
GLUECons: A Generic Benchmark for Learning under Constraints

Hossein Rajaby Faghihi1, Aliakbar Nafar1, Chen Zheng1, Roshanak Mirzaee1, Yue Zhang1,
Andrzej Uszok2, Alexander Wan3* , Tanawan Premsri1, Dan Roth4, and Parisa Kordjamshidi1

1 Michigan State University
2 Florida Institute for Human and Machine Cognition

3 University of California Berkeley
4 University of Pennsylvania

{rajabyfa, nafarali, zhengc12, mirzaeem, zhan1624, premsrit, kordjams}@msu.com,
auszok@ihmc.org, alexwan@berkeley.edu, danroth@seas.upenn.edu

Abstract

Recent research has shown that integrating domain knowl-
edge into deep learning architectures is effective; It helps re-
duce the amount of required data, improves the accuracy of
the models’ decisions, and improves the interpretability of
models. However, the research community lacks a convened
benchmark for systematically evaluating knowledge integra-
tion methods. In this work, we create a benchmark that is a
collection of nine tasks in the domains of natural language
processing and computer vision. In all cases, we model exter-
nal knowledge as constraints, specify the sources of the con-
straints for each task, and implement various models that use
these constraints. We report the results of these models using
a new set of extended evaluation criteria in addition to the
task performances for a more in-depth analysis. This effort
provides a framework for a more comprehensive and system-
atic comparison of constraint integration techniques and for
identifying related research challenges. It will facilitate fur-
ther research for alleviating some problems of state-of-the-art
neural models.

1 Introduction
Deep Learning Shortcomings Recent advancements in ma-
chine learning are proven very effective in solving real-
world problems in various areas, such as vision and lan-
guage. However, there are still remaining challenges. First,
machine learning models mostly fail to perform well on
complex tasks where reasoning is crucial (Schubotz et al.
2018) while human performance does not drop as much
when more steps of reasoning are required. Second, deep
neural networks (DNNs) are known to be data-hungry, mak-
ing them struggle on tasks where the annotated data is
scarce (Li, Wang, and Yu 2020; Zoph et al. 2016). Third,
models often provide results that are inconsistent (Li et al.
2019; Gardner et al. 2020) even when they perform well
on the task. Prior research has shown that even large pre-
trained language models performing well on a specific task
may suffer from inconsistent decisions and indicate unrelia-
bility when attacked under adversarial examples and special-
ized test sets that evaluate their logical consistency (Gardner

*Summer Intern at Michigan State University
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2020; Mirzaee et al. 2021a). This is especially a major
concern when interpretability is required (Mathews 2019),
or there are security concerns over applications relying on
the decisions of DNNs (Brundage et al. 2020).

Knowledge Integration Solution To address these chal-
lenges, one direction that the prior research has investigated
is neuro-symbolic approaches as a way to exploit both sym-
bolic reasoning and sub-symbolic learning. Here, we focus
on a subset of these approaches for the integration of exter-
nal knowledge in deep learning. Knowledge can be repre-
sented through various formalisms such as logic rules (Hu
et al. 2016; Nandwani, Pathak, and Singla 2019), Knowl-
edge graphs (Zheng and Kordjamshidi 2022), Context-free
grammars (Deutsch, Upadhyay, and Roth 2019), Algebraic
equations (Stewart and Ermon 2017), or probabilistic rela-
tions (Constantinou, Fenton, and Neil 2016). A more de-
tailed investigation of available sources of knowledge and
techniques to integrate them with DNNs is surveyed in (von
Rueden et al. 2019; Dash et al. 2022). Although integrating
knowledge into DNNs is done in many different forms, we
focus on explicit knowledge about the latent and/or output
variables. More specifically, we consider the type of knowl-
edge that can be represented as declarative constraints im-
posed (in a soft or hard way) on the models’ predictions,
during training or at inference time. The term knowledge
integration is used in the scope of this assumption in the re-
mainder of this paper.

Hurdle of Knowledge Integration Unfortunately, most
prior research on knowledge integration has only focused
on evaluating their proposed method compared to base-
line DNN architectures that ignore the knowledge. Conse-
quently, despite each method providing evidence of its ef-
fectiveness (Hu et al. 2016; Nandwani, Pathak, and Singla
2019), there is no comprehensive analysis that can provide a
better understanding of the use cases, advantages, and disad-
vantages of methods, especially when compared with each
other. The lack of such analysis has made it hard to apply
these approaches to a more diverse set of tasks by a broader
community and provide a clear comparison with existing
methods. We mainly attribute this to three factors: 1) the
lack of a standard benchmark with systematic baselines, 2)
the difficulty of finding appropriate tasks where constraints

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9552

are applicable, and 3) the lack of supporting libraries for im-
plementing various integration techniques.

Due to these three factors, many research questions are
left open for the community, such as (1) The difference in
the performance of models when knowledge is integrated
during inference vs. training or both, (2) The comparison
of the influence of integration methods when combined with
simpler vs. more complex baselines, (3) The effectiveness of
training-time integration models on reducing the constraint
violation, (4) The impact of data size on the effectiveness of
the integration methods.
Common Ground for Comparison The contribution of this
paper is providing a common ground for comparing tech-
niques for knowledge integration by collecting a new bench-
mark to facilitate research in this area. Our new benchmark,
called GLUECons, contains a collection of tasks suitable
for constraint integration, covering a spectrum of constraint
complexity, from basic linear constraints such as mutual
exclusivity to more complex constraints expressed in first-
order logic with quantifiers. We organize the tasks in a repos-
itory with a unified structure where each task contains a set
of input examples, their output annotations, and a set of con-
straints (written in first-order logic). We limit the scope of
knowledge in GLUECons to logical constraints1.
Selected Tasks GLUECons contains tasks ranging over five
different types of problems categorized based on the type
of available knowledge. This includes 1) Classification with
label dependencies: Mutual exclusivity in multiclass classi-
fication using MNIST (LeCun et al. 1998) and Hierarchical
image classification using CIFAR 100 (Krizhevsky and Hin-
ton 2009), 2) Self-Consistency in decisions: What-If Ques-
tion Answering (Tandon et al. 2019), Natural Language In-
ference (Bowman et al. 2015), BeliefBank (Kassner et al.
2021), 3) Consistency with external knowledge: Entity and
Relation Extraction using CONLL2003 (Sang and De Meul-
der 2003), 4) Structural Consistency: BIO Tagging, 5) Con-
straints in (un/semi)supervised setting: MNIST Arithmetic
and Sudoku. These tasks either use existing datasets or are
extensions of existing tasks, reformulated so that the usage
of knowledge is applicable to them. We equip these tasks
with constraint specifications and baseline results.
Evaluation For a fair evaluation and to isolate the effect of
the integration technique, we provide a repository of models
and code for each task in both PyTorch (Paszke and Gross
2019) and DomiKnows (Faghihi et al. 2021) frameworks.
DomiKnows is an easy-to-use tool for expressing constraints
in first-order logic with automatic conversion to linear con-
straints. It provides a modular interface for modeling and ap-
plying constraints, making it easier to consistently test dif-
ferent integration methods while the rest of the configura-
tions remain unchanged.

For a more comprehensive evaluation, we introduce a set
of new criteria in addition to the original task performances
to measure 1) the effectiveness of the techniques in increas-
ing the consistency with knowledge 2) the execution run-

1Throughout this paper, we use the terms constraint integration,
knowledge integration, or integration methods interchangeably to
refer to the process of integration of knowledge into the DNNs.

time, 3) the effectiveness of methods in the low-data regime,
4) the ability to reduce the need for complex models, and 5)
the ability to express various forms of knowledge.
Baselines We analyze and evaluate a set of knowledge inte-
gration methods to serve as baselines for GLUECons. Our
baselines cover a set of fundamentally different integration
methods, where the integration is addressed either during in-
ference or training of DNNs. GLUECons can be used as
blueprints to highlight the importance of integrating con-
straints with DNNs for different types of tasks and provides
inspiration for building such constraints when working on
new tasks.
In summary, the contributions of this paper are 1) We pro-
pose the first extensive benchmark exclusively designed
for evaluating constraint integration methods in deep learn-
ing (GLUECons), 2) We define new evaluation criteria in
addition to the task performance for a comprehensive analy-
sis of the techniques, and 3) We establish standard baselines
for the tasks in this benchmark based on multiple constraint
integration methods.

2 Constraint Integration in Prior Research
Knowledge integration, often, is considered a subset of
Neuro-symbolic (De Raedt et al. 2019; Amizadeh et al.
2020; Huang et al. 2021) approaches that build on the in-
tersection of neural learning and symbolic reasoning. von
Rueden et al. surveyed prior research on knowledge integra-
tion in three directions: knowledge source, knowledge rep-
resentation, and the stage of knowledge integration. Dash
et al. has also studied existing methods where the integration
can be done through either transforming the input data, the
loss function, or the model architecture itself. Knowledge
integration has also been investigated in probabilistic learn-
ing frameworks (De Raedt, Kimmig, and Toivonen 2007;
Richardson and Domingos 2006; Bach et al. 2017) and their
modern extensions which use neural learning (Manhaeve
et al. 2018; Huang et al. 2021; Winters et al. 2021). Re-
cent research has explored knowledge integration via by-
passing the formal representations and expressing knowl-
edge in the form of natural language as a part of the tex-
tual input (Saeed et al. 2021; Clark, Tafjord, and Richard-
son 2020). As of formal representations, knowledge integra-
tion has been addressed at both inference (Lee et al. 2019;
Scholak, Schucher, and Bahdanau 2021; Dahlmeier and Ng
2012) and training time (Hu et al. 2016; Nandwani, Pathak,
and Singla 2019; Xu et al. 2018).
Inference-Time Integration: The inference-based inte-
gration techniques optimize over the output decisions of a
DNN, where the solution is restricted by a set of constraints
expressing the knowledge (Roth and Yih 2005; Chang, Rati-
nov, and Roth 2012).

These methods aim at finding a valid set of decisions
given the constraints, while their objective is formed us-
ing the output scores/probabilities generated by the learning
models. As a result of this fixed objective and the fact that
approximation approaches are generally used to find the best
solution, we expect that the type of optimization technique
will not significantly affect the performance of inference-
time integration methods –our results discussed in the later

9553

sections provide multiple pieces of evidence confirming this
hypothesis. Prior research has investigated such integration
by using variants of beam search (Hargreaves, Vlachos, and
Emerson 2021; Borgeaud and Emerson 2020; Dahlmeier
and Ng 2012), path search algorithm (Lu et al. 2021), linear
programming (Roth and Yih 2005; Roth and Srikumar 2017;
Chang, Ratinov, and Roth 2012), finite-state/push-down Au-
tomata (Deutsch, Upadhyay, and Roth 2019), or applying
gradient-based optimization at inference (Lee et al. 2019,
2017). We use Integer Linear Programming (ILP) (Roth and
Yih 2005; Roth and Srikumar 2017) approach to evaluate
the integration of the constraints at inference time. We use
off-the-shelf ILP tools that perform an efficient search and
offer a natural way to integrate constraints. However, con-
straints should be converted to a linear form to be able to
exploit these tools (Faghihi et al. 2021; Kordjamshidi, Roth,
and Wu 2015; Kordjamshidi et al. 2016).
Training-Time Integration: Several recent techniques
have been proposed for knowledge integration at training
time (Nandwani, Pathak, and Singla 2019; Hu et al. 2016;
Xu et al. 2018). Using constraints during training usually
requires finding a differentiable function expressing con-
straint violation. This will help to train the model to min-
imize the violations as a part of the loss function. Inte-
grating knowledge in the training loop of DNNs is a chal-
lenging task. However, it can be more rewarding than the
inference-based integration methods as it reduces the com-
putational overhead by alleviating the need for using con-
straints during inference. Although such methods cannot
guarantee that the output decisions would follow the given
constraints without applying further operations at inference-
time, they can substantially improve the consistency with the
constraints (Li et al. 2019). Prior research has investigated
this through various soft interpretations of logic rules (Nand-
wani, Pathak, and Singla 2019; Asai and Hajishirzi 2020),
rule-regularized supervision (Hu et al. 2016; Guo et al.
2021), re-enforcement learning (Yang et al. 2021), and
black-box semantic (Xu et al. 2018) or sampling (Ahmed
et al. 2022) loss functions, which directly train the network
parameters to output a solution that obeys the constraints.

To cover a variety of techniques based on the previous
research, we select Primal-Dual (PD) (Nandwani, Pathak,
and Singla 2019) and Sampling-Loss (SampL) (Ahmed et al.
2022) methods as baselines for our new benchmark. The PD
approach relies on a soft logic interpretation of constraints,
while the SampL is a black-box constraint integration. We
discuss some of the existing methods in more detail in Sec-
tion ‘Baselines.’

2.1 Applications and Tasks
Constraint integration has been investigated for several ap-
plications in prior research including SQL query genera-
tion (Scholak, Schucher, and Bahdanau 2021), program syn-
thesize (Austin et al. 2021; Ellis et al. 2021), semantic pars-
ing (Clarke et al. 2010; Lee, Gottschlich, and Roth 2021),
question answering (Asai and Hajishirzi 2020), entity and
relation extraction (Guo et al. 2021), sentiment analysis (Hu
et al. 2016), visual question answering (Huang et al. 2021),
image captioning (Anderson et al. 2017), and even text gen-

eration (Lu et al. 2021).

3 Criteria of Evaluation
We extend the evaluation of the constraint integration meth-
ods beyond measuring task performance. The list of pro-
posed evaluation criteria for such an extended comparison
is as follows.
Individual metrics of each task: The first criterion to evalu-
ate the methods is the conventional metric of each task, such
as accuracy or precision/recall/F1 measures.
Constraint Violation: Even when the integration method
cannot improve the model’s performance, improving the
consistency of its predictions will make the neural models
more reliable. A consistency measure quantifies the success
of the integration method in training a neural network to fol-
low the given constraints. We measure consistency in terms
of constraint violation. We compute the ratio of violated con-
straints over all predicted outputs. A smaller number indi-
cates fewer constraint violations and, consequently, a higher
consistency with the available knowledge.
Execution Run-Time: Another critical factor in comparing
the constraint integration methods is the run-time overhead.
This factor becomes even more critical when the integra-
tion happens during inference. This criterion helps in ana-
lyzing the adequacy of each technique for each application
based on the available resources and the time sensitivity of
the decision-making for that application. We measure this
evaluation criteria by simply computing the execution time
of each integration method both during training and infer-
ence. This metric can reflect the overhead of each integra-
tion method more accurately by taking into account the new
parameters that should be optimized and the additional com-
putations with respect to the complexity of the constraints.
Low-data vs full-data performance: For many problems,
there is no large data available either due to the high cost
or infeasibility of obtaining labeled data. Integrating con-
straints with deep neural learning has been most promising
in such low-resource settings (Nandwani, Pathak, and Singla
2019; Guo et al. 2021). We measure the improvement re-
sulting from the integration methods on both low and full
data. This evaluation will help in choosing the most impact-
ful integration method based on the amount of available data
when trying to apply integration methods to a specific task.
Simple baseline vs Complex baseline: An expected impact
of constraint integration in DNNs is to alleviate the need
for a large set of parameters and achieve the same perfor-
mance using a smaller/simpler model. Additionally, it is im-
portant to evaluate whether the integration method can only
affect the smaller network or the very large SOTA mod-
els can be improved too. This will indicate whether large
networks/pre-trained models can already capture the under-
lying knowledge from the data or explicit constraint inte-
gration is needed to inject such knowledge. In addition to
the number of parameters, this metric also explores whether
knowledge integration can reduce the need for pre-training.
This is especially important for the natural language domain,
where large pre-trained language models prevail.
Constraint Complexity: This criterion evaluates the lim-
itations of each method for integrating different types of

9554

knowledge. Some methods consider the constraints a black
box with arbitrary complexity, while others may only model
a specific form of constraint. This criterion specifies the for-
m/complexity of the constraints that are supported by each
technique. To evaluate this, we characterize a set of con-
straint complexity levels and evaluate whether each tech-
nique can model such constraints.

4 Selected Tasks
GLUECons aims to provide a basis for comparing constraint
integration methods. We have selected/created a collection
of tasks where constraints can potentially play an impor-
tant role in solving them. We provide five different problem
categories containing a total of nine tasks. More details of
tasks’ constraints are available in the Appendix. This collec-
tion includes a spectrum of very classic tasks for structured
output prediction, such as multi-class classification to more
involved structures and knowledge, such as entity relation
extraction and Sudoku.

4.1 Classification with Label Dependency
Simple Image Classification. In this task, we utilize the
classic MNIST (Deng 2012) dataset and classify images of
handwritten digits in the range of 0 to 9. The constraint used
here is the mutual exclusivity of the ten-digit classes. Each
image can only have one valid digit label as expressed in the
following constraint,

IF digiti(x) ⇒ ¬∨j∈[0−9]
j=!i digitj(x),

where digiti(x) is 1 if the model has predicted x to be an
image representing the digit i. This task is used as a basic
validation of the constraint integration methods, though it is
not very challenging and can also be addressed by a “Soft-
max” function.
Hierarchical Image Classification. The hierarchical re-
lationships between labels present a more complex label
dependency in multi-label and multi-class tasks. We use
the CIFAR-100 (Krizhevsky, Sutskever, and Hinton 2012),
which includes 100 image classes, each belonging to 20
parent classes forming a hierarchical structure. This dataset
with 60k images is an extension of the classic CIFAR-
10 (Krizhevsky, Sutskever, and Hinton 2012). To create a
smaller dataset, we select 10% of these 60k images. For this
task, the output is a set of labels for each image, including
one label for each level. The constraints are defined as,

IF L1 ⊂ L2 : L1(x) ⇒ L2(x),

where L1 and L2 are labels, L1(x) is True only if the mod-
els assigns label L1 to x, and L1 ⊂ L2 indicates that L1 is a
subclass of L2.

4.2 Self Consistency in Decisions
DNNs are subject to inconsistency over multiple decisions
while being adept at answering specific questions (Camburu
et al. 2019). Here, we choose three tasks to evaluate whether
constraints help ensure consistency between decisions.
Causal Reasoning. WIQA (Tandon et al. 2019) is a
question-answering (QA) task that aims to find the line of

causal reasoning by tracking the causal relationships be-
tween cause and effect entities in a document. The dataset
contains 3993 questions. Following (Asai and Hajishirzi
2020), we impose symmetry and transitivity constraints on
the sets of related questions. For example, the symme-
try constraint is defined as follows: symmetric(q,¬q) ⇒
F (q, C) ∧ ¬F (¬q, C) where q and ¬q represent the ques-
tion and its negated variation, C denotes the document, and
¬F is the opposite of the answer F .
Natural Language Inference. Natural Language Infer-
ence (NLI) is the task of evaluating a hypothesis given a
premise, both expressed in natural language text. Each ex-
ample contains a premise (p), hypothesis (h), and a la-
bel/output (l) which indicates whether h is “entailed,” “con-
tradicted”, or “neutral” by p.

Here, we evaluate whether NLI models benefit from con-
sistency rules based on logical dependencies. We use the
SNLI (Bowman et al. 2015) dataset, which includes 500k
examples for training and 10k for evaluation. Furthermore,
we include AESIM

1000 (Minervini and Riedel 2018), which is
an augmented set over the original dataset containing more
related hypotheses and premise pairs to enforce the con-
straints. Four consistency constraints (symmetric/inverse,
transitive) are defined based on the (Hypothesis, Premise)
pairs. An example constraint is as follows:

neutral (h, p) ⇒ ¬ contradictory (p, h) ,

where neutral (h, p) is True if h is undetermined given
p. The complete constraints are described in (Minervini and
Riedel 2018).
Belief Network Consistency. The main goal of this task is
to impose global belief constraints to persuade models to
have consistent beliefs. As humans, when we reason, we of-
ten rely upon our previous beliefs about the world, whether
true or false. We can always change our minds about previ-
ous information based on new information, but new beliefs
should not contradict previous ones. Here, entities and their
properties are used as facts. We form a global belief net-
work that must be consistent with those derived from a given
knowledge base. We use Belief Bank (Kassner et al. 2021)
dataset to evaluate the consistency perseverance of various
techniques. The dataset consists of 91 entities and 23k (2k
train, 1k dev, 20k test) related facts extracted from Concept-
Net (Speer, Chin, and Havasi 2016). There are 4k positive
and negative implications between the facts in the form of
a constraint graph. For example, the fact “Is a bird” would
imply “can fly,” and the fact “can fly” refute the fact “Is a
dog”. Formally, the constraints are defined as follows:

∀F1, F2 ∈ Facts;
IF F1, F2 ∈ Pos Imp ⇒ ¬F1(x) ∨ F2(x)

IF F1, F2 ∈ Neg Imp ⇒ ¬F1(x) ∨ ¬F2(x),

“Pos Imp” means a positive implication.

4.3 Consistency with External Knowledge
This set of tasks evaluates the constraint integration methods
in applying external knowledge to the DNNs’ outputs.
Entity Mention and Relation Extraction (EMR). This
task is to extract entities and their relationships from a

9555

document. Here, we focus on the CoNLL2003 (Sang and
De Meulder 2003) dataset, which contains about 1400 arti-
cles. There are two types of constraints involved in this task:
1) mutual exclusivity between entity/relationship labels and
2) a restriction on the types of entities that may engage in
certain relationships. An example constraint between enti-
ties and relationship types is as follows:

IFWork for(x1, x2) ⇒ Person(x1) ∧Org(x2),

where Predicate(x) is True if the network predicted input
x to be of type Predicate.

4.4 Structural Consistency
In this set of tasks, we evaluate the impact of constraint inte-
gration methods in incorporating structural knowledge over
the task’s outputs.
BIO Tagging. The BIO tagging task aims to identify spans
in sentences by tagging each token with one of the “Begin,”
“Inside,” and “Outside” labels. Each tagging output belongs
to a discrete set of BIO tags T ∈ [‘O’, ‘I-*’, ‘B-*’], where
‘*’ can be any type of entity. Words tagged with O are out-
side of named entities, while the ‘B-*’ and ‘I-*’ tags are
used as an entity’s beginning and inside parts. We use the
CoNLL-2003 (Sang and De Meulder 2003) benchmark to
evaluate this task. This dataset includes 1393 articles and
22137 sentences. The constraints of the BIO tagging task
are valid BIO sequential transitions; for example, the “be-
fore” constraint is defined as follows:

If I(xi + 1) −→ B(xi),

where ‘B-*’ tag should appear before ‘I-*’ tag. xi and xi+1

are any two consecutive tokens.

4.5 (Un/Semi) Supervised Learning
We select a set of tasks for which the constraints can alle-
viate the need for direct supervision and provide a distant
signal for training DNNs.
Arithmetic Operation as Supervision for Digit Classifi-
cation. We use the MNIST Arithmetic (Bloice, Roth, and
Holzinger 2020) dataset. The goal is to train the digit classi-
fiers by receiving supervision, merely, from the sum of digit
pairs. For example, for image pairs of 5 and 3 in the train-
ing data, we only know their labels’ sum is 8. This dataset
is relatively large, containing 10k image pairs for training
and 5k for testing. This task’s constraint forces the networks
to produce predictions for pairs of images where the sum-
mation matches the ground-truth sum. The following logical
expression is an example constraint for this task:

S({img1, img2}) ⇒
M=min(S,9)∨

M=max(0,S−9)

M(img1) ∧ {S −M}(img2),

where S({img1, img2}) indicates that the given summation
label is S and M(imgi) indicates that the ith image has the
label M .
Sudoku. This task evaluates whether constraint integration
methods can help DNNs to solve a combinatorial search

problem such as Sudoku. Here, integration methods are used
as an inference algorithm with the objective of solving one
Sudoku, while the only source of supervision is the Sudoku
constraints. As learning cannot be generalized in this setting,
it should be repeated for each input. The input is one Sudoku
table partially filled with numbers, and the task is to fill in a
number in each cell such that: ”There should not be two cells
in each row/block/column, with the same value” or formally
defined as:

IF digiti(x)∧
(same row(x, y) ∨ same col(x, y) ∨ same block(x, y))

⇒ ¬ digiti(y),

where x and y are variables regarding the cells of the table,
i ∈ [0, n] for a n ∗ n Sudoku, digiti(x) is True only if
the value of x is predicted to be i. For this task, we use an
incomplete 9 ∗ 9 Sudoku for the full-data setting and a 6 ∗ 6
Sudoku representing the low-data setting.

5 Baselines
For constraints during training, we use the two following
approaches.
Primal-Dual (PD). This approach (Nandwani, Pathak, and
Singla 2019) converts the constrained optimization problem
into a min-max optimization with Lagrangian multipliers for
each constraint and augments the original loss of the neu-
ral models. This new loss value quantifies the amount of
violation according to each constraint by means of a soft
logic surrogate. During training, they optimize the decisions
by minimizing the original violation, given the labels, and
maximizing the Lagrangian multipliers to enforce the con-
straints. It is worth noting that all related work in which con-
straint violation is incorporated as a regularization term in
the loss objective follows very similar variations of a similar
optimization formulation.
Sampling-Loss (SampL). This approach (Ahmed et al.
2022) is an extension of the semantic loss (Xu et al. 2018)
where instead of searching over all the possibilities in the
output space to find satisfying cases, it randomly generates
a set of assignments for each variable using the probability
distribution of the neural network’s output. The loss function
is formed as:

LS(α, p) =

∑
xi∈X∧xi|=α p

(
xi | p

)∑
xi∈X p (xi | p)

,

where X is the set of all possible assignments to all output
variables, and xi is one assignment. Here, α is one of the
constraints.

To utilize the constraints during prediction, we use the fol-
lowing approaches.
Integer Linear Programming. (ILP) (Roth and Yih 2005)
is used to formulate an optimization objective in which we
want to find the most probable solution for logF (θ)

⊤
y, sub-

ject to the constraints. Here, y is the unknown variable in
the optimization objective, and F (θ) is the network’s output
probabilities for each variable in y. The constraints on y are
formulated as C (y) ≤ 0.

9556

Task Strong Baseline Simple Baseline
Img Cls. CNN + MLP MLP
Hier. Img Cls. Resnet18 + MLP -
NLI RoBERTa + MLP -
Causal Rea. RoBERTa + MLP BERT + MLP
BIO Tagging BERT + MLP LSTM + MLP

NER W2V + BERT + MLP W2V + LSTM
+ MLP

Ari. Operation CNN + MLP -
BeliefNet. RoBERTa + MLP W2V + MLP
Sudoku∗ (n ∗ n ∗ n) Vector -

Table 1: Baselines for each task. The basic models
we used are RoBERTa (Liu et al. 2019), BERT (De-
vlin et al. 2018), W2V (Mikolov et al. 2013), CNN
(LeCun et al. 1998), and MLP. The simple base-
line means fewer parameters. [KEYS: Cls.=classification,
Hier.=Hierarchical, NLI= Natural Language Inference,
Rea.=reasoning, Ari.=Arithmetic, BeliefNet=Belief Net-
work, W2V=Word to Vec.]. ∗ For the Sudoku, the model is
not a generalizable DNN and relies on the integration meth-
ods as an inference algorithm to solve one specific table.

Search and Dynamic Programming. for some of the pro-
posed benchmarks, when applicable, we use the A∗ search
or Viterbi algorithm to choose the best output at prediction
time given the generated probability distribution of the final
trained network (Lu et al. 2021).

6 Experiments and Discussion
This section highlights our experimental findings using pro-
posed baselines, tasks, and evaluation criteria. Details on ex-
perimental designs, training hyper-parameters, codes, mod-
els, and results can be found on our website2. The basic ar-
chitectures for each task are shown in Table 1.

The results of the experiments are summarized in Table
3. The columns represent evaluation criteria, and the rows
represent tasks and their baselines. Each task’s model ‘row’
records the strong/simple baseline’s performance without
constraint integration, and below that, the improvements or
drops in performance after adding constraints are reported.
Here, we summarize the findings of these experiments by
answering the following questions.
What are the key differences in the performance of
inference-time and training-time integration? Notably,
using ILP only in inference time outperformed other base-
lines in most of the tasks. However, it fails to perform bet-
ter than the training-time integration methods when the base
model is wildly inaccurate in generating the probabilities for
the final decisions. This phenomenon happened in our exper-
iments in the semi-supervised setting and can be seen when
comparing rows [#44, #45] to #46. In this case, inference
alone cannot help correct the model, and global constraints
should be used as a source of supervision to assist with the
learning process.

ILP performs better than the training-time methods when
applied to simpler baselines (see column simple baseline

2https://hlr.github.io/gluecons/

Mut
Excl.

Seq.
Struc.

Lin.
Const

Log.
Const

Log
+ Quan

Prog
Const

Softmax ✓ ✗ ✗ ✗ ✗ ✗
PD ✓ ✓ ✓ NC NC ✗
SampL ✓ ✓ ✓ ✓ ✓ ✓
ILP ✓ ✓ ✓ NC NC ✗
A∗ ✓ ✓ NG NG NG ✗

Table 2: The limitation of integration methods with respect
to constraint types. [KEYS: NC= Needs Conversion, NG=
No Generalization, Mut Excl.= Mutual Exclusivity, Seq.=
Sequential, Struc.=Structure, Lin.= Linear, Log.= Logical,
Const.= Constraint, Quan.=Quantifiers, Prog Const= Any
Constraints encoded as a program, A∗ is abbreviation for
the A∗ Search algorithm.]

performance). However, the amount of improvement does
not differ significantly when applying ILP to the simpler
baselines compared to the strong ones. Additionally, the
training-time methods perform relatively better on simpler
baselines than the strong ones (either the drop is less or
the improvement is higher) (compare columns ‘Strong Base-
line‘ and ‘Simple Baseline‘ for ‘+PD‘ and ‘+SampL‘ rows.)
How does the size of data affect the performance of the
integration techniques? The integration methods are ex-
ceptionally effective in the low-data regime when the con-
straints come from external knowledge or structural infor-
mation. This becomes evident when we compare the results
of ‘EMR’ and ‘BIO tagging’ with the ‘Self Consistency in
Decision Dependency’ tasks in column ‘Low data/ Perfor-
mance’. This is because such constraints can inject addi-
tional information into the models, compensating for the
lack of training data. However, when constraints are built
over the self-consistency of decisions, they are less help-
ful in low-data regimes (rows #12 to #29), though a posi-
tive impact is still visible in many cases. This observation
can be justified since there are fewer applicable global con-
straints in-between examples in the low-data regime. Typi-
cally, batches of the full data may contain tens of relation-
ships leading to consistency constraints over their output,
while batches of the low data may contain fewer relation-
ships. The same observation is also seen as batch sizes for
training are smaller.
Does constraint integration reduce the constraint vio-
lation? Since our inference-time integration methods are
searching for a solution consistent with the constraints, they
always have a constraint violation rate of 0%. However,
training-time integration methods cannot fully guarantee
consistency. However, it is worth noting these methods have
successfully reduced the constraint violation in our experi-
ments even when the performance of the models is not sub-
stantially improved or is even slightly hurt (see rows #18 and
#20, rows #24 and #26, and rows #30 to #32). In general,
SampL had a more significant impact than PD on making
models consistent with the available task knowledge (com-
pare rows with ‘+PD’ and ‘+SampL’ in column ‘Constraint
Violation’).

9557

Tasks # Models
Strong Baseline

Performance
Simple Baseline

Performance
Low data Constraint

Violation*
Run-Timems

Size Performance Training Inference
C

la
ss

ifi
ca

tio
n

w
ith

L
ab

el
D

ep
en

de
nc

y

Simple
Img ClsF1

1 Model 94.23% 87.34%

5%

88.78% 7.17% 34 27.5
2 + PD ↑0.14% ↓1.14% ↑4.40% 8.32% 36.6 -
3 + SampL ↓1.17% ↑0.49% ↑3.19% 9.04% 39 -
4 + ILP ↑0.24% ↑1.60% ↑1.70% - - 31.5
5 + SampL + ILP ↓0.52% ↑2.02% ↑4.40% - - -
6 + PD + ILP ↑0.32% ↑0.39% ↑4.40% - - -

Hierarchical
Img ClsF1

7 Model 58.03% 52.54%

10%

31.33% 39.26% 55.3 48.43
8 + SampL ↑0.39% ↑0.54% ↑2.18% 36.57% 58.2 -
9 + ILP ↑2.88% ↑3.18% ↑1.90% - - 55.2
10 + SampL + ILP ↑2.42% ↑3.52% ↑3.82% - 58.2 55.2

Se
lf

C
on

si
st

en
cy

in
D

ec
is

io
n

D
ep

en
de

nc
y

CausalA

Reasoning

12 Model 74.77% 73.80%

30%

60.49% 8.60% 104 46.2
13 + PD ↑2.17% ↑1.98% ↑1.10% 11.36% 118.1 -
14 + SampL ↑2.54% ↑2.17% ↑1.63% 4.37% 119.4 -
15 + ILP ↑4.03% ↑4.51% ↑1.88% - - 59.2
16 + SampL + ILP ↑4.15% ↑4.25% ↑2.11% - - -
17 + PD + ILP ↑3.60% ↑4.30% ↑1.76% - - -

NLIA

18 Model 74.00% -

10%

68.65% 9.48% 29.2 10.7
19 + PD ↑0.25% - ↑3.25% 7.26% 31.7 -
20 + SampL ↑0.55% - ↑0.95% 5.00% 29.8 -
21 + ILP ↑8.90% - ↑7.75% - - 14.3
22 + SampL + ILP ↑8.20% - ↑7.05% - - -
23 + PD + ILP ↑8.75% - ↑10.1% - - -

BeliefF1

Network

24 Model 94.90% 84.46%

25%

94.36% 0.22% 8.3 7.57
25 + PD ↑0.94% ↑0.87% ↓0.49% 0.16% 23.59 -
26 + SampL ↓0.29% ↓0.95% ↓3.03% 0.01% 8.5 -
27 + ILP ↑0.21% ↓0.10% ↓0.97% - - 11
28 + SampL + ILP ↑1.10% ↓3.19% ↓2.31% - - -
29 + PD + ILP ↑2.68% ↑1.60% ↑0.51% - - -

C
on

si
st

en
c y

w
ith

E
K

EMRF1

30 Model 90.15% 85.22%

20%

82.00% 20.32% 210 200
31 + PD ↓1.00% ↓0.30% ↑2.42% 16% 245 -
32 + SampL ↓0.30% ↑0.50% ↑3.36% 16.7% 280 -
33 + ILP ↑3.02% ↑4.10% ↑8.86% - - 226
34 + SampL + ILP ↑2.40% - ↑7.83% - - -
35 + PD + ILP ↑1.64% - ↑8.15% - - -

St
ru

ct
ur

al
C

on
si

st
en

c y

BIOF1

Tagging

36 Model 89.56% 82.77%

30%

75.36% 2.19% 361.2 263.2
37 + PD ↑0.97% ↑0.04% ↑1.25% 0.99% 389.1 -
38 + SampL ↓0.17% ↑0.73% ↑2.62% 0.16% 429.8 -
39 + ILP ↑0.61% ↑2.96% ↑3.01% - - 312
40 + SampL + ILP ↑0.08% ↑2.43% ↑2.80% - - -
41 + PD + ILP ↑1.07% ↑1.83% ↑2.73% - - -
42 +A∗ search ↑0.59% ↑2.97% ↑3.03% - - -

C
on

st
ra

in
ts

in
(U

n/
Se

m
i)

Su
pe

rv
is

io
n

Arithmetic
Supervision for

Digit
ClassificationA

43 Model 9.01% -

5%

10.32% 96.92% 13.6 -
44 + PD ↑89.39% - ↑85.01% 3.18% 197 -
45 + SampL ↑89.55% - ↑85.60% 2.86% 90.2 -
46 + ILP ↓2.11% - 0.00% - - -
47 +Supervised ↑89.53% - ↑84.30% 2.86% 12.5 -

SudokuCS
48 PD 96.00% -

6 ∗ 6
Table

100% 3.7% - -
49 SampL 87.00% - 100% 18.88% - -
50 ILP 100% - 100% - - -

Table 3: Impact of constraint integration. F1, A, and CS are F1-measure, accuracy, and constraint satisfaction metrics, respec-
tively, showing model performance. The full data of the Sudoku task is a 9 ∗ 9 table. *: The ‘Constraint Violation’ values
are calculated for the strong baselines trained with full data. ms: Run-Time is computed per example/batch and is reported in
milliseconds. ↑ indicates improvement and ↓ indicates a drop in the performance compared to the initial Model. Run times are
recorded on a machine with Intel Core i9-9820X (10 cores, 3.30 GHz) CPU and Titan RTX with NVLink as GPU. [KEYS:
EK= external knowledge]

How do the integration methods perform on simpler
baselines? According to our experiments, there is a signif-
icant difference between the performance of the integration
methods applied to simple and strong baselines when the
source of constraint was external (BIO tagging, EMR, Sim-
ple Image Cls, and Hierarchical Image Cls tasks). Moreover,
we find that ILP applied to a simple baseline can sometimes
achieve a better outcome than a strong model without con-

straints. This is, in particular, seen in the two cases of EMR
and Causal Reasoning, where the difference between the
simple and strong baselines is in using a pre-trained model.
Thus, explicitly integrating knowledge can reduce the need
for pre-training. In such settings, constraint integration com-
pensates for pre-training a network with vast amounts of
data for injecting domain knowledge for specific tasks. Ad-
ditionally, the substantial influence of integration methods

9558

on simple baselines compared to strong ones in these spe-
cific tasks indicates that constraint integration is more ef-
fective when knowledge is not presumably learned (at some
level) by available patterns in historical data used in the pre-
raining of large language models.
How much time overhead is added through the integra-
tion process? While the inference-time method (ILP) has
a computational overhead during inference, we have shown
that this overhead can be minimized if a proper tool is used
to solve the optimization problem (here, we use Gurobi3. It
should be noted that training-time integration methods do
not introduce additional overhead during inference; how-
ever, they typically have a high computational cost during
training. In the case of our baselines, SampL has shown to be
relatively more expensive than PD. This is because SampL
has an additional cost for forming samples and evaluating
the satisfaction of each sample.
What is the effect of combining inference-time and
training-time integration methods? Our results show that
combining inference-time and training-time methods mainly
yields the highest performance on multiple tasks. For exam-
ple, the performance on the NLI task on low-data can yield
over 10% improvement with the combination of PD and ILP,
while ILP on its own can only improve around 7%. The ra-
tionale behind these observations needs to be further investi-
gated. However, this can be attributed to better local predic-
tions of the training-time integration methods that make the
inference-time prediction more accurate. A more consider-
able improvement is achieved over the initial models when
these predictions are paired with global constraints during
ILP (see rows #16, #28, #29, and #41).
What type of constraints can be integrated using each
method? Table 2 summarizes the limitations of each con-
straint integration method to encode a specific type of
knowledge. We have included “Softmax” in this table since
it can be used to support mutual exclusivity directly in DNN.
However, “Softmax” or similar functions are not extendable
to more general forms of constraints. SampL is the most
powerful method that is capable of encoding any arbitrary
program as a constraint. This is because it only needs to
evaluate each constraint based on its satisfaction or viola-
tion. A linear constraint can be directly imposed by PD and
ILP methods. However, first-order logic constraints must be
converted to linear constraints before they can be directly
applied. Still, PD and ILP methods fail to generalize to any
arbitrary programs as constraints. The A∗ search can gen-
erally be used for mutual exclusivity and sequential con-
straints, but it cannot provide a generic solution for complex
constraints as it requires finding a corresponding heuristic.
(Chang, Ratinov, and Roth 2012) show A∗ with constraints
can be applied under certain conditions and when the feature
function is decomposable.

7 Conclusion and Future Work
This paper presented a new benchmark, GLUECons for con-
straint integration with deep neural networks. GLUECons

3https://www.gurobi.com/

contains nine different tasks supporting a range of appli-
cations in natural language and computer vision domains.
Given this benchmark, we evaluated the influence of the con-
straint integration methods beyond the tasks’ performance
by introducing new evaluation criteria that can cover the
broader aspects of the effectiveness and efficiency of the
knowledge integration. We investigated and compared meth-
ods for integration during training and inference. Our results
indicate that, except in a few cases, inference-time integra-
tion outperforms the training-time integration techniques,
showing that training-time integration methods have yet to
be fully explored to achieve their full potential in improv-
ing the DNNs. Our experiments show different behaviors of
evaluated methods across tasks, which is one of the main
contributions of our proposed benchmark. This benchmark
can serve the research community around this area to eval-
uate their new techniques against a set of tasks and config-
urations to analyze multiple aspects of new techniques. In
the future, we plan to extend the tasks of this benchmark
to include more applications, such as spatial reasoning over
natural language (Mirzaee et al. 2021b), visual question an-
swering (Huang et al. 2021), procedural reasoning (Faghihi
and Kordjamshidi 2021; Dalvi et al. 2019), and event-event
relationship extraction (Wang et al. 2020).

Acknowledgments
This project is supported by National Science Foundation
(NSF) CAREER award 2028626 and partially supported by
the Office of Naval Research (ONR) grant N00014-20-1-
2005. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation nor the Office of Naval Research.

References
Ahmed, K.; Li, T.; Ton, T.; Guo, Q.; Chang, K.-W.; Kordjamshidi,
P.; Srikumar, V.; Van den Broeck, G.; and Singh, S. 2022. PYLON:
A PyTorch framework for learning with constraints. In NeurIPS
2021 Competitions and Demonstrations Track, 319–324. PMLR.

Amizadeh, S.; Palangi, H.; Polozov, A.; Huang, Y.; and Koishida,
K. 2020. Neuro-Symbolic Visual Reasoning: Disentangling. In
ICML, 279–290. PMLR.

Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S. 2017.
Guided Open Vocabulary Image Captioning with Constrained
Beam Search. In EMNLP, 936–945.

Asai, A.; and Hajishirzi, H. 2020. Logic-guided data augmenta-
tion and regularization for consistent question answering. arXiv
preprint arXiv:2004.10157.

Austin, J.; Odena, A.; Nye, M.; Bosma, M.; Michalewski, H.;
Dohan, D.; Jiang, E.; Cai, C.; Terry, M.; Le, Q.; et al. 2021.
Program synthesis with large language models. arXiv preprint
arXiv:2108.07732.

Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L. 2017.
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic.
JMLR, 18: 1–67.

Bloice, M. D.; Roth, P. M.; and Holzinger, A. 2020. Performing
Arithmetic Using a Neural Network Trained on Digit Permutation
Pairs. In ISMIS, 255–264. Springer.

9559

Borgeaud, S.; and Emerson, G. 2020. Leveraging Sentence Sim-
ilarity in Natural Language Generation: Improving Beam Search
using Range Voting. In 4th WNGT, 97–109.
Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D. 2015.
A large annotated corpus for learning natural language inference.
In EMNLP, 632–642. Lisbon, Portugal: Association for Computa-
tional Linguistics.
Brundage, M.; Avin, S.; Wang, J.; Belfield, H.; Krueger, G.; Had-
field, G.; Khlaaf, H.; Yang, J.; Toner, H.; Fong, R.; et al. 2020.
Toward trustworthy AI development: mechanisms for supporting
verifiable claims. arXiv preprint arXiv:2004.07213.
Camburu, O.-M.; Shillingford, B.; Minervini, P.; Lukasiewicz, T.;
and Blunsom, P. 2019. Make up your mind! adversarial genera-
tion of inconsistent natural language explanations. arXiv preprint
arXiv:1910.03065.
Chang, M.-W.; Ratinov, L.; and Roth, D. 2012. Structured learn-
ing with constrained conditional models. Machine learning, 88(3):
399–431.
Clark, P.; Tafjord, O.; and Richardson, K. 2020. Transformers as
soft reasoners over language. arXiv preprint arXiv:2002.05867.
Clarke, J.; Goldwasser, D.; Chang, M.-W.; and Roth, D. 2010.
Driving semantic parsing from the world’s response. In 14th
CoNLL, 18–27.
Constantinou, A. C.; Fenton, N.; and Neil, M. 2016. Integrating
expert knowledge with data in Bayesian networks: Preserving data-
driven expectations when the expert variables remain unobserved.
Expert systems with applications, 56: 197–208.
Dahlmeier, D.; and Ng, H. T. 2012. A beam-search decoder for
grammatical error correction. In EMNLP 2012, 568–578.
Dalvi, B.; Tandon, N.; Bosselut, A.; Yih, W.-t.; and Clark, P. 2019.
Everything happens for a reason: Discovering the purpose of ac-
tions in procedural text. In (EMNLP-IJCNLP), 4496–4505.
Dash, T.; Chitlangia, S.; Ahuja, A.; and Srinivasan, A. 2022. A
review of some techniques for inclusion of domain-knowledge into
deep neural networks. Scientific Reports, 12(1): 1–15.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog: A
Probabilistic Prolog and Its Application in Link Discovery. In IJ-
CAI, volume 7, 2462–2467. Hyderabad.
De Raedt, L.; Manhaeve, R.; Dumancic, S.; Demeester, T.; and
Kimmig, A. 2019. Neuro-symbolic= neural+ logical+ probabilis-
tic. In NeSy’19 workshop @ IJCAI.

Deng, L. 2012. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing Magazine,
29(6): 141–142.
Deutsch, D.; Upadhyay, S.; and Roth, D. 2019. A general-purpose
algorithm for constrained sequential inference. In Proceedings of
the 23rd CoNLL, 482–492.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert:
Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.
Ellis, K.; Wong, C.; Nye, M.; Sablé-Meyer, M.; Morales, L.;
Hewitt, L.; Cary, L.; Solar-Lezama, A.; and Tenenbaum, J. B.
2021. Dreamcoder: Bootstrapping inductive program synthesis
with wake-sleep library learning. In Proceedings of the 42nd ACM
SIGPLAN PLDI, 835–850.
Faghihi, H. R.; Guo, Q.; Uszok, A.; Nafar, A.; and Kordjamshidi, P.
2021. DomiKnowS: A Library for Integration of Symbolic Domain
Knowledge in Deep Learning. In EMNLP: System Demonstrations,
231–241.

Faghihi, H. R.; and Kordjamshidi, P. 2021. Time-Stamped Lan-
guage Model: Teaching Language Models to Understand The Flow
of Events. In NAACL, 4560–4570.
Gardner, M.; Artzi, Y.; Basmova, V.; Berant, J.; Bogin, B.; Chen,
S.; Dasigi, P.; Dua, D.; Elazar, Y.; Gottumukkala, A.; Gupta, N.;
Hajishirzi, H.; Ilharco, G.; Khashabi, D.; Lin, K.; Liu, J.; Liu, N. F.;
Mulcaire, P.; Ning, Q.; Singh, S.; Smith, N. A.; Subramanian, S.;
Tsarfaty, R.; Wallace, E.; Zhang, A.; and Zhou, B. 2020. Evaluating
NLP Models via Contrast Sets. ArXiv, abs/2004.02709.
Guo, Q.; Faghihi, H. R.; Zhang, Y.; Uszok, A.; and Kordjamshidi,
P. 2021. Inference-masked loss for deep structured output learning.
In 29th IJCAI, 2754–2761.
Hargreaves, J.; Vlachos, A.; and Emerson, G. 2021. Incremen-
tal Beam Manipulation for Natural Language Generation. In 16th
EACL, 2563–2574.
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Harnessing
Deep Neural Networks with Logic Rules. In 54th ACL, 2410–2420.
Huang, J.; Li, Z.; Chen, B.; Samel, K.; Naik, M.; Song, L.; and
Si, X. 2021. Scallop: From Probabilistic Deductive Databases to
Scalable Differentiable Reasoning. Neurips.
Kassner, N.; Tafjord, O.; Schütze, H.; and Clark, P. 2021. Be-
liefBank: Adding Memory to a Pre-Trained Language Model for
a Systematic Notion of Belief. arXiv preprint arXiv:2109.14723.
Kordjamshidi, P.; Khashabi, D.; Christodoulopoulos, C.;
Mangipudi, B.; Singh, S.; and Roth, D. 2016. Better call
Saul: Flexible Programming for Learning and Inference in NLP.
In COLING, 3030–3040. Osaka, Japan: COLING.
Kordjamshidi, P.; Roth, D.; and Wu, H. 2015. Saul: Towards declar-
ative learning based programming. In 2015 AAAI Fall Symposium
Series.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple layers
of features from tiny images. Technical Report 0, University of
Toronto, Toronto, Ontario.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. NeurIPS,
25.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11): 2278–2324.
Lee, C.; Gottschlich, J.; and Roth, D. 2021. Toward Code Genera-
tion: A Survey and Lessons from Semantic Parsing. arXiv preprint
arXiv:2105.03317.
Lee, J. Y.; Mehta, S. V.; Wick, M.; Tristan, J.-B.; and Carbonell,
J. 2019. Gradient-based inference for networks with output con-
straints. In AAAI, volume 33, 4147–4154.
Lee, J. Y.; Wick, M. L.; Tristan, J.-B.; and Carbonell, J. G. 2017.
Enforcing Output Constraints via SGD: A Step Towards Neural
Lagrangian Relaxation. In AKBC@ NIPS.
Li, R.; Wang, X.; and Yu, H. 2020. MetaMT, a meta learning
method leveraging multiple domain data for low resource machine
translation. In AAAI, volume 34, 8245–8252.
Li, T.; Gupta, V.; Mehta, M.; and Srikumar, V. 2019. A Logic-
Driven Framework for Consistency of Neural Models. In EMNLP-
IJCNLP, 3924–3935.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.;
Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. ArXiv,
abs/1907.11692.
Lu, X.; West, P.; Zellers, R.; Le Bras, R.; Bhagavatula, C.; and
Choi, Y. 2021. NeuroLogic Decoding:(Un) supervised Neural Text

9560

Generation with Predicate Logic Constraints. In NAACL, 4288–
4299.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.; and
Raedt, L. D. 2018. DeepProbLog: Neural Probabilistic Logic Pro-
gramming. NeurIPS. Code is available.
Mathews, S. M. 2019. Explainable artificial intelligence applica-
tions in NLP, biomedical, and malware classification: a literature
review. In Intelligent computing:proceedings of the computing con-
ference, 1269–1292. Springer.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.
Minervini, P.; and Riedel, S. 2018. Adversarially regularising neu-
ral NLI models to integrate logical background knowledge. arXiv
preprint arXiv:1808.08609.
Mirzaee, R.; Faghihi, H. R.; Ning, Q.; and Kordjamshidi, P. 2021a.
SPARTQA: A Textual Question Answering Benchmark for Spatial
Reasoning. In NAACL, 4582–4598.
Mirzaee, R.; Rajaby Faghihi, H.; Ning, Q.; and Kordjamshidi, P.
2021b. SPARTQA: A Textual Question Answering Benchmark for
Spatial Reasoning. In NAACL, 4582–4598. Online: Association for
Computational Linguistics.
Nandwani, Y.; Pathak, A.; and Singla, P. 2019. A primal dual for-
mulation for deep learning with constraints. NeurIPS, 32.
Paszke, A.; and Gross, e. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Gar-
nett, R., eds., NeurIPS 32, 8024–8035. Curran Associates, Inc.
Richardson, M.; and Domingos, P. 2006. Markov logic networks.
Machine learning, 62(1): 107–136.
Roth, D.; and Srikumar, V. 2017. Integer Linear Programming for-
mulations in Natural Language Processing. In 15th EACL: Tutorial
Abstracts.
Roth, D.; and Yih, W. 2005. Integer Linear Programming Inference
for Conditional Random Fields. In ICML, 737–744.
Saeed, M.; Ahmadi, N.; Nakov, P.; and Papotti, P. 2021. RuleBERT:
Teaching Soft Rules to Pre-Trained Language Models. In EMNLP,
1460–1476.
Sang, E. F.; and De Meulder, F. 2003. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition.
arXiv preprint cs/0306050.
Scholak, T.; Schucher, N.; and Bahdanau, D. 2021. PICARD: Pars-
ing Incrementally for Constrained Auto-Regressive Decoding from
Language Models. In EMNLP, 9895–9901.
Schubotz, M.; Scharpf, P.; Dudhat, K.; Nagar, Y.; Hamborg, F.; and
Gipp, B. 2018. Introducing mathqa: a math-aware question answer-
ing system. IDD.
Speer, R.; Chin, J.; and Havasi, C. 2016. ConceptNet 5.5:
An Open Multilingual Graph of General Knowledge. CoRR,
abs/1612.03975.
Stewart, R.; and Ermon, S. 2017. Label-free supervision of neu-
ral networks with physics and domain knowledge. In Thirty-First
AAAI Conference on Artificial Intelligence.
Tandon, N.; Dalvi, B.; Sakaguchi, K.; Clark, P.; and Bosselut, A.
2019. WIQA: A dataset for “What if...” reasoning over procedural
text. In EMNLP.
von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach,
S.; Heese, R.; Kirsch, B.; Pfrommer, J.; Pick, A.; Ramamurthy, R.;
et al. 2019. Informed Machine Learning–A Taxonomy and Survey
of Integrating Knowledge into Learning Systems. arXiv preprint
arXiv:1903.12394.

Wang, H.; Chen, M.; Zhang, H.; and Roth, D. 2020. Joint Con-
strained Learning for Event-Event Relation Extraction. CoRR,
abs/2010.06727.
Winters, T.; Marra, G.; Manhaeve, R.; and De Raedt, L. 2021.
Deepstochlog: Neural stochastic logic programming. arXiv
preprint arXiv:2106.12574.
Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; and Broeck, G. 2018. A
semantic loss function for deep learning with symbolic knowledge.
In ICML, 5502–5511. PMLR.
Yang, T.-Y.; Hu, M. Y.; Chow, Y.; Ramadge, P. J.; and Narasimhan,
K. 2021. Safe reinforcement learning with natural language con-
straints. NeurIPS, 34: 13794–13808.
Zheng, C.; and Kordjamshidi, P. 2022. Relevant CommonSense
Subgraphs for “What if...” Procedural Reasoning. In Findings of
ACL 2022, 1927–1933.
Zoph, B.; Yuret, D.; May, J.; and Knight, K. 2016. Transfer Learn-
ing for Low-Resource Neural Machine Translation. In EMNLP,
1568–1575.

9561

