
Contrastive Predictive Autoencoders for Dynamic Point Cloud
Self-Supervised Learning

Xiaoxiao Sheng*, Zhiqiang Shen*, Gang Xiao†

Shanghai Jiao Tong University
{shengxiaoxiao, shenzhiqiang, xiaogang}@sjtu.edu.cn

Abstract

We present a new self-supervised paradigm on point cloud
sequence understanding. Inspired by the discriminative and
generative self-supervised methods, we design two tasks,
namely point cloud sequence based Contrastive Prediction
and Reconstruction (CPR), to collaboratively learn more
comprehensive spatiotemporal representations. Specifically,
dense point cloud segments are first input into an encoder to
extract embeddings. All but the last ones are then aggregated
by a context-aware autoregressor to make predictions for the
last target segment. Towards the goal of modeling multi-
granularity structures, local and global contrastive learning
are performed between predictions and targets. To further im-
prove the generalization of representations, the predictions
are also utilized to reconstruct raw point cloud sequences by
a decoder, where point cloud colorization is employed to dis-
criminate against different frames. By combining classic con-
trast and reconstruction paradigms, it makes the learned rep-
resentations with both global discrimination and local percep-
tion. We conduct experiments on four point cloud sequence
benchmarks, and report the results on action recognition and
gesture recognition under multiple experimental settings. The
performances are comparable with supervised methods and
show powerful transferability.

Introduction
The development of depth sensors facilitates the acqui-

sition of dynamic point clouds and makes it widely ap-
plied in many scenarios, such as autonomous vehicles and
robots. Currently, processing these real-time point clouds for
surroundings perception still relies on supervised methods.
However, labeling plenty of dynamic point clouds is quite
labor-intensive and error-prone. Meanwhile, self-supervised
methods in images make great success, significantly alle-
viating annotation requirement and even outperforming su-
pervised pretraining methods in many tasks (Zbontar et al.
2021; He et al. 2020). Inspired by this, this paper focuses
on learning dynamic point cloud representations in a self-
supervised manner.

Classical self-supervised methods in images always rely
on contrasting the samples with strong data augmentations
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Figure 1: Illustration of our main idea. We combine con-
trastive predictive coding and reconstruction to establish a
unified self-supervised framework for dynamic point clouds.

or reconstructing the randomly masked patches based on
visible parts to obtain high-level semantics (Zbontar et al.
2021; Bao et al. 2021). For discriminative methods, rich
and diverse sample pairs are usually created. However, it is
likely that the semantic consistency of the augmented dy-
namic point cloud pairs is difficult to be guaranteed. Further-
more, experimental results in (Xie et al. 2020) also demon-
strate that real multi-camera views are more effective than
hand-crafted views for point clouds. For generative self-
supervised methods, the original point coordinates need to
be recovered. However, the corresponding coordinates will
be added to masked tokens as positional embeddings. This
results in information leakage and makes the task less chal-
lenging. Based on the above analysis, it is natural to ask a
question: how can we leverage the advantages of discrimi-
native and generative methods for self-supervised learning
on dynamic point clouds?

Considering that point cloud sequences are constantly
evolving with geometric dynamics, we can explore
temporal-related self-supervised signals lying in the se-
quence itself, rather than relying on massive augmented
data. Contrastive predictive coding is to predict about fu-
ture based on recent past of the sequences, which has been
successfully validated in speeches and videos (Oord, Li, and
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Vinyals 2018; Han, Xie, and Zisserman 2020a). Generally,
this paradigm aims to use powerful encoder and autoregres-
sor to learn high-level representations with a contrastive pre-
text task. In addition, to introduce more task-independent
properties, we explore to maximize the mutual information
between representations and inputs. Therefore, we integrate
point cloud sequence reconstruction into contrastive predic-
tive coding for learning more generalized representations.
Our main idea is illustrated in Figure 1.

Specifically, we first sample multiple segments and then
send them into an encoder to extract spatiotemporal features.
The features of all but the last segments are regarded as to-
kens to fed into a transformer autoregressor to predict future
states. We perform contrastive tasks between the predictions
and target segment features. However, due to the unordered
and irregular properties of point cloud, the points attached
with predicted spatiotemporal features are not aligned to
those target ones. We design an interpolation based method
to achieve points alignment and further update predicted
features correspondingly. Then, local contrastive learning is
performed, and we also explore hard negatives to enhance
the discriminability of the model. Meanwhile, global con-
trastive learning is conducted to compare the embeddings
of class tokens with sequence-level features of entire cur-
rent and predicted segments. In addition, raw point cloud
sequences of the target segment are reconstructed based on
the predictions. Point cloud colorization is applied to the
target segment for further discriminating frames. Overall,
contrastive prediction task explores more on the discrimi-
nation between diverse point cloud sequences, while gen-
erative self-supervised task perceives internal structures of
point cloud itself. By combining these two self-supervised
tasks adapted to dynamic point cloud, it enables the learned
representations more comprehensive with both powerful in-
stance discriminability and regional context-awareness.

Multi-granularity representations can be learned by es-
tablishing our unified contrastive prediction and reconstruc-
tion (CPR) self-supervised framework. We evaluate our
method on four dynamic point cloud benchmarks, including
MSRAction3D (Li, Zhang, and Liu 2010), NTU-RGBD 60
(Shahroudy et al. 2016), NvGesture (Molchanov et al.
2016), and SHREC’17 (De Smedt et al. 2017). Our method
achieves excellent performance comparable with state-of-
the-art supervised methods. Ablation studies are performed
to investigate the design of self-supervised tasks. The main
contributions of this paper are as follows:

• We propose a new contrastive prediction and reconstruc-
tion self-supervised framework for dynamic point cloud
understanding.

• We conduct local and global contrastive predictions to
learn comprehensive representations with both context-
awareness and holistic discrimination.

• We reconstruct raw point cloud sequences to promote the
generalization of learned representations, and apply point
cloud colorization to discriminate different frames.

• We perform extensive experiments on multiple dynamic
point cloud benchmarks. We also show detailed ablation
studies to analyze how to design self-supervised tasks.

Related Work
Self-supervised Methods for Images
Benefiting from massive data, self-supervised methods in
images achieve remarkable performance. This not only alle-
viates the demands for labeling, but further reveals that more
generalized representations are obtained in a self-supervised
manner without introducing label ambiguity. Discriminative
self-supervised methods compare two views of one sample
processed by diverse data augmentations to learn high-level
semantics, and utilize plenty of negative samples for con-
trast to promote instance discriminability (Chen et al. 2020).
More effective techniques are also explored to enhance the
generalization of pretrained encoder for downstream tasks,
such as dynamic queues (He et al. 2020), momentum updat-
ing (He et al. 2020), stop-gradients (Chen and He 2021), and
clustering (Caron et al. 2020). Generative self-supervised
methods aim to learn the generalized representation by mask
image modeling (Bao et al. 2021; Xie et al. 2022; He et al.
2022). The masked and unmasked tokens can be simultane-
ously processed by an encoder, and an extra decoder is nec-
essary to reconstruct raw input or low-level features based
on the latent representations (Bao et al. 2021). An asym-
metric network structure is also explored to only process the
visible patches by the encoder, which significantly improves
computation efficiency (He et al. 2022).

Self-supervised Methods for Videos
Self-supervised methods of videos further consider the prop-
erties of sequence data itself, such as temporal continuity
and redundancy. Similarly, discriminative methods focus on
how to build sample pairs from diverse video clips (Pan et al.
2021; Qian et al. 2021). Generative methods randomly mask
the spatiotemporal tubes with a higher ratio to prevent in-
formation leakage (Tong et al. 2022; Wang et al. 2022b).
Besides, many works have been proposed to model mo-
tions, such as co-training of two models based RGB and op-
tical flow separately (Han, Xie, and Zisserman 2020b), or
building decoupled static and dynamic concepts (Qian et al.
2022). Clearly, contrastive learning based methods empha-
size the discrimination between diverse samples, while re-
construction based methods focus on the perception and un-
derstanding of samples themselves. They are both limited in
learning multi-granularity representations.

Self-supervised Methods for Static Point Clouds
Inspired by the success of self-supervised methods in im-
ages, many works focus on learning point cloud representa-
tions in a self-supervised manner. PointContrast (Xie et al.
2020) is proposed to contrast real-world multi-view point
clouds with various data augmentations. Unfortunately,
multi-camera viewpoints are not available in some sce-
narios. As a BERT-style self-supervised framework, Point-
BERT (Yu et al. 2022) predicts latent representations learned
by an offline tokenizer, which causes two-stage pretrain-
ing. In addition, directly recovering raw point cloud easily
leads to information leakage due to the positional encoding
of masked tokens. To alleviate the above problem, Point-
MAE (Pang et al. 2022) is proposed to only input unmasked
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tokens into encoder and add the masked tokens to the de-
coder for reconstructing. Alternatively, MaskPoint (Liu, Cai,
and Lee 2022) is proposed to randomly select visible points
into encoder and train a decoder to discriminate between
masked points and noises points. It combines the discrim-
inative method and the masking task to achieve excellent
performance.

Modeling Dynamic Point Clouds
Currently, modeling dynamic point cloud is still dominated
by traditional supervised methods (Zhong et al. 2022; Fan
et al. 2021b; Wei et al. 2022; You and Jiang 2019; Wen
et al. 2022; Fan, Yang, and Kankanhalli 2022). MeteorNet
(Liu, Yan, and Bohg 2019) gradually learns aggregated fea-
tures for each point by constructing point-wise spatiotempo-
ral neighborhoods. 3DV (Wang et al. 2020) encodes motion
information utilizing regular voxels and then abstracts these
dynamic voxels into point sets to model spatiotemporal fea-
tures. PSTNet (Fan et al. 2021a) hierarchically extracts fea-
tures of raw point cloud sequences with spatial and tempo-
ral decoupled convolutions. P4Transformer (Fan, Yang, and
Kankanhalli 2021) first utilizes the point tube convolution to
build tokens and further aggregates these tokens by a trans-
former encoder. Wang et al. (Wang et al. 2021) proposes
an order prediction self-supervised task on shuffled point
cloud clips to learn dynamic point cloud features. However,
this method only mines temporal information, while ignor-
ing spatiotemporal modeling. Therefore, the spatiotemporal
discriminability and local context awareness of representa-
tions learned by this manner are limited.

Unlike the previous methods, we propose a new self-
supervised paradigm for modeling point cloud videos. We
combine the advantages of contrastive learning and genera-
tive methods to design contrastive prediction and reconstruc-
tion tasks for dynamic point clouds, jointly facilitating the
generalization performance for downstream tasks.

Contrastive Prediction and Reconstruction
We present the overall framework of our method in Fig-
ure 2, which includes three main modules. Point Spatiotem-
poral Encoder is first utilized to aggregate dense point cloud
segments. Then, we input the aggregated embeddings into a
Transformer Autoregressor to make predictions for the last
target segment. An MLP head is introduced to further project
the representations into latent space for contrast. We per-
form local and global contrastive learning between predic-
tions and targets to progressively capture multi-granularity
features. In addition, raw point cloud sequences are recon-
structed by a Decoder based on the predictions. In this sec-
tion, we first briefly introduce the encoder and autoregres-
sor, then present contrastive prediction and reconstruction
self-supervised tasks in detail.

Point Spatiotemporal Encoder
A point cloud sequence is denoted as P ∈ RT×N×3, where
T is the sequence length and N is point number in each
frame. PSTNet (Fan et al. 2021a) is a typical spatial and tem-
poral decoupled feature extractor for dynamic point clouds.

Specifically, the farthest point sampling is first utilized to
sample N ′ anchor points within each frame. Then, anchors
are mapped into adjacent frames to construct spatiotemporal
point tubes. Spatial convolution is built to extract local struc-
tures within the neighborhoods grouped by k-nearest neigh-
bor algorithm. 1D convolution is utilized to capture tempo-
ral features on these tubes. These aggregated spatiotempo-
ral features are denoted as {xi}mi=1, where m is the number
of aggregated super-points. In this paper, we focus more on
how to design self-supervised tasks for learning point spa-
tiotemporal representations. Therefore, we directly adopt the
backbone of PSTNet as our encoder.

Transformer Autoregressor
The autoregressor is to predict future representations based
on spatiotemporal features extracted by the encoder. In clas-
sic contrastive prediction based methods (Oord, Li, and
Vinyals 2018; Han, Xie, and Zisserman 2020a), LSTMs
are always used as autoregressors to predict future states
of sequence data. However, when dealing with long se-
quences, LSTMs are prone to catastrophic forgetting, caus-
ing inferior predictions. Considering that 3D action recog-
nition strongly relies on long-term temporal information,
we introduce the powerful transformer as the autoregres-
sor. We adopt the standard transformer which consists of
multi-head self-attentions and feed-forward networks. We
treat the above {xi}mi=1 as tokens. Positional embeddings
{ei}mi=1 are obtained by projecting the spatiotemporal co-
ordinates (x, y, z, t) of super-points with a linear function.
E[s] is the class token and e0 is its positional embedding
obtained by projecting (x0, y0, z0, t0), where (x0, y0, z0) is
mean value of target segment points and t0 is the times-
tamp of target segment. Finally, the token sequence [E[s] +
e0, x1 + e1, . . . , xm + em] is sent into the transformer to
model global spatiotemporal relations and make predictions.

Contrastive Prediction Task
We divide the whole input sequence P ∈ RT×N×3 into S
segments equally. Each segment is P ′ ∈ RM×N×3, and
T = S × M . We utilize the point spatiotemporal encoder
to obtain target embeddings Z ∈ Rl×r×c of the S-th target
segment, where l is the frame number after aggregation, r
is the super-point number, and c is embedding channel. The
former S−1 segments are input into the encoder and autore-
gressor to predict target embeddings. Because of temporal
adjacency with target segment, the updated embeddings of
the (S−1)th segment are taken as predictions, denoted as
Q ∈ Rl×r×c. However, due to the unordered and irregular
properties of point clouds, it can not directly align predic-
tions and target embeddings. To alleviate this dilemma, we
interpolate the predicted features using k-nearest neighbor
algorithm by centering at target super-points, where k = 3.
We denote the interpolated predictions as Q̂ ∈ Rl×r×c. The
aligned embeddings are regarded as positive pairs (zi, q̂+),
and the remainings are negative samples. Moreover, the em-
beddings belonging to former S−2 segments are explored
as hard negatives to improve discriminability of the model.
Then, local contrastive learning is conducted to obtain fine-
grained features. We utilize local Info Noise Contrastive Es-
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Figure 2: The framework of our approach. It contains three main components, i.e., point spatiotemproal encoder, transformer
autoregressor, and decoder. By organically combining these components, we construct contrastive prediction and reconstruction
self-supervised tasks.

timation (InfoNCE) loss as follows:

Ll=−
∑
zi∈Z

log
exp(zT

i q̂+/τ)

exp(zT
i q̂+/τ)+

∑
qj∈Ψ exp (zT

i qj/τ)
, (1)

where Ψ is a set that contains the negatives, and τ is temper-
ature hyper-parameter.

To explore holistic semantics, we obtain the global repre-
sentations of whole input sequence, denoted as H ∈ RB×c,
by performing max-pooling on the embeddings of S seg-
ments passed through the encoder. Then, we perform global
contrastive learning between the representation of class to-
ken and H . The corresponding sample pairs are positives,
otherwise negatives. The global InfoNCE loss is as follows:

Lg=−
∑

hi∈H

log
exp(hT

i ĝ+/τ)

exp(hT
i ĝ+/τ)+

∑
gj∈Θ exp (hT

i gj/τ)
, (2)

where hi represents the embedding of i-th input sequence,
ĝ+ is the embedding of its class token, and Θ contains all
negatives.

By combining local and global contrastive learning,
our method effectively captures multi-granularity features.
Moreover, we explore more meaningful hard negatives and
present their effectiveness in ablation studies.

Point Cloud Sequences Reconstruction Task
Theoretical analysis in (Wang et al. 2022a) points out that
reconstructing raw inputs maximizes mutual information be-
tween representations and inputs to promote generalizabil-
ity. Inspired by this, we design sequences reconstruction
using the predictions. Rather than recovering all points of
target segment, we perform spatial downsampling by the
farthest point sampling. This avoids paying more attention

to low-level details and reducing the computational burden.
Specifically, we colorize each frame of downsampled target
segment with specific RGB values to distinguish different
frames. With the increase of the temporal index, the cor-
responding color changes from red to green to blue (Yang
et al. 2021). We denote the colorized target points as P̂

′
t ∈

RM×N ′×6, where N ′ is the number of downsampled points
in each frame and 6 means (x, y, z, r, g, b).

We utilize average pooling on predictions Q to obtain
global semantics qg ∈ Rc, and then duplicates it to Qg ∈
RM×N ′×c. Moreover, we add 1D cosine positional encod-
ings to Qg to provide temporal clues, and the points in each
frame share the same cosine encoding. Finally, we put these
updated embeddings into the decoder for spatiotemporal re-
construction. We adopt FoldingNet (Yang et al. 2018) as the
decoder and exploit chamfer distance loss to optimize this
self-supervised task as follows:

d(R, P̂
′
t)=

1

|R|
∑
x̂∈R

min
p∈P̂

′
t

∥x̂− p∥22+
1

|P̂ ′
t|

∑
p∈P̂

′
t

min
x̂∈R

∥p− x̂∥22,

(3)
where R ∈ RM×N ′×6 is reconstructed sequence.

Overall, the total loss with a regularized parameter λ of
our self-supervised framework consists of three parts:

Ltotal = Ll + Lg + λd(R, P̂
′
t). (4)

Experiments
Datasets
We perform 3D action recognition on MSRAction3D and
NTU-RGBD 60, and gesture recognition on NvGesture and
SHREC’17 datasets.
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Methods Input Accuracy
Vieira et al. (Vieira et al. 2012) depth map 78.20 (20 frames)
Kläseret al. (Klaser, Marszałek, and Schmid 2008) depth map 81.43 (18 frames)
Actionlet (Wang et al. 2012) skeleton 88.21 (all frames)

Frames: 4 8 12 16 24

MeteorNet (Liu, Yan, and Bohg 2019) point 78.11 81.14 86.53 88.21 88.50
PSTNet (Fan et al. 2021a) point 81.14 83.50 87.88 89.90 91.20
P4Transformer (Fan, Yang, and Kankanhalli 2021) point 80.13 83.17 87.54 89.56 90.94
PSTNet++ (Fan et al. 2021b) point 81.53 83.50 88.15 90.24 92.68
PST-Transformer (Fan, Yang, and Kankanhalli 2022) point 81.14 83.97 88.15 91.98 93.73
PST2 (Wei et al. 2022) point 81.14 86.53 88.55 89.22 -
Kinet (Zhong et al. 2022) point 79.80 83.84 88.53 91.92 93.27
PPTr (Wen et al. 2022) point 80.97 84.02 89.89 90.31 92.33

4D MinkNet + ROP Pretraining (Wang et al. 2021) point - 86.31 - - -
MeteorNet + ROP Pretraining (Wang et al. 2021) point - 85.40 - - -

CPR (Ours) point 82.50 86.53 91.00 92.15 93.03

Table 1: Action recognition accuracy (%) on the MSRAction3D dataset.

MSRAction3D (Li, Zhang, and Liu 2010) includes 567
videos collected by Kinect, with a total of 23K frames and
20 categories performed by 10 subjects. We use the same
training and test splits as (Liu, Yan, and Bohg 2019).

NTU-RGBD 60 (Shahroudy et al. 2016) is collected by
three cameras with different angles, containing 60 categories
and 56880 videos performed by 40 subjects. Cross-subject
and cross-view evaluations are adopted.

NvGesture (Molchanov et al. 2016) contains 1532 ges-
ture videos focusing on touchless driver controlling, with a
total of 25 classes. We follow the previous work to split this
dataset, where 1050 videos are used for training and 482
videos are for test (Min et al. 2020).

SHREC’17 (De Smedt et al. 2017) collects 2800 videos
performed by 28 subjects in two ways, i.e., using one fin-
ger or the whole hand. These short videos generally contain
dozens of frames and involve both coarse and fine gestures.
We adopt the same splits of training and test data as previous
work (Min et al. 2020).

Experimental Setting
We perform pretraining on NTU-RGBD 60. Specifically,
we consecutively sample 24 frames with stride 2, and each
frame contains 1024 points. This sequence is then divided
into 6 segments. Following (Fan et al. 2021a), the spatial
search radius is 0.1, neighbors for the ball query is 9, and
random scaling is adopted as data augmentation for our en-
coder. Three transformer layers are utilized as our autore-
gressor. We pretrain 200 epochs and set the batchsize to 88.
We use Adam optimizer and cosine annealing scheduler with
the initial learning rate 0.0008.

Without special instructions, we adopt the pretrained
point spatiotemporal encoder for downstream tasks, and add
two linear layers with BN and ReLu for finetuning or one
linear layer for linear evaluation. We utilize SGD optimizer
with momentum 0.9 and cosine scheduler with warmup 10

epochs. The 16 batchsize corresponds to the 0.01 learning
rate, and we follow the scale up rule.

Comparison with State-of-the-art
We perform extensive experiments and compare the perfor-
mances with state-of-the-art supervised methods and other
self-supervised methods.

Transfer to MSRAction3D. The finetune results are pre-
sented in Table 1, compared with skeleton-based, depth-
based, and point-based methods. We follow the settings of
previous work (Liu, Yan, and Bohg 2019) and test the perfor-
mance under variable lengths. Although the skeleton-based
method Actionlet simultaneously feeds all frames, it is still
exceeded by our CPR with 12 frames. This shows that point
cloud sequences contain richer spatiotemporal information.
Moreover, since 3D action recognition relies on temporal
information, CPR obtains higher accuracy when inputting
longer sequences. Compared with other point-based super-
vised methods which train from scratch, CPR achieves im-
provements under diverse inputs, except that it is slightly
lower than PST-Transformer on 24 frames. This indicates
that high-level semantics can be obtained by pretrained
encoder and as a good initialization for transfer learning.
Compared with the self-supervised method that performs
Recurrent Order Prediction task (ROP) (Choy, Gwak, and
Savarese 2019), CPR achieves higher accuracy. ROP utilizes
RGB values for pretraining and only focuses on clip-level
temporal information, while our method utilizes local/global
contrastive learning and reconstruction to explore richer spa-
tiotemporal information just with points.

Transfer to NvGesture and SHREC’17. We perform
self-supervised pretraining on human action datasets. To fur-
ther verify the generalization of our method, we also transfer
the pretrained encoder to two gesture datasets. During fine-
tuning, the spatial search radius is 0.1, the neighbors of ball
query is 9, and the frame number is 32. CPR is compared
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Methods Input NvG S17
Human(Molchanov et al. 2016) RGB 88.4 -
DG-STA (Chen et al. 2019) skeleton - 90.7

FlickerNet (Min et al. 2019) point 86.3 -
PLSTM-base (Min et al. 2020) point 85.9 87.6
PLSTM-early (Min et al. 2020) point 87.9 93.5
PLSTM-PSS (Min et al. 2020) point 87.3 93.1
PLSTM-middle(Min et al. 2020) point 86.9 94.7
PLSTM-late (Min et al. 2020) point 87.5 93.5
Kinet(Zhong et al. 2022) point 89.1 95.2
PSTNet(Fan et al. 2021a) point 88.2 92.0

CPR (Ours) point 88.7 93.1

Table 2: Gesture recognition accuracy (%) on NvGesture
(NvG) and SHREC’17 (S17).

with skeleton-based, RGB-based and other point-based su-
pervised methods. The results are presented in Table 2. By
finetuning with our self-supervised encoder, CPR facilitates
the baseline PSTNet to produce comparable results. This
shows that the pretrained encoder has strong generalization
ability, and exhibits powerful spatiotemporal modeling abil-
ity under diverse domains.

Finetune on NTU-RGBD 60. We keep the encoder and
autoregressor for finetuning. As shown in Table 3, we com-
pare CPR with skeleton-based (Liu et al. 2017; Si et al. 2019;
Li et al. 2019; Zhang et al. 2019; Shi et al. 2019b,a), depth-
based (Xiao et al. 2019), and point-based supervised meth-
ods. Particularly, Kinet builds a hierarchical motion branch,
and 3DV explicitly encodes voxel-based motion cues. In-
stead, without introducing hand-crafted motion features and
complicated two-stream design, CPR achieves competitive
accuracy under two evaluations. This demonstrates the su-
periority of our self-supervised approach. By exploiting pre-
training to fully mine motion information in the raw data, it
can help the network acquire rich semantics without using
additional dynamical model. Our performance under cross-
view evaluation is consistent with PSTNet++, and we will
explore more advanced encoders in the future.

Linear and Semi-Supervised Learning. To test whether
the pretrained encoder has learned high-level semantics, we
evaluate it on MSRAction3D and NTU-RGBD 60 under lin-
ear evaluation and limited training data. Semi-supervised
training data consists of randomly selected 30% of the train-
ing samples from each class. We conduct self-supervised
pretraining on MSRAction3D and NTU-RGBD 60, respec-
tively. The results are shown in Table 4. It is observed that
the linear accuracy of MSR to MSR, NTU to NTU, and NTU
to MSR is 85.7%, 70.0%, and 79.1%. This shows that our
self-supervised pretraining captures rich semantics benefi-
cial for 3D action recognition. After semi-supervision with
30% data, all the performances get promoted compared with
linear evaluations. Since the 30% MSRAction3D data is too
small, the improvement of finetuning on MSR is limited. In
addition, the semi-supervised performance of NTU to MSR
is higher than that of MSR to MSR. This indicates that self-

Methods Input NTU-RGBD 60
Subject View

GCA-LSTM skeleton 74.4 82.8
AGC-LSTM skeleton 89.2 95.0
AS-GCN skeleton 86.8 94.2
VA-fusion skeleton 89.4 95.0
2s-AGCN skeleton 88.5 95.1
DGNN skeleton 89.9 96.1

MVDI depth 84.6 87.3

PointNet++ point 80.1 85.1
3DV (motion) voxel 84.5 95.4
3DV-PointNet++ voxel + point 88.8 96.3
PSTNet point 90.5 96.5
P4Transformer point 90.2 96.4
PSTNet++ point 91.4 96.7
PST-Transformer point 91.0 96.4
Kinet point 92.3 96.4

CPR (Ours) point 91.0 96.7

Table 3: Action recognition accuracy (%) on the NTU-
RGBD 60 dataset.

SSL-Data Linear Semi-supervision
Data Accuracy Data Accuracy

MSR MSR 85.7 30% MSR 86.4
NTU NTU 70.0 30% NTU 83.3

NTU MSR 79.1 30% MSR 87.2

Table 4: Recognition accuracy (%) of linear evaluation
and semi-supervised learning on MSRAction3D (MSR) and
NTU-RGBD 60 (NTU). SSL-Data is self-supervised data.

supervised pretraining with larger dataset can learn more
general semantics while still needs limited data for transfer
adaptation.

Ablation Studies
In this section, we show extensive ablation studies to ex-
plore that the length of whole input sequence utilized for
our self-supervised framework, the design of point cloud se-
quences reconstruction, the effectiveness of hard negatives,
and the influences of diverse self-supervised tasks. These ex-
periments are all pretrained on MSRAction3D and then fine-
tuned on it.

How long of the point cloud sequence? We perform
self-supervised pretraining with variable input lengths and
then finetune with diverse frames. The results are shown in
Table 5. Notably, when sequence length of self-supervised
pretraining is longer, it is more beneficial for finetuning un-
der multiple frames. We finally choose 24 frames for self-
supervised pretraining to cover as much dynamic informa-
tion as possible.

How to design reconstruction tasks? For reconstructing
branch, we try various experimental settings and the results
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SS-f
Fin-f 4 8 12 16 24

12 78.45 82.83 88.82 90.91 91.99
16 79.12 83.84 88.55 91.03 92.33
20 80.13 85.70 89.56 91.92 93.03
24 82.06 86.20 90.42 92.07 93.38

Table 5: Finetune accuracy (%) at different frames. Fin-f and
SS-f are the frame number for finetune and self-supervised
pretraining.

Reconstruction Target Points of each frame Acc.
One frame 1024 91.32

One segment 256 92.68
One segment + Color. 256 93.38
One segment + Color. 512 91.99
One segment + Color. 1024 92.36

Table 6: Finetune accuracy (%) with different reconstruction
targets. Color. means colorization.

are presented in Table 6. The accuracy of reconstructing one
segment is higher than that of reconstructing one frame un-
der the same number of points. This may be due to the fact
that spatiotemporal prediction is more challenging for self-
supervised tasks. When applying point cloud sequence col-
orization, we achieve higher accuracy. Colorization is ben-
eficial to distinguish diverse frames by assigning different
timestamps for the target segment. We also try to reconstruct
more points in each frame. However, this does not lead to
improvements. It is possible that excessive raw points pro-
vide more low-level details and even noise, which does not
help to promote generalization and discrimination. Finally,
we choose to reconstruct one colorized segment with 256
points in each frame.

Why utilize hard negative samples? The tokens of the
former S−2 segments are temporally adjacent to the pre-
dictions and targets, and therefore they contain similar spa-
tiotemporal semantics. These tokens are mined as hard neg-
atives to enhance local perception and discriminability. The
results in Table 7 show that the accuracy of local contrastive
prediction without hard negatives is 91.34%, and the accu-
racy increases to 92.23% after adding them. This indicates
that mining hard negative samples is crucial for the design
of self-supervised tasks.

How the effects of each task? We respectively evaluate
the effectiveness of local contrastive prediction, global con-
trastive prediction, and point cloud sequence reconstruction
tasks. The results are shown in Table 7. The hard negatives
can increase the performance of local contrastive prediction
by about 1%. Clearly, by introducing the reconstruction task,
the finetune performance has increased by 0.83%, which in-
dicates reconstructing raw inputs helps to learn semantics
information suitable for 3D action recognition. Compared
with only utilizing local contrastive prediction, the introduc-
tion of global contrastive prediction increases the accuracy

Method Acc.
Local contrastive prediction 91.34
Global contrastive prediction 90.89
Sequence reconstruction 87.10

Local contrastive prediction with hard negatives 92.23
Local and global contrastive prediction 92.55
Contrastive prediction and reconstruction 93.38

Table 7: Ablation studies on architecture design.

(a) (b) (c)

Figure 3: Visualization of the t-SNE features. We visualize
the feature distributions of our self-supervised encoder (a)
after pretraining, (b) after finetuning on NTU-RGBD 60, and
(c) after finetuning on MSRAction3D.

by 0.32%. This shows that global discrimination and local
perception are all essential for capturing multi-granularity
representations. Overall, the most beneficial paradigm is to
combine contrastive prediction and point cloud sequence re-
construction.

Visualization
In Figure 3, we visualize the feature distributions of t-SNE
after pretraining (a) and after finetuning (b)(c). It can be seen
that after pretraining, there are approximate boundaries be-
tween 60 categories. This illustrates that self-supervised pre-
training can learn certain high-level semantics. From Figure
3(c), it is observed that each cluster has clear outlines, indi-
cating that the representations learned by our self-supervised
framework have strong generalization and transferability.
Moreover, the proposed framework can guide the encoder
to obtain domain-agnostic and general knowledge.

Conclusion
In this work, we propose a unified contrastive prediction and
reconstruction self-supervised framework for dynamic point
cloud understanding. By integrating discriminative and gen-
erative self-supervised tasks, it makes the learned represen-
tations with both powerful instance discrimination and lo-
cal perception. Extensive experiments under linear evalua-
tion, semi-supervised learning, and transfer learning are per-
formed on multiple benchmarks to demonstrate the superi-
ority of our self-supervised framework. In the future, we will
explore more dynamic point cloud related downstream tasks.
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