, 0.4, 0.6, 0.8, 1.0 of the full data set. Especially for small
fractions, SPSM benefits from coefficient sharing and lower
variance data compared to PSM. Ridge with mean impu-
tation performs comparably. A similar figure for the SUP-
PORT is presented in appendix Figure 7. SPSM and PSM
perform equally well across the fractions, whereas Ridge
shows high error compared to both pattern submodels.

Pattern Specialization in SPSM We inspect pattern spe-
cializations ∆ for SPSM in the ADNI regression task with
respect to interpretablity. In Table 3, we present the main
model θ and pattern-specific coefficients ∆4 for pattern 4.
Table 7 in the appendix shows all patterns m with ∆¬m ̸= 0.
For pattern 4, measurements of the amyloid-β (ABETA)
peptide and the proteins TAU and PTAU are missing in the
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Missing features in pattern 4:
ABETA, TAU and PTAU at baseline (bl)

Feature ∆4 θ θ +∆4

Age -0.140 0.121 -0.019
FDG-PET -0.090 -0.039 -0.129
Whole Brain (bl) 0.000 -0.045 -0.044
Fusiform 0.016 0.021 0.037
ICV 0.001 0.093 0.094
Intercept -0.10 0.18

Table 3: Example of ∆4 for regression using SPSM using
ADNI. SPSM takes γ = 10 and λ = 13 as parameters
for a single seed. There are 10 missingness pattern in to-
tal, while 4 of them have non-zero coefficients for ∆ and
pattern-specific intercept. Coefficients are for standardized
variables.

baseline diagnostics. The absence of these three features af-
fects pattern specialization: For an imaging test FDG-PET
(fluorodeoxyglucose), the magnitude of its coefficient is in-
creased, placing heavier weight on the feature in prediction.
Similarly, the coefficients for Fusiform (brain volume), and
ICV (intracranial volume) increase in magnitude and predic-
tive significance when ABETA, TAU, and PTAU are absent.
In contrast, for the feature AGE, the resulting coefficient of -
0.019 (compared to 0.121 in the main model) means that the
predictive influence of this feature decreases under pattern 4.
As Table 3 shows, SPSM applied to tabular data allows for
short descriptions of pattern specialization, which helps con-
struct a simple and meaningful model. We enforce sparsity
in ∆ to limit the number of differences between submod-
els, and present all features j with specialized coefficients
∆¬m(j) ̸= 0, five in the example case. In this way, the
set of submodels is more interpretable and the user, e.g., a
medical staff member can be supported in decision-making.
For a more detailed analysis on interpretability properties of
SPSM, see Appendix C.4.

Tradeoff between Interpretability and Accuracy The
interpretability-accuracy tradeoff is especially crucial for
practical use of SPSM. The empirical results do not show
any significant evidence that our proposed sparsity regular-
ization hurts prediction accuracy (Table 2, Figure 3). Never-
theless, in a practical scenario, domain experts may choose a
simpler model at a slight cost in performance. Then, we can
measure the tradeoff by varying values of hyperparameters
to find an adequate balance (Figure 8). The parameter selec-
tion is based on the validation set and aligns with the test set
results. We see some parameter sensitivity in SUPPORT that
supports sharing, but only in a moderate way.

6 Related Work
Pattern-mixture missingness refers to distributions well-
described by an independent missingness component and a
covariate model dependent on this pattern (Rubin 1976; Lit-
tle 1993). In this work, pattern missingness refers to emer-
gent patterns which may or may not depend on observed
covariates (Marshall et al. 2002). Mercaldo and Blume

(2020); Le Morvan et al. (2020b) and Bertsimas, Delarue,
and Pauphilet (2021) define pattern submodels for flexible
handling of test time missingness. The ExpandedLR method
of Le Morvan et al. (2020b) represents a related method to
pattern submodels. However, they neither study coefficient
sharing between models nor provide a theoretical analysis of
when optimal submodels have partly identical coefficients
(sharing, sparsity in specialization). Marshall et al. (2002)
describes the one-step sweep method using estimated coef-
ficients and an augmented covariance matrix obtained from
fully observed and incomplete data at test time. In very re-
cent and so far unpublished work, Bertsimas, Delarue, and
Pauphilet (2021) present two methods for predicting with
test time missingness. First, Affinely adaptive regression spe-
cializes a shared model by applying a coefficient correction
given by a linear function of the missingness pattern. When
the number of variables d is smaller than the number of
patterns (which could grow as 2d), and the outcome is not
smooth in changes to missingness mask, this may introduce
significant bias. The resulting bias-variance tradeoff differs
from our method, and unlike our work, is not justified by the-
oretical analysis. Second, Finitely adaptive regression starts
by placing each pattern in the same model, recursively par-
titioning them into subsets.

Several deep learning methods which are applicable under
test time missingness with or without explicitly attempting
to impute missing values have been proposed (Bengio and
Gingras 1995; Che et al. 2018; Le Morvan et al. 2020a,b;
Nazabal et al. 2020). The NeuMiss network, discussed
briefly in Section 4.1, proposes a new type of non-linearity:
the multiplication by the missingness indicator (Le Morvan
et al. 2020a). NeuMiss approximates the specialization term
∆⊤

¬mX¬m (along with per-pattern biases) using a deep neu-
ral network where both covariates and missingness mask
are given as input, sharing parameters across patterns. Neu-
Miss and Affinely adaptive regression (see above) are sim-
ilar since their pattern specializations are functions of the
inputs and the masks, both in contrast to SPSM. Moreover,
neither method attempts to learn sparse specialization terms
(e.g., no ℓ1 regularization of ∆).

7 Conclusion
We have presented sharing pattern submodels (SPSM) for
prediction with missing values at test time. We enforce pa-
rameter sharing through sparsity in pattern coefficient spe-
cializations via regularization and analyze SPSM’s consis-
tency properties. We have described settings where informa-
tion sharing is optimal even when the prediction target de-
pends on missing values and the missingness pattern itself.
Experimental results using synthetic and real-world data
confirm that SPSM performs comparably or slightly better
than baselines across all data sets without relying on impu-
tation. Notably, the proposed method never performs worse
than non-sharing pattern submodels as these do not use the
available data efficiently. While SPSM is limited to learn-
ing linear models, it is not limited to learning from linear
systems. An interesting direction is to identify other classes
of models developed with interpretability that could benefit
from this type of sharing.
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