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Abstract

Gradient inversion attacks on federated learning systems re-
construct client training data from exchanged gradient infor-
mation. To defend against such attacks, a variety of defense
mechanisms were proposed. However, they usually lead to an
unacceptable trade-off between privacy and model utility. Re-
cent observations suggest that dropout could mitigate gradi-
ent leakage and improve model utility if added to neural net-
works. Unfortunately, this phenomenon has not been system-
atically researched yet. In this work, we thoroughly analyze
the effect of dropout on iterative gradient inversion attacks.
We find that state of the art attacks are not able to reconstruct
the client data due to the stochasticity induced by dropout dur-
ing model training. Nonetheless, we argue that dropout does
not offer reliable protection if the dropout induced stochastic-
ity is adequately modeled during attack optimization. Conse-
quently, we propose a novel Dropout Inversion Attack (DIA)
that jointly optimizes for client data and dropout masks to
approximate the stochastic client model. We conduct an ex-
tensive systematic evaluation of our attack on four seminal
model architectures and three image classification datasets
of increasing complexity. We find that our proposed attack
bypasses the protection seemingly induced by dropout and
reconstructs client data with high fidelity. Our work demon-
strates that privacy inducing changes to model architectures
alone cannot be assumed to reliably protect from gradient
leakage and therefore should be combined with complemen-
tary defense mechanisms.

1 Introduction
Federated Learning strategies were designed to leverage the
collaborative use of distributed data to learn a common
machine learning model. Since training data is not shared
between participating clients, systemic privacy risks can
be mitigated (Kairouz et al. 2021). Recent work, however,
shows that the privacy of participating clients can be com-
promised by reconstructing sensitive data from gradients or
model states that are exchanged during the federated train-
ing. The most versatile reconstruction techniques are real-
ized as iterative gradient inversion attacks (Zhu and Han
2020; Zhao, Mopuri, and Bilen 2020; Wei et al. 2020; Geip-
ing et al. 2020; Yin et al. 2021; Lu et al. 2022; Hatamizadeh
et al. 2022). These attacks optimize randomly initialized
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Figure 1: Reconstructing data from gradients without and
with dropout. (a) Original image. (b) State of the art IG at-
tack (Geiping et al. 2020) without dropout. (c) State of the
art IG attack (Geiping et al. 2020) with dropout. (d) Our pro-
posed Dropout Inversion Attack with dropout.

dummy images so that their resulting dummy gradients
match the targeted client gradient.

Defense strategies to protect against such attacks are
based on: (1) adjustments to the training process, e.g. in-
creasing the number of local training iterations or the batch-
size (Wei et al. 2020), (2) changes to the input data, e.g.
perturbation or input encryption (Huang et al. 2020a,b), (3)
perturbation of exchanged gradient information, e.g. through
the addition of noise, compression or pruning (Bonawitz
et al. 2017; Jayaraman and Evans 2019; Zhu and Han 2020;
Sattler et al. 2020; Lyu 2021; Wei and Liu 2021), or (4)
application of specifically designed architectural features or
modules (Scheliga, Mäder, and Seeland 2022b,a; Sun et al.
2021). The use of most defense mechanisms, however, re-
sults in a trade-off between privacy and model utility (Dwork
and Roth 2013; Jayaraman and Evans 2019; Zhu and Han
2020; Wei et al. 2020; Huang et al. 2021; Scheliga, Mäder,
and Seeland 2022b,a).

Dropout is a regularization technique that aims to reduce
overfitting in deep neural networks (Hanson 1990; Hinton
et al. 2012). While the use of dropout can boost the per-
formance of neural networks (Srivastava et al. 2014), recent
publications suggest that it could also protect shared gradi-
ents from gradient leakage (Wei et al. 2020; Zheng 2021).
Inspired by these observations, we show that the stochastic-
ity introduced by dropout indeed protects shared gradients
from gradient leakage through iterative gradient inversion
attacks. However, we claim that this protection is only ap-
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parent, because the attacker has no access to the specific re-
alization of the stochastic client model used during training.
Moreover, we argue that an attacker can sufficiently approx-
imate this specific realization of the client model using the
shared gradient information. To reveal the vulnerability of
dropout protected models, we formulate a novel Dropout
Inversion Attack (DIA) that jointly optimizes for client data
and the dropout masks applied during local training.

Our contributions can be summarized as follows:

• We systematically show that the application of dropout
during neural network training seems to prevent gradient
leakage by iterative gradient inversion attacks.

• We formulate a novel attack that, contrary to previous at-
tacks, successfully reconstructs client training data from
dropout protected shared gradients. Note that the compo-
nents of our proposed attack can be universally used to
extend any other iterative gradient inversion attack.

• We perform an extensive systematic evaluation of our at-
tack on two dense connection based (Multi Layer Percep-
tron, Vision Transformer) and two CNN based (LeNet,
ResNet) model architectures as well as three image clas-
sification datasets of increasing complexity (MNIST,
CIFAR-10, ImageNet).

2 Related Work
2.1 Gradient Inversion Attacks
Consistent with related work (Geiping et al. 2020; Enthoven
and Al-Ars 2020; Yin et al. 2021; Kaissis et al. 2021; Jin
et al. 2021; Scheliga, Mäder, and Seeland 2022b,a; Zhang
et al. 2022; Gupta et al. 2022), we assume a honest-but-
curious server threat model. In this scenario the attacker
has insight into the training process, i.e. knowledge of the
model F , the loss function L used to optimize the model pa-
rameters θ and the client gradient ∇Lθ(F (x), y) which is
exchanged during federated training. Given this knowledge,
the attacker aims to reconstruct training data (x, y) of clients
that participate in federated training.

To achieve this, the attacker iteratively minimizes the dis-
tance D between the client gradient ∇Lθ(F (x), y) and a
dummy gradient ∇Lθ(F (x′), y′). The dummy gradient is
obtained by forward propagation of randomly initialized
dummy data (x′, y′) through the model F . A gradient based
optimizer, e.g. Adam (Kingma and Ba 2014), adjusts the
dummy data (x′, y′) until convergence.

Attack optimization can be formally expressed as:

argmin
(x′,y′)

D(∇Lθ(F (x), y),∇Lθ(F (x′), y′)) + λΩ. (1)

Depending on the specific attack, the regularization term λΩ
can take different forms. Generally λΩ aims to stabilize op-
timization and to improve reconstruction quality.

The first iterative gradient inversion attack was introduced
by Zhu et al. (Zhu and Han 2020). They use Euclidean dis-
tance for D and no regularization. The authors of (Zhao,
Mopuri, and Bilen 2020) and (Yin et al. 2021) proposed
methods to analytically reconstruct the ground-truth labels
y in advance. As long as the training batch contains disjoint

classes, an attacker can reliably reconstruct label informa-
tion. This eliminates optimization for y′ in Eq. 1 and accel-
erates the overall attack.

Geiping et al. further improve the reconstruction process
with their Inverting Gradients (IG) attack (Geiping et al.
2020). They minimize the cosine distance between client
and dummy gradients instead of Euclidean distance to disen-
tangle gradient direction and magnitude. Furthermore, they
add a total variation (Rudin, Osher, and Fatemi 1992) prior
of the dummy image x′ as regularization term to increase the
fidelity of their reconstructions.

Lu et al. (Lu et al. 2022) specifically target transformer
based architectures. They find that the trainable position
embedding in transformers can be greatly abused for re-
construction. Their iterative Attention PRIvacy Leakage
(APRIL) attack uses Euclidean distance for D and adds the
cosine distance between client and dummy gradients of the
positional embedding as regularization term.

Other related work in the area of iterative gradient inver-
sion attacks mainly focuses to improve the reconstruction
quality through the choice of the 1) gradient distance func-
tionD, 2) regularization term Ω, 3) initialization of the dum-
mies (x′, y′) and 4) label reconstruction method (Wei et al.
2020; Wang et al. 2020; Yin et al. 2021; Jin et al. 2021; Jeon
et al. 2021). A detailed overview of recent attack combina-
tions can be found in (Li et al. 2022) and (Zhang et al. 2022).

2.2 Dropout
Dropout (Hanson 1990; Hinton et al. 2012) is a commonly
used regularization method that randomly masks the output
of neurons with a chosen probability p. Hence, each for-
ward pass realizes a different version of the neural network.
This makes dropout an efficient technique for model averag-
ing and in turn prevents models from overfitting to training
data (Srivastava et al. 2014).

Formally, we consider a neural network F : X → Y ,
F (x) = y to be a deterministic function that calculates an
output y ∈ Y from an input x ∈ X . Given the output z(i) of
the ith layer L(i) in F , a succeeding dropout layer L(i)

D mul-
tiplies z(i) element-wise with a random dropout mask ψ(i)

and scales the remaining outputs according to the dropout
rate p to preserve the output magnitude:

L
(i)
D (z(i)) =

1

1− p
· z(i) ◦ ψ(i) (2)

For every dropout layer L(i)
D i ∈ {1, . . . , l}, ψ(i) is a vector

of independent Bernoulli variables, i.e. ψ(i) ∼ Bernoulli(p).
We define Ψ̃p = {ψ(1), . . . , ψ(l)} as the set of l random
dropout masks for a neural network with l dropout layers.

The use of dropout turns a deterministic neural network
into a stochastic one. Hence, the set of all functions F that
depend on the dropout masks Ψ̃p is Fp = {FΨ|Ψ ∼ Ψ̃p}.
We denote Ψ as one arbitrary but fixed sample from Ψ̃p. At
each training step a new Ψ is sampled. Consequently, this re-
alizes a different version FΨ ∈ Fp of the neural network that
is used for forward propagation and gradient calculation.

As dropout introduces noise into the training process,
a decrease in reconstruction quality of iterative gradient
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inversion attacks is observed in recent work (Wei et al.
2020; Zheng 2021). Contrary to these findings, Enthoven et
al. (Enthoven and Al-Ars 2020) find that the use of dropout
after the first fully connected layer of a neural network in-
creases the success to analytically reconstruct client data
from larger batches. Such analytical attacks, however, can
be easily mitigated by removing bias weights from the
model (Scheliga, Mäder, and Seeland 2022a).

3 Dropout vs Gradient Leakage
Although no systematic studies have yet been conducted, re-
cent observations suggest that dropout can decrease the suc-
cess of iterative gradient inversion attacks (Wei et al. 2020;
Zheng 2021). To confirm these observations, we first con-
duct a series of experiments that evaluate the effect of in-
creased dropout rates on reconstruction quality and model
utility. Next, we argue that an attacker would be able to suc-
cessfully reconstruct client training data if given knowledge
about the specific realization of the stochastic client model.
Therefore, we conduct proof of concept experiments that
consider an attacker who knows the dropout masks applied
during client model training, i.e. a well-informed attacker.

3.1 Attacking Dropout Protected Models
To confirm the impact of dropout on iterative gradient in-
version attacks, we first attack a Multi Layer Perceptron
(MLP) (Rumelhart, Hinton, and Williams 1985) and a Vi-
sion Transformer (ViT) (Dosovitskiy et al. 2020) trained on
the MNIST (Deng 2012) and CIFAR-10 (Krizhevsky, Hin-
ton et al. 2009) datasets. We chose these architectures as they
typically use dropout as regularization technique. We use the
publicly available PyTorch implementation of IG1 provided
by (Geiping et al. 2020) as gradient inversion attack.

To observe the effect of dropout on model utility we
follow the federated scenario and hyperparameters used
in (Scheliga, Mäder, and Seeland 2022a). We report the test
accuracy of the global model state after convergence. More
details on the experimental setup can be found in Section 5.

When dropout is used, the attacker has two options to
generate the dummy gradients required for attack optimiza-
tion. Analogous to client training, the first option uses
the model in training mode, i.e. the stochastic model. In
this case, the attacker applies randomly sampled dropout
masks ΨA in each forward propagation so that a differ-
ent realization FΨA

∈ Fp is used in each iteration dur-
ing attack optimization. Consequently, the dummy gradients
∇Lθ(FΨA

(x′), y′)) differ greatly for each attack iteration
and are ”elusive and unable to converge” (Wei et al. 2020)
to match the client gradient∇Lθ(FΨC

(x), y)).
The second option uses the model in inference mode, i.e.

dropout is not applied. Note that in this case all dropout
masks ψ(i)

A = I ∀i = 1, . . . , l. Hence, the same realiza-
tion FΨA

∈ Fp=0 = {F} is used in each iteration dur-
ing attack optimization. The attacker’s dummy gradients
are more stable compared to when the stochastic model is

1https://github.com/JonasGeiping/invertinggradients

IG WIIG
Model p Accuracy [%] ↑ SSIM ↑ SSIM ↑

M
N

IS
T

MLP

0.00 98.53 1.00 -
0.25 98.28 0.79 1.00
0.50 97.48 0.59 1.00
0.75 93.50 0.30 0.82

ViT

0.00 98.76 0.98 -
0.25 98.98 0.04 0.99
0.50 98.67 0.02 0.99
0.75 87.36 0.02 1.00

C
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A
R

-1
0 MLP

0.00 54.72 1.00 -
0.25 52.52 0.68 0.98
0.50 38.89 0.51 0.84
0.75 27.09 0.38 0.78

ViT

0.00 64.47 0.87 -
0.25 70.83 0.01 0.93
0.50 67.01 0.01 0.96
0.75 45.08 0.00 0.95

Figure 2: Model accuracy after federated training of a MLP
and ViT on MNIST and CIFAR-10 as well as SSIM com-
puted from gradients attacked with IG. WIIG indicates that
the attacker has knowledge of the victim dropout masks ΨV .
Arrows indicate direction of improvement. Bold and italic
formatting highlight best and worst results respectively.

used. However, since the client used dropout during train-
ing, ΨA ̸= ΨC causes the dummy gradients to differ from
the client gradients despite attack optimization.

Fig. 2 shows the global model accuracy after federated
training of the MLP and ViT on MNIST and CIFAR-10,
as well as the privacy as measured by SSIM. Dropout rates
were selected as p ∈ {0, 0.25, 0.50, 0.75}. With increasing
p the SSIM steadily decreases for the MLP; hence, privacy
increases. However, we also observe a negative impact of
dropout on MLP model utility. Findings in (Hofmann and
Mäder 2021) confirm this effect. Furthermore, Piotrowski et
al. (Piotrowski, Napiorkowski, and Piotrowska 2020) argue
that MLPs with a low width require very low dropout rates
to achieve improvements in model utility.

The effect of dropout is even more pronounced for the ViT
architecture. A moderate dropout rate p = 0.25 causes the
SSIM to immediately drop from 0.98/0.87 to 0.04/0.01 for
MNIST/CIFAR-10, respectively. No visually recognizable
information can be reconstructed (cf. Fig. 4 and 5). Further-
more, the accuracy of the ViT benefits from dropout with
an absolute increase of 0.22%/6.36% for MNIST/CIFAR-
10 at p = 0.25. Note that we have also used APRIL (Lu
et al. 2022) to attack the ViT but found IG to perform better
when dropout is applied. More detailed results on the com-
parison of IG and APRIL, as well as more reconstruction
quality metrics can be found in the technical appendix. To
ensure a consistent experimental setup, we stick with IG as
baseline attack for the remaining experiments.

Fig. 3 illustrates the behavior of the reconstruction loss
during attack optimization. Without dropout, i.e. p = 0 and
hence ΨA = ΨC (blue lines in Fig. 3), the dummy gradi-
ents quickly converge towards the client gradients. The op-
timization becomes unstable as soon as dropout is used, e.g.
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Figure 3: Exemplary reconstruction loss for a MLP and ViT
on CIFAR-10. WIIG indicates that the attacker has knowl-
edge of the client dropout masks ΨC .

with a dropout rate of p = 0.25. The attacker is forced to
base the attack optimization on a model realization FΨA

that
is different from the realization FΨC

used during training.
This causes a mismatch between dummy and client gradi-
ents. Corresponding visual examples are displayed in Fig. 4.

3.2 The Well-Informed Attacker
The previous experiments show that the attack optimization
cannot converge because the attacker and the client calculate
their gradients based on different realizations FΨA

and FΨC
.

We argue that the attacker would be able to reconstruct the
client’s training data if she is either informed about FΨC

or
finds a suitable approximation thereof. As a proof of con-
cept, we conduct a series of experiments where the attacker
applies the same dropout masks that were applied by the
client during training, i.e. we use a well-informed attacker.
Consequently, the attack optimization is based on the same
realization FΨA

= FΨC
, and the gradient matching loss can

be effectively minimized as in a model without dropout.
To empirically validate this argument we give the attacker

knowledge of ΨC . During the iterative attack optimization,
the attacker uses ΨC in the forward propagation of the
dummy images to compute the dummy gradients. We denote
this as well-informed inverting gradients attack (WIIG).

Fig. 2 displays the reconstruction quality measured in
SSIM for the well-informed attacker. The MLP still shows a
slight decrease in SSIM for high dropout rates p. However,
even with the highest considered dropout rate p = 0.75 the
SSIM is increased by 0.52/0.40 compared to the baseline
IG attack for MNIST/CIFAR-10, respectively.

The increase in reconstruction quality for the ViT is even
more remarkable. For dropout rates p > 0, the IG based re-
constructions yield a SSIM≈ 0. The well-informed attacker
WIIG achieves almost perfect reconstructions, i.e. SSIM
≈ 1, for both datasets. Interestingly, the SSIM increases
compared to IG with p = 0. This indicates that dropout
could, in principle, allow even better reconstructions. We
attribute this effect to the attacker’s additional knowledge
about ΨC . Because the ground truth masks ΨC are applied
during forward propagation, dropout related zero values in
the client and dummy gradients match by default. The ad-
ditional information makes the problem easier as it reduces
the total number of gradient values that need to be matched
to find an optimal solution.
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Figure 4: Exemplary reconstruction progress for a MLP and
ViT on CIFAR-10. WIIG indicates that the attacker has
knowledge of the client dropout masks ΨC . Numbers on the
ordinate indicate the attack iteration.

4 DIA – Dropout Inversion Attack
In a realistic scenario the attacker does not have informa-
tion on the client’s dropout masks ΨC used during training.
However, we argue that if the attacker finds a close enough
approximation FΨA

≈ FΨC
, she still bypasses the privacy

inducing effect of dropout.
Assuming an honest-but-curious threat model, the at-

tacker has knowledge of the model architecture and the po-
sitions of dropout layers in the model. To find a realiza-
tion FΨA

∈ Fp that approximates FΨC
, the attacker has

to find dropout masks ψ(1)
A , . . . , ψ

(l)
A such that ψ(i)

A ≈ ψ
(i)
C

∀i = 1, ..., l, where ψ(1)
C , . . . , ψ

(l)
C are the dropout masks

that were applied during the forward propagation of a local
client training step.

To find a realization FΨA
≈ FΨC

, we propose to optimize
the dropout masks ΨA used for the forward propagation of
dummy data during the gradient inversion attack. For each
dropout layer the corresponding mask ψ(i)

A is initialized ran-
domly from a Bernoulli distribution2 with probability p. In-
stead of optimizing solely for the dummy data (x′, y′), the
attacker optimizes the dropout masks ΨA and the dummy
data jointly. We rewrite the optimization problem as follows:

argmin
(x′,y′,ΨA)

D(∇Lθ(FΨC (x), y),∇Lθ(FΨA(x
′), y′)) + λΩ. (3)

The pseudo code for our proposed Dropout Inversion Attack
is given as Algorithm 1.

To calculate the dummy gradient ∇Lθ(FΨA
(x′), y′)) the

attacker forwards the dummy image x′ through the model
realization FΨA

. The reconstruction loss between the shared
client gradient and dummy gradient is computed and back-
propagated. The gradients for the dummy data (x′, y′) and

2Other initializations are discussed in the technical appendix. It
can be found at: https://arxiv.org/abs/2208.06163.
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Algorithm 1: Dropout Inversion Attack
Input: F : neural network; L: training loss function; D: gradient distance function;

∇C = ∇Lθ(FΨC
(x), y): shared client gradient; p: dropout rate; η: learning rate

Output: (x′, y′): training data reconstructions; ΨA = {ψ(1)
A , . . . ψ

(l)
A }: learned dropout masks

1: x′, y′ ← N (0, 1); ψ(1)
A , . . . , ψ

(l)
A ← Bernoulli(p); ▷ initialize dummy data and dropout masks

2: while not converged do ▷ reiterate until some optimization criterion is reached
3: ∇A ← ∇Lθ(FΨA

(x′), y′); ▷ calculate dummy gradient
4: LA ← D(∇C ,∇A); ▷ calculate gradient distance
5: x′ ← x′ − η δLA

δx′ ; y′ ← y′ − η δLA

δy′ ; ψ(i)
A ← ψ

(i)
A − η

δLA

δψ
(i)
A

∀i ∈ 1, ..., l; ▷ update dummy data and dropout masks

6: end while
7: return (x′, y′), ΨA

the masks ψ(i)
A are calculated and used for optimization.

Note that elements of the client dropout masks ψ(i)
C ∈ {0, 1}

are binary, whereas the optimized masks ψ(i)
A ∈ [0, 1] are

fuzzy, since they are adjusted iteratively. We found that dis-
cretization of the masks destabilizes the attack optimization.
To avoid scaling effects, we clip the masks between 0 and 1.
We provide a PyTorch implementation of DIA3.

5 Experiments
We use MNIST (Deng 2012) and CIFAR-10 (Krizhevsky,
Hinton et al. 2009) datasets that are separated into train and
test splits according to the benchmark protocols. For the at-
tacks, we randomly sample a victim client dataset of 128
images from the training data of one federated client as used
in the training. For experiments on ImageNet (Russakovsky
et al. 2015), we randomly sample 128 images from different
classes from the training dataset. Client gradients are com-
puted by performing one training step on victim client data.

Initial experiments are carried out on a Multi Layer Per-
ceptron (MLP) (Rumelhart, Hinton, and Williams 1985)
and a small version of a Vision Transformer (ViT) (Doso-
vitskiy et al. 2020). For experiments conducted on CNN
based architectures we modify the LeNet implementation
from (Zhao, Mopuri, and Bilen 2020) and a ResNet-18 (He
et al. 2016) by adding a dropout layer right before the fi-
nal fully connected classification layer. We use IG (Geiping
et al. 2020) as baseline attack. More details on the model ar-
chitectures, attack configuration and hyperparameter selec-
tion can be found in the technical appendix.

To measure reconstruction quality we calculate the Struc-
tural Similarity (SSIM) (Wang et al. 2004) between the
original and reconstructed images. Higher SSIM indicates
higher reconstruction quality. Additional metrics, i.e. MSE,
PSNR and LPIPS, are reported in the technical appendix.

To measure the similarity between the approximated
modelFΨA

and the client modelFΨC
, we compute the Mean

Mask Distance (MMD) between the optimized dropout
masks ΨA and the client’s dropout masks ΨC :

MMD(ΨA,ΨC) =
1

l

l∑
i=1

||ψ(i)
A − ψ

(i)
C ||

2. (4)

3https://github.com/dAI-SY-Group/DropoutInversionAttack
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Figure 5: Example reconstructions for batchsize B = 1 for
MLP and ViT on CIFAR-10.

Hence, MMD = 0 indicates FΨA
= FΨC

, i.e. the attacker
model equals the client model. For each metric we report the
average across the 128 samples of each victim client dataset.

5.1 Dropout Inversion Attack
In the first set of experiments the MLP and ViT with batch-
sizes B ∈ {1, 4, 8, 16} are attacked. Although model utility
did not benefit from dropout rates p > 0.25 (cf. Fig. 2), we
choose p ∈ {0.25, 0.50, 0.75} to assess the efficacy of DIA
at increased difficulty. Example reconstructions are visual-
ized in Fig. 5. Numeric results are reported in Fig. 6.

We find that, in contrast to IG (cf. Fig. 2), DIA is able
to successfully reconstruct client data from shared gradients
even if dropout was used during model training. However,
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SSIM decreases with increasing dropout rates and batch-
sizes. For the MLP with dropout rate p = 0.75 and batch-
size B = 16, DIA based reconstructions achieve a SSIM
of 0.8/0.63 on MNIST/CIFAR-10. For the ViT, increased p
and B affect the reconstruction quality more notably. SSIM
drops below a critical value of 0.6 if p ≥ 0.5 and B ≥ 4.
However, dropout rates p ≥ 0.25 also have negative impact
on model utility (cf. Fig. 2) and should be avoided for ViTs.

We observe that the joint optimization of dummy data
and dropout masks in DIA finds a suitable approximation
FΨA

≈ FΨC
that allows to reconstruct the client data. For

the ViT, DIA based reconstructions achieve smaller SSIM
compared to WIIG based reconstructions (cf. Fig. 2), i.e. if
the attacker is informed about ΨC . In fact, we observe an
inverse correlation between SSIM and MMD (cf. Fig. 6(b)),
i.e. high reconstruction quality (high SSIM) correlates with
small mask distance (low MMD), which is a measure for
the similarity between FΨA

and FΨC
. Since dropout masks

have to be approximated per sample, increased batchsizes B
increase the number of attack parameters. In addition, dif-
ferent samples in a batch cause overlapping neuron activa-
tions (Pan et al. 2020) and lead to joint gradients. This in-
creases the difficulty of the attack, as can be observed by
decreased SSIM and increased MMD in Fig. 6.

5.2 Improving Dropout Mask Approximations
We observe that masks optimized by DIA deviate from client
masks with increasing dropout rate and batchsize. To mit-
igate this effect, we propose to regularize the optimized
masks ΨA by Ω (ΨA) to match the client’s dropout rates:

Ω (ΨA) =

l∑
i=1

∣∣∣∣∣p−
(
1−
||ψ(i)

A ||
ni

)∣∣∣∣∣ , (5)

where ni is the size of dropout mask ψ
(i)
A . The client’s

dropout rate p is part of the model architecture and hence
known by the attacker by default (cf. Sec. 2.1).

We evaluate the efficacy of Ω (ΨA) for a fixed dropout
rate of p = 0.25 since higher rates did not improve model
utility (cf. Fig. 2). In addition, we tune the impact of Ω (ΨA)
by weighting with λmask ∈ {10−4, 10−3, 10−2}.

The results of this mask regularization are displayed in
Fig. 6 (c). As the SSIM for the MLP is already close to
1, only marginal improvement is observed upon addition of
Ω (ΨA). For the ViT the added mask regularization shows
a notable increase in SSIM and hence improved reconstruc-
tion quality, especially for B > 1. Since we find our pro-
posed mask regularization to improve reconstruction quality,
we utilize it with λmask = 10−4 for all further experiments.

5.3 Attacking Dropout at Higher Scales
Since DIA jointly optimizes for dummy data and dropout
masks, the number of optimized parameters increases with
(1) the number of dropout layers l in the model and (2) the
input batchsize. ViTs also use an image patch embedding;
hence, both input dimensions and batchsize further influence
the number of parameters. We therefore want to investigate
the applicability of our proposed attack on a state of the art

(a) SSIM for different dropout rates p and batchsizes B.

(b) MMD for different dropout rates p and batchsizes B.

(c) SSIM for different regularization parameter selections λmask and
batchsizes B with fixed dropout rate p = 0.25.

Figure 6: DIA reconstruction results for MLP (left) and ViT
(right) on MNIST and CIFAR-10.

sized ViT-B/16 and a practical image classification dataset,
i.e. ImageNet. Following the recommendations of the orig-
inal ViT paper, we apply a dropout rate of p = 0.1 for the
ViT-B/16 (Dosovitskiy et al. 2020).

Fig. 7 shows that even for such a low dropout rate p, IG is
not able to reconstruct the data. In comparison, DIA based
reconstructions achieve a SSIM of 0.72. As observed before,
the reconstruction quality for DIA with dropout is higher
compared to IG without dropout. Reconstruction examples
are visualized in Fig. 8.

5.4 Attacking Dropout in CNNs
Recent work commonly evaluates gradient inversion attacks
for CNN based architectures like LeNet and ResNet (Zhao,
Mopuri, and Bilen 2020; Geiping et al. 2020; Wei et al.
2020; Yin et al. 2021). Furthermore, a drop in reconstruction
quality was reported when dropout is used before the output
layer of a LeNet (Zheng 2021). We therefore investigate the
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IG Ours
Model p SSIM ↑ SSIM ↑

IN ViT-B/16 0.00 0.56 -
0.10 0.01 0.72

M
N

IS
T

LeNet

0.00 0.95 -
0.25 0.57 0.94
0.50 0.40 0.95
0.75 0.23 0.94

ResNet

0.00 0.88 -
0.25 0.37 0.94
0.50 0.18 0.93
0.75 0.09 0.93

C
IF

A
R

-1
0 LeNet

0.00 0.89 -
0.25 0.48 0.89
0.50 0.32 0.88
0.75 0.21 0.88

ResNet

0.00 0.64 -
0.25 0.28 0.71
0.50 0.15 0.70
0.75 0.08 0.71

Figure 7: SSIM computed from gradients with B = 1 at-
tacked with IG and DIA (Ours) for ViT-B/16 on ImageNet
(IN) as well as LeNet and ResNet on MNIST and CIFAR-10.
Arrows indicate direction of improvement. Bold and italic
formatting highlight best and worst results respectively.

efficacy of our proposed attack on these CNN based classi-
fiers if dropout is applied before the output layer. The results
in Fig. 7 confirm that for the baseline IG attack reconstruc-
tion quality decreases for increased dropout rates for both
model architectures. In contrast, when DIA is used as at-
tack, client data is successfully reconstructed regardless of
enabled dropout. Moreover, compared to the MLP and ViT
architectures, SSIM remains at the same level even with in-
creased dropout rates. We argue that since the CNN based
architectures utilize only one dropout layer, the gradients of
the other layers retain sufficient information for reconstruc-
tion. Reconstruction examples are visualized in Fig. 9.

6 Conclusion
Recent work suggests that dropout in neural networks im-
proves data privacy during federated learning, because it
seems to prevent gradient inversion attacks. We formalize
the impact of dropout on such inversion attacks based on
specific realizations of a stochastic model. Dropout causes
an inherent mismatch between the model realizations of
the attacker and client, which in turn prevents reconstruc-
tion of client data. However, this offers a premature sense
of security, because an attacker can still reconstruct client
data either by being informed about the client’s dropout
masks or by approximating them. To showcase the vulner-
ability of dropout protected neural networks, we formulate
a novel Dropout Inversion Attack (DIA) that jointly opti-
mizes for client data and dropout masks to approximate the
client’s model realization. We conduct an extensive system-
atic empirical study to investigate the impact of dropout
on four seminal model architectures and three image clas-
sification datasets of increasing complexity. We show that
our proposed attack successfully bypasses the seemingly in-
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Figure 8: Example reconstructions for batchsize B = 1 for
ViT-B/16 on ImageNet.
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Figure 9: Example reconstructions for batchsize B = 1 for
LeNet and ResNet on CIFAR-10.

duced protection of dropout and allows to reconstruct data
with high fidelity. Although we evaluate our proposed attack
solely in an image classification setting, we expect DIA to be
universally applicable since the underlying mechanism can
be trivially integrated into other iterative inversion attacks.
We confirm that the strategic use of architectural features,
such as dropout, cannot be assumed to sufficiently protect
client privacy in federated learning scenarios. We conclude
that a combination of complementary defense mechanisms
should be applied in order to protect privacy and maintain
model utility.
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