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Abstract

In this paper, hypernetworks are trained to generate behav-
iors across a range of unseen task conditions, via a novel TD-
based training objective and data from a set of near-optimal
RL solutions for training tasks. This work relates to meta RL,
contextual RL, and transfer learning, with a particular focus
on zero-shot performance at test time, enabled by knowledge
of the task parameters (also known as context). Our techni-
cal approach is based upon viewing each RL algorithm as a
mapping from the MDP specifics to the near-optimal value
function and policy and seek to approximate it with a hyper-
network that can generate near-optimal value functions and
policies, given the parameters of the MDP. We show that, un-
der certain conditions, this mapping can be considered as a
supervised learning problem. We empirically evaluate the ef-
fectiveness of our method for zero-shot transfer to new re-
ward and transition dynamics on a series of continuous con-
trol tasks from DeepMind Control Suite. Our method demon-
strates significant improvements over baselines from multi-
task and meta RL approaches.

1 Introduction
Adult humans possess an astonishing ability to adapt their
behavior to new situations. Well beyond simple tuning, we
can adopt entirely novel ways of moving our bodies, for ex-
ample walking on crutches with little to no training after
an injury. The learning process that generalizes across all
past experience and modes of behavior to rapidly output the
needed behavior policy for a new situation is a hallmark of
our intelligence.

This paper proposes a strong zero-shot behavior gener-
alization approach based on hypernetworks (Ha, Dai, and
Le 2016), a recently proposed architecture allowing a deep
hyper-learner to output all parameters of a target neural net-
work, as depicted in Figure 1. In our case, we train on the full
solutions of numerous RL problems in a family of MDPs,
where either reward or dynamics (often both) can change
between task instances. The trained policies, value functions
and rolled-out optimal behavior of each source task is the
training information from which we can learn to generalize.
Our hypernetworks output the parameters of a fully-formed
and highly performing policy without any experience in a
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Figure 1: Our method uses hypernetworks to approximate
an RL algorithm as a mapping from a family of parameter-
ized MDPs to a family of near-optimal solutions, in order to
achieve zero-shot transfer to new reward and dynamics set-
tings.

related but unseen task, simply by conditioning on provided
task parameters.

The differences between the tasks we consider leads to
large and complicated changes in the optimal policy and
induced optimal trajectory distribution. Learning to pre-
dict new policies from this data requires powerful learners
guided by helpful loss functions. We show that the abstrac-
tion and modularity properties afforded by hypernetworks
allow them to approximate RL generated solutions by map-
ping a parameterized MDP family to a set of optimal solu-
tions. We show that this framework enables achieving strong
zero-shot transfer to new reward and dynamics settings by
exploiting commonalities in the MDP structure.

We perform experimental validation using several fami-
lies of continuous control environments where we have pa-
rameterized the physical dynamics, the task reward, or both
to evaluate learners. We carry out contextual zero-shot eval-
uation, where the learner is provided the parameters of the
test task, but is not given any training time – rather the
very first policy execution at test time is used to measure
performance. Our method outperforms selected well-known
baselines, in many cases recovering nearly full performance
without a single timestep of training data on the target tasks.
Ablations show that hypernetworks are a critical element in
achieving strong generalization and that a structured TD-like
loss is additionally helpful in training these networks.

Our main contributions are:

1. The use of hypernetworks as a scalable and practical ap-
proach for approximating RL algorithms as a mapping
from a family of parameterized MDPs to a family of near-
optimal policies.
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2. A TD-based loss for regularization of the generated poli-
cies and value functions to be consistent with respect to
the Bellman equation.

3. A series of modular and customizable continuous con-
trol environments for transfer learning across different
reward and dynamics parameters.

Our learning code, generated datasets, and custom con-
tinuous control environments, which are built upon
DeepMind Control Suite, are publicly available at:
https://sites.google.com/view/hyperzero-rl

2 Background
2.1 Markov Decision Processes
We consider the standard MDP that is defined by a 5-tuple
M = (S,A, T , R, γ), where S is the state space, A is the
action space, T : S ×A → Dist(S) is the transition dynam-
ics, R : S × A → R is the reward function and γ ∈ (0, 1]
is the discount factor. The goal of an RL algorithm is to find
a policy π : S → Dist(A) that maximizes the expected re-
turn defined as Eπ[Rt] = E[

∑T
k=0 γ

krt+k+1]. Value func-
tion V π(s) denotes the expected return from s under policy
π, and similarly action-value function Qπ(s, a) denotes the
expected return from s after taking action a under policy π:

Qπ(s, a) = Es′,r∼p(·|s,a),a′∼π(·|s′)
[ ∞∑
k=0

γkrt+k+1

∣∣∣s, a]
Value functions are fixed points of the Bellman equation
(Bellman 1966), or equivalently the Bellman operator Bπ:

Bπ[Q(s, a)] = Es′,r∼p(·|s,a),a′∼π(·|s′)
[
r + γQ(s′, a′)

]
Similarly, the optimal value functions V ∗(s) and Q∗(s, a)
are the fixed points of the Bellman optimality operator B∗.

2.2 General Value Functions
General value functions (GVF) extend the standard def-
inition of value functions Qπ(s, a) to entail the reward
function, transition dynamics and discount factor in addi-
tion to the policy, that is Qπ,R,T ,γ(s, a) (Sutton and Barto
2018). Universal value function approximators (UVFA)
(Schaul et al. 2015) are an instance of GVFs in which the
value function is generalized across goals g and is repre-
sented as Qπ(s, a, g). Naturally, this notion is used in goal-
conditioned RL (Andrychowicz et al. 2017) and multi-task
RL (Teh et al. 2017). Relatedly, general policy improvement
(GPI) aims to improve a generalized policy based on transi-
tions of several MDPs (Barreto et al. 2020; Harb et al. 2020;
Faccio et al. 2022b). The goal of our method in learning a
generalized mapping from MDP specifics to near-optimal
policies and value functions is closely related to the over-
all goal of GVFs and GPI. However, unlike such methods
we do not seek to improve a given generalized policy.

2.3 Hypernetworks
A hypernetwork (Ha, Dai, and Le 2016) is a neural network
that generates the weights of another network, often referred

to as the main network. While both networks have associated
weights, only the hypernetwork weights involve learnable
parameters that are updated during training. During infer-
ence, only the main network is used by mapping an input to
a desired target, using the weights generated by the hyper-
network. Since the weights of different layers of the main
network are generated through a shared learned embedding,
hypernetworks can be viewed as a relaxed form of weight
sharing across layers. It has been empirically shown that this
approach allows for a level of abstraction and modularity of
the learning problem (Galanti and Wolf 2020; Ha, Dai, and
Le 2016) which in turn results in a more efficient learning.
Notably, hypernetworks can be conditioned on the context
vector for conditional generation of the weights of the main
network (von Oswald et al. 2019). Similarly to von Oswald
et al. (2019), we condition the hypernetwork on the param-
eters (context) of the MDP to generate the near-optimal pol-
icy and value function based on the reward and dynamics
parameters.

3 HyperZero
The overarching goal of this work is to develop a framework
that allows for approximating RL solutions by learning the
mapping between the MDP specifics and the near-optimal
policy. A reasonable approximation can potentially allow for
zero-shot transfer and predicting the general behaviour of an
RL agent prior to its training. Beyond the standard premises
of zero-shot transfer learning (Taylor and Stone 2009; Tan
et al. 2018), a well-approximated mapping of an MDP to
near-optimal policies can have applications in reward shap-
ing, task visualization, and environment design.

3.1 Problem Formulation
This section outlines the assumptions and problem formu-
lation used in this paper. First, we define the parameterized
MDP family M as:

Definition 1 (Parameterized MDP Family). A parameter-
ized MDP family M is a set of MDPs that share the same
state space S , action spaceA, a parameterized transition dy-
namics Tµ, a parameterized reward function Rψ , and a dis-
count factor γ:

M = {Mi|Mi = (S,A, Tµi
, Rψi

, γ)},

where ψi ∼ p(ψ) and µi ∼ p(µ) are parameters ofMi, and
are assumed to be sampled from prior distributions.

Notably, the state space S and action space A in our def-
inition can be either discrete or continuous (e.g., an open
sub-space of Rn) spaces. Our definition of a parameterized
MDP family is related to contextual MDPs (Hallak, Di Cas-
tro, and Mannor 2015; Jiang et al. 2017), where the learner
has access to the context.

The key to our approximation is to assume that an RL al-
gorithm, once converged, is a mapping from an MDPMi∈
M to a near-optimal policy and the near-optimal action-
value function corresponding to the specific MDP Mi on
which it was trained. With a slight abuse of notation, we
denote the near-optimal policy as π∗

i and the near-optimal
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action-value function as Q∗
i :

Mi
RL Algorithm−−−−−−−→ π∗

i (a|s), Q∗
i (s, a). (1)

Notably, this view has precedent in prior works on learning
to shape rewards (Sorg, Lewis, and Singh 2010; Zheng, Oh,
and Singh 2018; Zheng et al. 2020), meta-gradients in RL
(Xu, van Hasselt, and Silver 2018; Xu et al. 2020), and the
operator view of RL algorithms (Tang, Feng, and Liu 2022).

Since our goal is to learn the mapping of Equation (1)
from a family of parameterized MDPs that share the simi-
lar functional form of parameterized transition dynamics Tµ
and reward function Rψ , we assume that the MDPMi can
be fully characterized by its parameters ψi and µi and the
functional forms of Rψ and Tµ; that is Mi ≡ M(ψi, µi).
Equation (1) can then be simplified as:

M(ψi, µi)
RL Algorithm−−−−−−−→π∗(a|s, ψi, µi), Q∗(s, a|ψi, µi),

(2)
where the near-optimal policies and action-value functions
are now functions of the reward parameters ψi and dynam-
ics parameters µi, in addition to their standard inputs. No-
tably, this formulation is closely related to prior works on
goal-conditioned RL (Andrychowicz et al. 2017; Schroecker
and Isbell 2020), and universal value function approximators
(UVFA) (Schaul et al. 2015; Borsa et al. 2018).

Consequently, our problem is formally defined as ap-
proximating the mapping shown in Equation (2) to ob-
tain the approximated near-optimal action-value function
Q̂ϕ(s, a|ψ, µ) and policy π̂θ(a|s, ψ, µ) that are parameter-
ized by ϕ and θ, respectively. Once such mapping is ob-
tained, one can predict and observe near-optimal trajectories
by rolling out the approximated policy π̂θ without necessar-
ily training the RL solver from scratch:

π̂θ(a|s, ψ, µ)
Policy Rollout in the Environment−−−−−−−−−−−−−−−−−→ τ̂(ψ, µ), (3)

where τ̂(ψ, µ) is the near-optimal trajectory corresponding
to the reward parameters ψ and dynamics parameters µ.

3.2 Generating Optimal Policies and Optimal
Value Functions with Hypernetworks

Our goal is to approximate the mapping described in Equa-
tion (2). To that end, we assume having access to a family of
near-optimal policies π∗

i that were trained independently on
instances of Mi∈M . A dataset of near-optimal trajectories
is then collected by rolling out each π∗

i on its corresponding
MDPMi. Thus, samples are drawn from the stationary state
distribution of the near-optimal policy dπ

∗
(s).

Consequently, the inputs to the learner are tuples of states,
reward parameters and dynamics parameters ⟨s, ψi, µi⟩ and
the targets are tuples of near-optimal actions and action-
values ⟨a∗, q∗⟩. We can frame the approximation problem
of Equation (2) as a supervised learning problem under the
following conditions:
Assumption 1. The parameters of the reward function Rψ
and transition dynamics Tµ are sampled independently and
identically from distributions over the parametersψi ∼ p(ψ)
and µi ∼ p(µ), respectively.

Hypernetwork

Figure 2: Diagram of our learning framework for universal
approximation of RL solutions. Given reward parameters ψi
and dynamics parameters µi, the hypernetwork HΘ gener-
ates weights of the approximated near-optimal policy π̂θ and
value function Q̂ϕ. The only learnable parameters are Θ.

Assumption 2. The RL algorithm that is to be approxi-
mated, as shown in Equations (1) and (2), is converged to
the near-optimal value function and policy.

Assumption 1 is a common assumption on the task distri-
bution in meta-learning methods (Finn, Abbeel, and Levine
2017). While Assumption 2 appears strong, it is related to
the common assumption made in imitation learning where
the learner has access to expert demonstrations (Ross, Gor-
don, and Bagnell 2011; Ho and Ermon 2016). Nevertheless,
we empirically show that Assumption 2 can be relaxed to
an extent in practice, while still achieving strong zero-shot
performance, as shown in Section 4.

Importantly, we assume no prior knowledge on the struc-
ture of the RL algorithm nor on the nature (stochastic or
deterministic) of the policy that were used to generate the
data. Notably, since the optimal policy of a given MDP is
deterministic (Puterman 2014), we can parameterize the ap-
proximated near-optimal policy π̂θ as a deterministic func-
tion π̂θ : S → A, without any loss of optimality.

We propose to use hypernetworks (Ha, Dai, and Le 2016)
for solving this approximation problem. Conditioned on the
parameters ψi, µi of an MDPMi ∈M , as shown in Figure

Algorithm 1: HyperZero
Inputs: Parameterized reward function Rψ and transition
dynamics Tµ, distribution p(ψ) and p(µ) over parameters,
hypernetwork HΘ, main networks π̂θ and Q̂ϕ.
Hyperparameters: RL algorithm, learning rate α of hyper-
network HΘ, number of tasks N .

1: Initialize dataset D of near-optimal trajectories
2: for i = 1 to N do
3: Sample MDPMi ∈M : ψi ∼ p(ψ), µi ∼ p(µi)
4: Obtain π∗

i and Q∗
i ofMi ∈M with an RL solver

5: Store near-optimal trajectories τ∗i : D ← D ∪ {τ∗i }
6: end for
7: while not done do
8: Sample mini-batch ⟨ψi, µi, s, a∗, s′, r, q∗⟩ ∼ D
9: Generate π̂θi and Q̂ϕi

: [θi;ϕi] = HΘ(ψi, µi)
10: Θ← argminLpred.(Θ) + LTD(Θ) ▷ Eqn. (4-5)
11: end while
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2, the hypernetwork HΘ generates weights of the approxi-
mated near-optimal policy π̂θ and action-value function Q̂ϕ.
Following the literature on hypernetworks, we refer to the
generated policy and value networks as main networks.

Consequently, the hypernetwork is trained via minimizing
the error for predicting the near-optimal action and values by
forward passing the main networks:

Lpred.(Θ) =E(ψi,µi,s,a∗,q∗)∼D

[
(Q̂ϕi(s, a

∗)− q∗)2
]

+ E(ψi,µi,s,a∗)∼D

[
(π̂θi(s)− a∗)2

]
(4)

where [θi;ϕi] = HΘ(ψi, µi) and D is the dataset of near-
optimal trajectories collected from the family of MDPs M .
Notably, this training paradigm effectively decouples the
problem of learning optimal values/actions from the prob-
lem of learning the mapping of MDP parameters to the space
of optimal value functions and policies. Thus, as observed
in other works on hypernetworks (Ha, Dai, and Le 2016;
Galanti and Wolf 2020; von Oswald et al. 2019; Faccio et al.
2022a), this level of modularity results in a simplified and
more efficient learning.

3.3 Temporal Difference Regularization
A key challenge in using supervised learning approaches for
function approximation in deep RL is the temporal corre-
lation existing within the samples, which results in the vi-
olation of the i.i.d. assumption. Common practices in deep
RL for stabilizing the learning is to use a target network to
estimate the temporal difference (TD) error (Lillicrap et al.
2015; Mnih et al. 2013). In this paper, we propose a novel
regularization technique based on the TD loss to stabilize the
training of the hypernetwork for zero-shot transfer learning.

As stated in Assumption 2, we assume having access to
near-optimal RL solutions that were generated from a con-
verged RL algorithm. As a result, our framework differs
from the works on imitation learning (Ross, Gordon, and
Bagnell 2011; Bagnell 2015; Ho and Ermon 2016) since
samples satisfy the Optimal Bellman equation of the under-
lying MDPMi∈M and, more importantly, we have access

to the near-optimal action-values q∗ for a given transition
sample ⟨s, a∗, s′, r⟩.

Therefore, we propose to use the TD loss to regularize the
approximated critic Q̂ϕ by moving the predicted target value
towards the current value estimate, which is obtainable from
the ground-truth RL algorithm:

LTD(Θ) =E(ψi,µi,s,a∗,s′,r,q∗)∼D

[
(r+γQ̂ϕi

(s′, a′)− q∗)2
]

(5)

where a′ is obtained from the approximated deterministic
policy π̂θ(s′) with stopped gradients. Note that our appli-
cation of the TD loss differs from that of standard function
approximation in deep RL (Mnih et al. 2013; Lillicrap et al.
2015); instead of moving the current value estimate towards
the target estimates, our TD loss moves the target estimates
towards the current estimates. While this relies on Assump-
tion 2, we show that in practice applying the TD loss is ben-
eficial as it enforces the approximated policy and critic to be
consistent with respect to the Bellman equation. Algorithm
1 shows the pseudo-code of our learning framework.

4 Evaluation
We evaluate our proposed method, referred to as HyperZero
(hypernetworks for zero-shot transfer) on a series of chal-
lenging continuous control tasks from DeepMind Control
Suite. The primary goal in our experiments is to study the
zero-shot transfer ability of the approximated RL solutions
to novel dynamics and rewards settings.

4.1 Experimental Setup
Environments. We use three challenging environments
for evaluation: cheetah, walker, and finger. For an easier vi-
sualization and realization of reward parameters, in all cases
the reward parameters correspond to the desired speed of
the motion which consists of both negative (moving back-
ward) and positive (moving forward) values. Depending on
the environment, dynamics changes correspond to changes
in a body size and its weight/inertia. Full details of the envi-
ronments and their parameters are in Appendix A.
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(a) Cheetah environment.
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Figure 3: Zero-shot transfer to new reward settings on DM control environments, obtained on 5 seeds for random split of
train/test tasks. Solid lines present the mean and shaded regions present the standard deviation of the average return across the
seeds. Horizontal axis shows the desired speed, which is a function of the reward parameters ψi.
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(a) Cheetah environment.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Torso Length

0

200

400

600

800

1000

Av
er

ag
e 

R
et

ur
n

TD3 Solution
HyperZero
Cond. Policy + UVFA

Cond. Policy
MAML, Zero-shot
MAML, Few-shot

PEARL, Zero-shot
PEARL, Few-shot

(b) Walker environment.

Figure 4: Zero-shot transfer to new dynamics settings on DM control environments, obtained on 5 seeds for random split of
train/test tasks. Solid lines present the mean and shaded regions present the standard deviation of the average return across the
seeds. Horizontal axis shows the value of dynamics parameter µi; that is torso length for the cheetah and walker, and finger
length for the finger. Notably, a change in the shape of the geometry results in changes in the weight and inertia parameters.

RL Training and Dataset Collection. We use TD3 (Fuji-
moto, Hoof, and Meger 2018) as the RL algorithm that is to
be approximated. Each MDPMi ∈M , generated by sam-
pling ψi∼p(ψ) and µi∼p(µ), is used to independently train
a standard TD3 agent on proprioceptive states for 1 million
steps. Consequently, the final solution is used to generate 10
rollouts to be added to the datasetD. Learning curves for the
RL solutions are in Appendix B.3. As these results show, in
some instances, the RL solution is not fully converged after 1
million steps. Despite this, HyperZero is able to approximate
the mapping reasonably well, thus indicating Assumption 2
can be relaxed to an extent in practice.

Train/Test Split of the Tasks. To reliably evaluate the
zero-shot transfer abilities of HyperZero to novel reward/-

dynamics settings against the baselines, and to rule out the
possibility of selective choosing of train/test tasks, we ran-
domly divide task settings into train (%85) and test (%15)
sets. We consequently report the mean and standard devia-
tion of the average return obtained on 5 seeds.

Baselines. We compare HyperZero against common base-
lines for multitask and meta learning:
1. Context-conditioned policy; trained to predict actions,

similarly to imitation learning methods.
2. Context-conditioned policy paired with UVFA (Schaul

et al. 2015); trained to predict actions and values. It fur-
ther benefits from using our proposed TD loss LTD, sim-
ilarly to HyperZero.

3. Context-conditioned meta policy; trained with MAML
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Figure 5: Zero-shot transfer to new reward and dynamics settings on DM control environments, obtained on 5 seeds for random
split of train/test tasks. Each surface present the mean of the average return across the seeds. X-axis shows the desired speed,
which is a function of the reward parameters ψi, while Y-axis shows the value of the dynamics parameter µi. The surfaces are
smoothed for visual clarity. 2D plots of these 3D diagrams are presented in Appendix B.1 for better comparison.
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(a) Cheetah environment with different torso lengths. (b) Walker environment with different desired speeds.

Figure 6: Rollout of a trained HyperZero on different task parameters. (a) The trained HyperZero is used to rollout the cheetah
environment with torso lengths of 0.3 and 0.7. (b) The trained HyperZero is used to rollout the walker environment with desired
speeds of -4 and +4. Additional results are in Appendix B.2.

(Finn, Abbeel, and Levine 2017) to predict actions and
evaluated for both zero-shot and few-shot transfer. Our
context-conditioned meta-policy can be regarded as an
adaptation of PEARL (Rakelly et al. 2019) in which the
inferred task is substituted by the ground-truth task.

4. PEARL (Rakelly et al. 2019) policy; trained to predict
actions. Unlike other baselines, PEARL does not assume
access to the MDP context and instead it infers the the
context from states and actions.

Notably, since MAML and PEARL are known to perform
poorly for zero-shot transfer, we evaluate the meta policy
for both zero-shot and few-shot transfers. In the latter, prior
to evaluation, the meta policy is finetuned with near-optimal
trajectories of the test MDPMi generated by the actual RL
solution.

Finally, for a fair comparison with hypernetworks, all
methods follow the same two-stage training paradigm de-
scribed in Section 3.1, have a learnable task embedding, and
share the same network architecture. Full implementation
details are in Appendix C.

4.2 Results
Zero-shot Transfer. We compare the zero-shot transfer
of HyperZero against the baselines in the three cases of
changed rewards, changed dynamics, and simultaneously
changed rewards and dynamics; results are shown in Figures
3, 4, and 5, respectively. Additional results are in Appendix
B.1. As suggested by these results, in all environments and
transfer scenarios, HyperZero significantly outperforms the
baselines, demonstrating the effectiveness of our learning
framework for approximating an RL algorithm as a mapping
from a parameterized MDPMi to a near-optimal policy π∗

i
and action-value function Q∗

i .
Importantly, the context-conditioned policy (paired with

UVFA) consists of all the major components of HyperZero,
including near-optimal action and value prediction, and TD
regularization. As a result, the only difference is that Hyper-
Zero learns to generate policies conditioned on the context
which is in turn used to predict actions, while the context-
conditioned policy learns to predict actions conditioned on
the context. We hypothesize two main reasons for the signif-
icant improvements gained from such use of hypernetworks

in our setting. First, aligned with similar observations in the
literature (Galanti and Wolf 2020; von Oswald et al. 2019),
hypernetworks allow for effective abstraction of the learn-
ing problem into two levels of policy (or equivalently value
function) generation and action (or equivalently value) pre-
diction.

Second, as hypernetworks are used to learn the map-
ping from MDP parameters to the space of policies, that is
(ψi, µi)→ π∗

i , they achieve generalization across the space
of policies. On the contrary, since the context-conditioned
policy simultaneously learns the mapping of states and MDP
parameters to actions, that is (s, ψi, µi)→ a∗, it is only able
to achieve generalization over the space of actions, as op-
posed to the more general space of policies.

Finally, due to the strong zero-shot transfer ability of the
approximated solution to new rewards and dynamics, one
can use it to visualize the near-optimal trajectory τ∗i for
novel tasks without necessarily training the RL algorithm.
A possible application of this approach would be for task vi-
sualization or environment design, as well as manual reward

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Desired Speed

600

700

800

900

1000

Av
er

ag
e 

R
et

ur
n

TD3 Solution
HyperZero

HyperZero w/o TD
HyperZero w/o Value Function w/o TD

(a) Cheetah environment.

Figure 7: Ablation study on the improvements gained from
generating the optimal value function and using the TD
loss. Results are obtained on 5 seeds for random split of
train/test tasks. Solid lines present the mean and shaded re-
gions present the standard deviation of the average return
across the seeds. Horizontal axis shows the desired speed,
which is a function of the reward parameters ψi.
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shaping. As an example, Figure 6 shows sample trajectories
generated by rolling out trained HyperZero models condi-
tioned on different reward/dynamics parameters. Additional
trajectories are in Appendix B.2.

Ablation Study on HyperZero Variants. In Figure 7, we
carry out an ablation study on the improvements gained from
generating the near-optimal value function and using our
proposed TD loss from Equation (5). We draw two conclu-
sions from this study; first, generating the action-value func-
tion Q∗

i alongside the policy π∗
i provides additional learning

signal for training the hypernetwork. Furthermore, incorpo-
rating the TD loss between the generated policy and action-
value function ensures the two generated networks are con-
sistent with one another with respect to the Bellman equation
and results in overall better performance and generalization.

While the improvements may appear to be small, we sus-
pect that gains would be larger in visual control problems,
as generating the value function will provide a rich learn-
ing signal for representation learning. More importantly, the
generated value function can have other applications, such as
beings used in policy gradient methods for further training
the generated policy with environment interactions (offline-
to-online RL) (Lee et al. 2022). While this is left for future
work, we wanted to ensure that our framework is capable of
generating the value function alongside the policy.

5 Related Work
The robustness and generalization of behaviors has long
been studied in control and RL.

Transfer, Contextual and Meta RL. Past work has stud-
ied numerous forms of Transfer Learning (Taylor and Stone
2009), where MDP components including the state space,
action space, dynamics or reward are modified between the
training conducted on one or many source tasks, prior to per-
formance on one or more targets. Depending on the learner’s
view of sources and targets, the problem is called contextual
policy search (Kupcsik et al. 2017) life-long learning (Abel
et al. 2018), curriculum learning (Portelas et al. 2020), or
meta learning (Finn, Abbeel, and Levine 2017), but our par-
ticular variant, with an always-observable parameter vector
and no chance to train or fine-tune on the target is most aptly
named zero-shot contextual RL. Within that problem, a com-
mon concern has been how to interpolate in the space of con-
texts (equivalent to our parameters), while preserving details
of the policy-space solution (Barbaros et al. 2018). This is
precisely where the power of our hypernetwork architecture
extends prior art.

Hypernetworks in RL. While hypernetworks (Ha, Dai,
and Le 2016) have been used extensively in supervised
learning problems (von Oswald et al. 2019; Galanti and
Wolf 2020; Krueger et al. 2017; Zhao et al. 2020), their
application to RL algorithms remains relatively limited.
Recent work of Sarafian, Keynan, and Kraus (2021) use
hypernetworks to improve gradient estimation of Q func-
tions and policy networks in policy gradient algorithms. In
multi-agent RL, hypernetworks are used to generate poli-
cies or value functions based on agent properties (Rashid

et al. 2018; Iqbal et al. 2020, 2021; de Witt et al. 2020;
Zhou et al. 2020). Furthermore, hypernetworks have been
used to model an evolving dynamical system in continual
model-based RL (Huang et al. 2021). Related to our ap-
proach, Faccio et al. (2022a) use hypernetworks to learn
goal-conditioned optimal policies; the key distinguishing
factor of our approach is that we focus on zero-shot transfer
across a family of MDPs with different reward and dynam-
ics functions, while the method of Faccio et al. (2022a) aims
to solve a single goal-conditioned MDP.

Upside Down RL. Upside down RL (UDRL) is a re-
definition of the RL problem transforming it into a form
of supervised learning. UDRL, rather than learning opti-
mal policies using rewards, teaches agents to follow com-
mands. This method maps input observations as commands
to action probabilities with supervised learning conditioned
on past experiences (Srivastava et al. 2019; Schmidhuber
2019). Related to this idea are offline RL models that use
sequence modeling as opposed to supervised learning to
model behavior (Janner, Li, and Levine 2021; Chen et al.
2021). Similarly to UDRL, many RL algorithms incorporate
the use of supervised learning in their model (Schmidhuber
2015; Rosenstein et al. 2004). One such technique is hind-
sight RL in which commands correspond to goal conditions
(Andrychowicz et al. 2017; Rauber et al. 2017; Harutyun-
yan et al. 2019). Another approach is to use forward models
as opposed to the backward ones used in UDRL (Arjona-
Medina et al. 2019). Recently, Faccio et al. (2022a) propose
a method that evaluates generated polices in the command
space rather than optimizing a single policy for achieving a
desired reward.

6 Conclusion
This paper has described an approach, named HyperZero,
which learns to generalize optimal behavior across a fam-
ily of tasks. By training on the full RL solutions of train-
ing tasks, including their optimal policy and value function
parameters, the hypernetworks used in our architecture are
trained to directly output the parameters of complex neural
network policies capable of solving unseen target tasks. This
work extends the performance of zero-shot generalization
over prior approaches. Our experiments demonstrate that our
zero-shot behaviors achieve nearly full performance, as de-
fined by the performance of the optimal policy recovered by
an RL learner training for a large amount of iterations on the
target task itself.

Due to the strong generalization of our method, with min-
imal test-time computational requirements, our approach is
suitable for deployment in live systems. We also highlight
the opportunity for human-interfaces and exploration of RL
solutions. In short, this new level of rapid, but powerful,
general behavior can provide significant opportunity for the
practical deployment of RL-learned behavior in the future.

References
Abel, D.; Jinnai, Y.; Guo, Y.; Konidaris, G.; and Littman,
M. L. 2018. Policy and Value Transfer in Lifelong Rein-

9585



forcement Learning. In Proceedings of the International
Conference on Machine Learning (ICML).
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.
Arjona-Medina, J. A.; Gillhofer, M.; Widrich, M.; Un-
terthiner, T.; Brandstetter, J.; and Hochreiter, S. 2019. Rud-
der: Return decomposition for delayed rewards. Advances
in Neural Information Processing Systems, 32.
Bagnell, J. A. 2015. An invitation to imitation. Technical
report, Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst.
Barbaros, V.; van Hoof, H.; Abdolmaleki, A.; and Meger, D.
2018. Eager and Memory-Based Non-Parametric Stochastic
Search Methods for Learning Control. In Proceedings of
the International Conference on Robotics and Automation
(ICRA).
Barreto, A.; Hou, S.; Borsa, D.; Silver, D.; and Precup, D.
2020. Fast reinforcement learning with generalized policy
updates. Proceedings of the National Academy of Sciences,
117(48): 30079–30087.
Bellman, R. 1966. Dynamic programming. Science,
153(3731): 34–37.
Borsa, D.; Barreto, A.; Quan, J.; Mankowitz, D. J.; van Has-
selt, H.; Munos, R.; Silver, D.; and Schaul, T. 2018. Uni-
versal Successor Features Approximators. In International
Conference on Learning Representations.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems, 34: 15084–15097.
de Witt, C. S.; Peng, B.; Kamienny, P.-A.; Torr, P.; Böhmer,
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