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Abstract

The growing interest in complex decision-making and lan-
guage modeling problems highlights the importance of
sample-efficient learning over very long horizons. This work
takes a step in this direction by investigating contextual lin-
ear bandits where the current reward depends on at most s
prior actions and contexts (not necessarily consecutive), up
to a time horizon of h. In order to avoid polynomial depen-
dence on h, we propose new algorithms that leverage spar-
sity to discover the dependence pattern and arm parameters
jointly. We consider both the data-poor (1" < h) and data-rich
(T > h) regimes, and derive respective regret upper bounds
O(dV/sT + min{q, T'}) and O(v/sdT), with sparsity s, fea-
ture dimension d, total time horizon 7', and ¢ that is adap-
tive to the reward dependence pattern. Complementing upper
bounds, we also show that learning over a single trajectory
brings inherent challenges: While the dependence pattern and
arm parameters form a rank-1 matrix, circulant matrices are
not isometric over rank-1 manifolds and sample complexity
indeed benefits from the sparse reward dependence structure.
Our results necessitate a new analysis to address long-range
temporal dependencies across data and avoid polynomial de-
pendence on the reward horizon h. Specifically, we utilize
connections to the restricted isometry property of circulant
matrices formed by dependent sub-Gaussian vectors and es-
tablish new guarantees that are also of independent interest.

Introduction

Multi-armed bandits (MAB) serve as a prototypical model
to study exploration-exploitation trade-off in sequential
decision-making (e.g., see Bubeck et al. (2012)). The agent
needs to repeatedly make decisions by interacting with an
unknown environment, aiming to maximize the cumulative
reward. As a generalization of MAB, the contextual bandits
allow the agent to take actions based on contextual infor-
mation (Langford and Zhang 2007). Extensive studies have
been conducted on contextual bandits due to its wide appli-
cations such as clinical trials, recommendation, and advertis-
ing (e.g., see Woodroofe (1979); Chu et al. (2011); Li et al.
(2017, 2010); Qin et al. (2022a,b)).

Most existing work on contextual bandits assume that
each reward only depends on a single action and the asso-
ciated context. This action can be the one just taken (instan-
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taneous reward) or the one taken a certain number of steps
before (delayed rewards). However, in realistic decision-
making scenarios, the reward generating process can have
a more complex, non-Markovian nature. Multiple prior ac-
tions can jointly affect the current reward. For instance,
whether a learner will take a course recommended by an
online education platform depends not only on that course,
but also on what combination of courses they have taken
before. Recommending courses in a complicated curricu-
lum to users with diverse backgrounds and past experiences
requires accounting for the combined effects of past con-
texts on the current recommendation. Similarly, the attention
mechanism (Vaswani et al. 2017) is finding increasing suc-
cess in reinforcement learning and NLP applications (Chen
et al. 2021; Brown et al. 2020) and it makes predictions by
assessing the similarities between current and past contexts
(e.g., that correspond to words in a sentence or frames in a
video game) and creating a history-weighted adaptive con-
text. In connection to this, the benefit of using a long context
history has been well acknowledged in RL and control the-
ory (e.g. frame/state stacking practice (Hessel et al. 2018)).
These observations motivates the following central ques-
tions: Can we provably and efficiently learn from long-
horizon rewards? What is the role of reward dependence
structure in sample efficiency? In this work, we thoroughly
address these questions for a novel variation of stochastic
linear contextual bandits, where the current reward depends
on a subset of prior contexts, up to a time horizon of h (see
Fig. 1 for an illustration). Specifically, the reward is deter-
mined by a filtered context that is a linear combination of
prior h selected contexts. Moreover, inspired by practical
decision making scenarios, we consider sparse interactions
where only s (s < h) of h prior contexts actually contribut-
ing to the current reward. Here s = 1 corresponds to the
special instance of delayed rewards. Crucially, we develop
strategies that leverage this sparse dependence structure and
establish regret guarantees for long horizon rewards.

Related Work

Composite anonymous rewards. Pike-Burke et al.
(2018) considered bandits with composite anonymous re-
wards, where 1) the reward that the agent receives at each
round is the sum of the delayed rewards of an unknown sub-
set of past actions, and 2) individual contributions of past
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Figure 1: Contextual Bandits with Long-Horizon Rewards. The reward at each round ¢ depends on the contexts associated with

latest h actions (h can be very large).

actions to the reward are not discernible. Cesa-Bianchi et al.
(2018) generalized this setting to a case where the reward
generated by an action is not simply revealed to the agent at
a single instant in the future, but rather spreads over multiple
rounds. Recent work along this line is also found in Garg and
Akash (2019), Zhang et al. (2022), and Wang et al. (2021).
In this paper, we consider a contextual setting with, which
is different from the above ones and poses new challenges
since each arm no longer has a fixed reward distribution.

Delayed rewards. Bandits with delayed rewards are also
related to our work. Stochastic linear bandits with random
delayed rewards was studied in Vernade et al. (2020). Li
et al. (2019) investigated the case where the delay is un-
known. Generalized stochastic linear bandits with random
delays were studied in Zhou et al. (2019) and Howson et al.
(2022). Cella and Cesa-Bianchi (2020) and Lancewicki et al.
(2021) studied bandit problems with reward-dependent de-
lays. In Lancewicki et al. (2021) and Thune et al. (2019),
delays are allowed to be unrestricted. Arm-dependent delays
in stochastic bandits are studied in Gael et al. (2020). De-
lays are also considered in adversarial bandits (Bistritz et al.
2019; Gyorgy and Joulani 2021; Zimmert and Seldin 2020).
Recently, non-stochastic cooperative linear bandits with de-
lays have also been studied (Ito et al. 2020; Cesa-Bianchi
et al. 2019). In fact, our setting captures unknown fixed de-
lays and also aggregated and anonymous delayed rewards.

Sparse parameters. In sparse bandits, feature vectors can
have large dimension d, but only a small subset, s <
d, of them affect rewards. Early studies on sparse linear
bandits are found in Carpentier and Munos (2012) and
Abbasi-Yadkori et al. (2012). Recent results studied both
the data-poor and data-rich regimes, depending on whether
the total horizon T is less or larger than d. In the data-
rich regime, Lattimore and Szepesvari (2020) proved a re-
gret lower bound Q(v/sdT'). In the data-poor regime, Hao

et al. (2020) showed a regret lower bound Q(s37T3). A re-
cent work used information-directed sampling techniques
Hao et al. (2021). Sparse contextual linear bandits also re-
ceive increasing interests. Kim and Paik (2019) proposed
an algorithm that combines Lasso with doubly-robust tech-
niques, and provided an upper bound O(slog(dT)V/T).
An extended setting wherein each arm has its own pa-
rameter was studied in Bastani and Bayati (2020), Wang
et al. (2018), where upper bounds O(s%log*(T)) and
O(s%log(T)) were shown, respectively. Oh et al. (2021)
proposed an exploration-free algorithm and obtained an up-
per bound O(s%log(d) + sy\/Tlog(dT)). In Ariu et al.
(2022), a thresholded Lasso algorithm is presented, result-
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ing in an upper bound O(s?log(d) + v/sT). In Ren and
Zhou (2020), the dynamic batch learning approach was used
and a upper bound O(s - polylog(d) + log(T)+/sT log(d))
was obtained. In comparison, sparsity in our case results
from the reward dependence structure. As we will discuss in
Sec. , learning the dependence pattern is challenging since
the measurements have an inherent circulant structure.

Online Convex Optimization (OCO). Another line of re-
search related to ours is OCO with memory where the losses
depend on the past decisions taken from a convex set (Anava
et al. 2015; Shi et al. 2020; Kumar et al. 2022).

Contributions

The contributions of this paper are summarized as follows:

1. We introduce a new contextual bandit model, motivated
by realistic scenarios where rewards have a long-range and
sparse dependence on prior actions and contexts. The prob-
lem of identifying the reward parameter and sparse delay
pattern admits a special low-rank and sparse structure.

2. We propose two sample-efficient algorithms for the
data-poor and data-rich regimes by leveraging sparsity
prior. For the former, we prove a regret upper bound
O(d+/sTlog(dT) 4+ min{g,T}) that is adaptive to the re-
ward dependence pattern described by ¢; for the latter, we
obtain a regret upper bound O(y/sdT log(dT)). Note that
neither of the bounds has polynominal dependence on the
horizon h, enabling efficient learning across long horizons;
and both are optimal in 7" (up to logarithmic factors).

3. We make technical contributions to address temporal
dependencies within data that has a block-Toeplitz/circulant
matrix form. First, the seminal work by Krahmer et al.
(2014) on Restricted Isometry Property (RIP) of circulant
matrices assume context vectors have i.i.d. entries. We gen-
eralize their result to milder concentrability conditions that
allow dependencies. Second, we establish results that high-
light the challenges of low-rank estimation unique to circu-
lant measurements. In line with theory, numerical experi-
ments demonstrate that our sparsity-based approach indeed
outperforms low-rank ones.

Problem Setting

..z} )T € R with each
block ; € RY, denote ||a:||éd} = 2?21 l;||2; for A €
R™", [|Allop = sup|g),<1 [[Az|2 denotes its opera-
tor norm. Let [n] = {1,2,...,n} for any integer n. For
any S C [n], s denotes the sub-vector of & with entries

indexed by S. Let (-,-) be the inner product; for A and
B c R™", (A, B) = Tr(A" B). Let ® be the Kronecker

Notation. Given = = [z],.



product. Given A € R™*P it is said to satisfy RIP if there is
5 € (0,1) such that (1 — )||x|3 < [ Az[3 < (1 +0)||3
holds for all z € RP; the smallest § satisfying this inequality
is called the RIP constant (see Appendix for more details).

Stochastic Linear Contextual Bandits

In this paper, we study a stochastic linear contextual bandit
problem with rewards that depend on past actions and con-
texts (see Fig. 1 for an illustration). Let K be the number
of arms, and then the action set is [K]. At each round ¢, the
agent observes K context vectors, {x; , € R? : a € [K]},
each associated with an arm and drawn i.i.d. from an un-
known distribution v. It then selects an action a; € [K] and
receives a reward generated by

e = (Yt,a,,0) + €1,
h—1

Ytar = § i=0

Here & € R? is the coefficient vector, &; € R is addi-
tive noise that is zero-mean 1-sub-Gaussian. Particularly, the
vector y; ., is the filtered context, determined by the weight
vector w := [wg, w1, ..., w,_1] € R" that describes how
rewards depend on the past and current selected contexts
(where w; > 0). The range of the dependence h can be very
large, indicating that a reward can have a long-range contex-
tual dependence. Assume x; ,, = 0 for j < 0 since a;’s in
this case correspond to nonexistent actions.

In this paper, we consider sparse contextual dependence,
that is, the weight vector w is s-sparse (i.e., |w|lo < s) with
s < h. This is particularly relevant to many realistic situa-
tions since often only a small number of past “events” mat-
ter. As we mentioned before, this setting captures: a) bandits
with unknown delays (w has only one non-zero entry and it
is 1-valued), and b) bandits with aggregated and anonymous
rewards (all the non-zero entries of w are 1-valued).

The coefficient vector & € R and the weight vector
w € R" are unknown. Without loss of generality, we as-
sume that ||@|]2 < 1 and ||w]||; < 1. We also made the mild
boundedness assumption that x; , satisfies ||, 4]/ < 1 for
allt € [T] and a € [K].

The agent’s objective is to maximize the cumulative re-
ward over the course of 7' rounds, or equivalently, to mini-
mize the pseudo-regret defined as

T h—1

Rr = Z Z Wi (<33t,aj§79> - <$t,at,9>) ’

t=1 i=0

ey

where WiTi—jq, ,, andt € [T)].

@)

where a; = argmax,c(k(Z+,q, 0) defines the optimal ac-
tion at round ¢.

Remark 1. The definition of the regret here is slightly dif-
ferent from simply summing up (Y¢,ar — Yt,a,,0). In fact,
the two regret definitions are essentially the same. The rea-
son is that taking an action, say a,, gives the agent a total re-

ward Z?;OI w; (T4 q,, 0) that spreads over the next i rounds.
Thus, the agent can make decisions without knowing w if 6
is known as a prior: a greedy strategy seeking to maximize
the instantaneous reward at each round actually maximizes
the cumulative reward in the long run. See Appendix F.1 in
Qin et al. (2023) (the full version) for further discussion . A
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Remark 2. Although the only knowledge of 8 seems suf-
ficient for our decision-making purpose, learning 6 is actu-
ally challenging. This is because each reward can come in a
composite manner, possibly consisting of the contributions
from the latest h actions. Learning @ requires to sort out the
reward dependence structure. A

Discussion of Challenges

Next, we discuss some technical challenges inherent in our
problem. For this purpose, we denote &; = x; 4, as the cho-
sen context for each ¢ to make notation concise.

Circulant design matrices in low-rank matrix recovery.
Let Z; = [€1,&i 1, .., & ny1] € R and then (1) can
be rewritten as

re = <Zt, 0’I.UT> + &¢. (3)
At first glance, it seems that the problem reduces to re-
constructing the rank-1 and sparse matrix Qw ' € RI*",
and classic techniques for low-rank (and sparse) matrix re-
covery can be applied (e.g., Richard et al. (2012), Oymak
et al. (2015) Davenport and Romberg (2016), and Wain-
wright (2019, Chap. 10)). However, we find this is not true
due to the Toeplitz/circulant structure of the design matri-
ces Z;. The following lemma shows that circulant matrices,
even if its first row has i.i.d. entries, do not obey RIP for
rank-1 matrices with exponentially high probability (see Ap-
pendix C in Qin et al. (2023) for more details).

Lemma 1. Let C € R"*? be a subsampled circulant ma-
trix whose first row has i.i.d. Gaussian entries (normalized
properly) and n < p. For any § < 1, there exists a constant
¢ < 1 such that with probability at least 1 — ¢P, C does not
obey RIP over rank-1 matrices in RP**P2 with p = pyps.

We further provide numerical experiments in Fig. 2 to
show that circulant measurements are indeed problematic
while dealing with low-rank matrix recovery.

These findings indicate that tackling our problem via low-
rank matrix estimation may not work. Therefore, we resort
to another technique— sparsity estimation— by leveraging the
sparse structure in the reward dependence pattern. First, let
a; = {as,a;—1,...,a1} denote the sequence of past ac-
tions, zq, = [&/,&1,....& 1] andp =w® 6 €

R4 . Then, (1) can be rewritten as
Tt = (Za,, P) + ¢ “4)
Since w is s-sparse, reconstructing 8 and w becomes to es-
timate the s-block-sparse vector ¢.
Denote 7y = [rq,...,7]" and gy = [eq, ...
follows from (4) that

,&¢] ", and it

g 0 0
& & 0

re=|& €., ¢ |p+e=Eip+e. (5
& & &
g &, €

One can observe that the design matrix =; above also has
a Toeplitz/circulant structure. Learning the block-sparse ¢
using this special form of design matrices has some other
challenges, which we discuss below.
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Figure 2: Probability of exact recovery of the matrix ¢ =
Ow' € R¥" from the noiseless measurement y = (Z, ®)
using low-rank recovery (d = 10 and & = 100). We com-
pare two types of design matrices: 1) Z with i.i.d. entries,
and 2) circulant Z generated by an i.i.d. vector. Different in-
stances, where w has different sparsity (quantified by s), are
considered. The experiment shows that: 1) the same amount
of data is needed for all instances if Z has i.i.d. entries, but
2) the number of samples needed varies significantly when
it comes to circulant Z. These observations indicate that for
circulant measurements, the amount of data needed to re-
cover a low-rank matrix may not simply depend on the rank,
which is substantially different from i.i.d. measurements.

Circulant matrices with dependent entries. Estimating
¢ is a sparse regression problem. RIP and related restricted
eigenvalue condition (REC) are widely used for such prob-
lems (Candes and Tao 2007; Bickel et al. 2009). Earlier stud-
ies show that sub-sampled circulant matrices whose first row
is i.i.d. sub-Gaussian satisfy RIP for s-sparse vectors if there
are at least Q(s logz(s)) samples (Krahmer et al. 2014). In
our case, the circulant matrix is generated by random vectors
with dependent entries (i.e., entries in each &; may be depen-
dent). The new challenge is: how many samples are needed
for such circulant measurements to satisfy RIP/REC?

Technical Result

We first present a technical result on RIP that paves the way
for the analysis of our bandit problem, which is also of in-
dependent interest (see Qin et al. (2023) for the proof).
Theorem 1. Let &;,...,£, € R? be independent sub-
Gaussian isotropic random vectors. Assume that each &; sat-
isfies the Hanson-Wright inequality (HWI)

Pr[le] A& —E(& AL)| > 1]
I s n
<2exp(——miny{————5,5——1),
(=i AT w2, )
for any positive semi-definite matrix A € R?*¢, where k is
a constant, and ¢ is an absolute constant. Let E € R™*"4 pe

a matrix formed by sub-sampling any m rows of the block-
circulant matrix given by

Vn >0, (6)

& e g
c_|& & o d
Tooel

Then, for all s-sparse vectors, the restricted isometry con-
stant of =, denoted by s, satisfies 03 < 46 if m >

c16~2slog?(s) log? (nd) for some constant ¢;.
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Remark 3. Although we just need to reconstruct a block-
sparse vector in the bandit problem, this theorem applies to
general sparse vectors. The assumption (6) holds for many
random vectors, e.g., sub-Gaussian vectors with independent
entries and random vectors that obey convex concentration
property (Adamczak 2015).

Algorithms and Main Results

Next, we present some algorithms for the bandit problem
described in (1), taking into account data-poor and data-
rich regimes, accompanied with their regret bounds. First,
we make the following assumption.

Assumption 1. We assume that the distribution v is such
that for all ¢: (a) the context vectors, & o, a € [K], are i.i.d.,
) E, =E[L Y5 @y o/ ] satisfies Ain(Eg) > o for
some o, and (c) x; , satisfies HWI given by (6).

Remark 4. If we let & be a random vector deterministi-
cally chosen from the set {z,.,a € [K]}, Assumption 1
ensures that &, also satisfies the Hanson-Wright inequality
(see Appendix D for the proof). We will use this property
with Theorem 1 to analyze our bandit algorithms. A

Data-Poor Regime

First, we consider the situation where the dimension of the
weight vector w is larger than the number of rounds (i.e.,
T < h). In this data-poor regime, one can observe from
(5) that it is impossible to reconstruct ¢. Fortunately, it is
not necessary to completely learn ¢ to guide the decision-
making; instead, a good estimate of @ is sufficient (see the
definition of regret in (2) for the reason). Thus, we propose
the following approach to partially and gradually learn ¢
such that @ can be estimated and exploited at an early stage.

Approach 1. Recall that ¢ = w ® 6 with w € R". For
any integer k < h, let wyy = [wy,...,w;]" and ¢
w @60 € R¥4. Then, if one has learned <;3;< as an estimate
of ¢rc, 0 can be estimated in the following steps:

(al) Transform vector ¢y into a matrix ® € R?*F (the
ith column of <i>;C is the 7th block of qg;g with size d.

(a2) Let 6 be the left singular vector of é;c that is associ-
ated with the largest singular value'. A

With this approach, we use a doubling trick to design our
algorithm (see Algorithm 1 and Fig. 3). We select a con-
stant L satisfying s < L < h and define a sequence of sets
S1,8,...,S, with growing number of elements, where
S; = [2/71Ld]. Then, we aim to estimate

¢Sl7¢$2’¢837""¢87n,

. . i1 .
in sequential epochs, where ¢s, € R?" L4 contains the

first 2¢ =1 L blocks of ¢ and m is the largest integer such that
2m~1[, < h. The main idea is to learn a small portion of ¢

"We point out that what we estimate in this step is not exactly 0,
but rather its direction 6/|6||. As it turns out later, a good estimate
of the direction ensures a small angle between d and 0, and is thus
sufficient for good decision-making.



Algorithm 1: Doubling Lasso

1: Input: parameter L, the doubling sequence {7;} with
T; = 4(2° — 1)L [see Fig. 3 (a)], 6, = 0.
2: fort=1:Tdo
Observe context vectors {x; , : a € [K]}.
Take the greedy action a; € sup,¢(k] (@t,0,0i-1),
and receive a reward 7.
if t = T; then
# end of the ith epoch, estimate a new 6
Calculate ¢21 17, according to the Lasso (11).
Let 6; be the singular vector of <I>5 associated
with the largest singular value.
end if
end for

s @

AN

°

when there is little data; as more data is collected, we learn
a progressively larger portion.

At each epoch i, the following greedy action is repeatedly
taken for 2¢+1 L times (doubling trick, see Fig. 3 (a)):

; )

where 0;_; is the estimate of @ at the (i — 1)th epoch
(éo = 0). If there are more than one greedy actions,
the agent uniformly randomly picks one. Then, we collect
2i+1[, data points generated by (5). However, we only use
half of them to learn 6;. Specifically, dividing the data into
four 2~ L-dimensional chucks, we use the second and the
fourth chucks (see Fig. 3 (a)). From (5), the rewards in these
two chucks are respectively generated by

ar € arg Max,¢ (g (4,q,0;-1), 1>1

r'li =E'lil¢ +€'li],  r"[i] =E"[i]+"[il, (8)
where #/[i],7”'[i] € R?‘ LE/i], B"i) € R? X, and
e'[i],e"[i] € R?" F are the corresponding reward vectors,

context matrices, and noise vectors.

Rewrite ¢ = [¢], ¢f |, where ¢s, € R?" L7 is what
we want to learn. Then, one can rewrite (8) into
r'i] P/ Q| |¢ e'li]

|:7,//[Z]:| |:P// QN:| |: ‘?:| + |: //[,L]:| (9)

where 7'[i] € R 'L, and E'[i] = [P/,Q!] and E"[i] =

[P/, Q] (see Fig. 3 (b) for an 1llustrat10n) To learn qbg let

7[i] = r"[i] — r’[z] P,=P'-P.Q;,=Q! - Q! and
gli] = €"[i] — €'[i], and then we have
rli] = Pigs, + Qi¢s, +€li] := Pips, +elil, ~ (10)

where the Q; ¢, + £li] is taken as the new noise €li].
Then, ¢s, (which is at most s-block-sparse since ¢ is) is
estimated by solving the block-sparsity-recovery Lasso:

bs. = agmin (o [P~ +n613),

(]SERziilLd 2l

where the regularization parameter is selected as

2log(2*dL/~)

)\i =cd 21./71[/

(12)
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Figure 3: Illustration of Doubling Lasso. (a) In each epoch ¢,
we play the greedy action in (7) for 2¢*1 L rounds (T}’s are
the epochs’ ends). Then, we use the second and fourth quar-
ters of the collected data (green areas) to learn the first 2° =1 L
block of ¢ and estimate 8 subsequently (see Approach 1).
The learned 6 is used for decision-making in the next epoch
that has double length. (b) Illustration of how matrices in (9)
are defined. Here, the matrix =; defined in (5) is represented
in a form of (L x Ld)-dimensional block matrices.

for some ¢ > 0. Subsequently, we use Approach 1 to es-
timate 6. The algorithm is presented in Algorithm 1. The
following theorem provides a regret upper bound for it.

Theorem 2. Consider the stochastic contextual linear bandit
model with long-horizon rewards described in (1). In Algo-
rithm 1, choose L = csdlog®(sd) log®(hd), where ¢ > 0 is
a constant. When T" < h, the regret satisfies

1}),

Rr = O(d\/sT log(dT") 4+ min{q(w

where ¢(w) is a function of the weight vector w
that describes how the weights in w are distributed.
Specifically, g¢(w) h*(W) where € (0,1) and
a(w) infocpo) [Wea)llz > 1 with wg ()
{w1, w2, ..., Wy} and 1/p = O(1).

Remark 5. Notice that the following two facts in our algo-
rithm are crucial for our analysis: 1) we use the difference
between P/’ and P] (i.e., P; in (10)) as the measurement
matrix to learn ¢s,, ensuring that P; has zero mean, and 2)
the doubling trick and the choice of data to use ensure that
P/" and P! are non-overlapping and independent, and P;’s
in different epochs are also non-overlapping and indepen-
dent (see Fig. 3 (b)). Our analysis uses Theorem 1 to show
each P, in (11) satisfies the restrictive eigenvalue condition
for block-sparse vectors (see Theorem E.1 in the Appendix).
Then, we derive Theorem F.1 that generalizes Theorem 7.13
in Wainwright (2019) to complete the proof. AN

Remark 6. The value of o describes a “mass-like” distribu-
tion of the weights in s-sparse vector w. A small o means
that non-zero entries appear at early positions of w, mak-
ing it easier to learn useful information of @ at an early stage
than the case of a large «. For instance, if o < % log;, T (i.e.,

13)
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Figure 4: Regret comparison of Algorithm 1 for different
instances of w. (a) The ¢3-norms of the sub-vectors formed
by the first k entries of w; and ws, respectively (k is the
z-axis). Notice that the “mass” of w; is distributed at earlier
positions than ws. (b) Experiments show that Algorithm 1
results in a smaller regret for w, than for wo, as predicted
by Theorem 2. (Shaded regions show standard error in 10
trials. Parameters: h = 1000, 7 = 999, and s = 10.)

half of the “mass” is located at the first \/T positions of w),
Ry, = O(dVsT). If a = 1,ie,w = [0,0,...,1]T, then
R, = O(T), which is intuitive since no information can
be gathered to help decision making throughout the entire
horizon. The upper bound (13) indicates that our algorithm
is adaptive to different instances. We conjecture that the de-
pendence on q is optimal; for instance, for delayed bandits,
q becomes the delay, which is unavoidable.

Experiments. In Fig. 4, we perform some experiments by
considering two different w’s, i.e., one with the “mass” dis-
tributed at earlier positions and the other at later positions.
As predicted by our theory, our algorithm indeed achieves a
lower regret in the former case (see Fig. 4 (b)).

Remark 7. Apart from the term g(w) = h®, which is pre-
sumably unavoidable since it measures the hardness of a
problem instance, the upper bound in (13) has no polyno-
mial dependence on h. This means that exploring the spar-
sity in the reward dependence pattern is indeed beneficial
especially when sd < h. Hao et al. (2020) studied a sparse
linear bandit problem in the data-poor regime and obtained
an optimal bound, instantiated in our setting, ©((sd)3T'3).
We obtained a distinct bound since we consider a different
setting rather than a sparse arm parameter. A

Data-Rich Regime

Now, we consider the situation where there are more rounds
than the dimension of the weight vector w, i.e., T' > h. In
this data-rich regime, we introduce an algorithm outlined in
Algorithm 2 (see also Fig. 5 for an illustration).

There are two phases in this algorithm, making it adap-
tive: 1) in the initial A rounds, we employ the Doubling
Lasso (see Algorithm 1); 2) from the A + 1 round on, we
propose another algorithm. In the second phase, we also use
a doubling trick similar to Algorithm 1. The only differences
are: 1) the length of epoch i is 2°h instead of 2'*1L, 2) in
each epoch, we estimate the entire ¢ instead of a portion of
it, and 3) the later half of collected data is used.

Same as in Algorithm 1, we collect 27h data points in
each epoch. From (5), the 27~/ rewards in the later half
(See Fig. 5) are generated by

#j] = Eljle + &lj],

9530

o o0 9 0 90
Initial ' '
phase J | | c
2h Ty 4h T, 8h 13

Figure 5: Illustration of AD-Lasso. For the initial phase of
h rounds, we use the Doubling Lasso in Algorithm 1. For
t > h, we also use the doubling trick, but slightly different
from Algorithm 1: 1) here L = h, and 2) we estimate the
entire ¢ in each epoch.

Algorithm 2: Adaptive Doubling Lasso (AD-Lasso)

1: Input: L for the initial phase, the doubling sequence
{T;} with T; = (27! — 1)h [see Fig. 5]
fort=1:hdo

Implement Algorithm 1 with parameter L.
end for .
Reset O to the latest 6.
fort=h+1:Tdo

Observe contexts vectors {x; o : a € [K]}.

Take the greedy action a; € sup,e (x| (Tt,a, 6, 1),
and receive a reward 7.
9: if £ = T} then
10:
11:
12:

# end of the jth epoch, estimate a new 0
Calculate ¢[j] according to the Lasso (14).
Let éj be the singular vector of $ associated
with the largest singular value.
end if
end for

13:
14:

where 7[j] € R¥" E[j] € R¥"*" and &[j] € R*'" are
the corresponding reward vector, context matrix, and noise
vector in the later half of the epoch j, respectively.

To learn ¢, we calculate the following Lasso program:

~ 2
Eljle — o[, + Aill8), (14)

. ) 1
o) = ergmin (57
where the regularization parameter is
2dlog(27h/7)
20=1p 7
Theorem 3. Consider the stochastic contextual linear bandit
model with long-horizon rewards described in (1). In Algo-

ritm 2, let L be the same as in Thoerem 2. When T" > h, the
regret has the following upper bound:

Ry = O(d«/shlog(dh) + min{q(w), h}
+\/5dT 1og(dT)), (16)

Aj =2 (15)

where ¢(w) is defined in Theorem 2.

Remark 8. The first two terms in (16) result from the ini-
tial phase (¢ < h) when data is poor. Note that they are 7T-
independent even if they are h-dependent; they play a role in
the upper bound only when 7" has the same order of h, i.e.,
T = O(h). In this case, the upper bound becomes

Rr = O(dv/sT log(dT) + min{q(w), T}).
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Figure 6: Performance comparison of different algorithms. (a) Flat w: the non-zero entries in w are equally spread. (b) Spiking
w: the majority of the weights concentrates at only 20% of the non-zeros positions in w. Different sparsity of w is also
considered for both cases. (Universal parameters: T = 2000, h = 100,d = 5, and ||w][; = 1.)

By contrast, if T is large, specifically, T >
max{dh, h>**" /(sdlog(T))}, the first two terms are
dominated by the last one in (16), and the upper bound

reduces to
Ry = O(\/sdT log(dT)).

Then, our upper bound is optimal in d and T' (up to loga-
rithmic factors), which follows from the lower bound VdT
shown in Chu et al. (2011) for linear contextual bandits.
Discussion on lower bound: Ren and Zhou (2020) ob-
tained a lower bound Q(v/sT) for s-sparse contextual lin-
ear bandits. Taking into account the low-rank and sparse
nature of our problem, one can show a lower bound of
Q(+/(s+ d)T) in our case by adapting their proof. Thus,
the gap between the our bound in Theorem 3 and this lower
bound is at most a factor of log(dT) min{/s,/d}. How-
ever, we believe that the actual gap is much smaller. We pre-
sume that a tighter lower bound can be constructed since we
find that the sampling complexity of low-rank estimation us-
ing circulant measurements does not simply depends on the
rank (see Sec. for the discussion). A

Experiments. We perform some experiments to compare
our algorithm AD-Lasso with the following three:

1. Sparse-Alternating Gradient Descent (SA-GD). The core
of SA-GD is rank-1 and then sparse matrix estimation.
Based on (3), SA-GD alternatively reconstructs 6 and w
by gradient descent and projects w to the s-sparse space.

. Single-Weight Matching Pursuit (SW-MP). The core of
SW-MP is to locate the largest weight in w by testing the
correlation between the reward vector and the columns of
the context matrix. Then, with this location information,
0 is estimated simply by the least-squares regression, ig-
noring other weights in w.

. UCB with Matching Pursuit (UCB-MP). This algorithm
is similar to SW-MP; the difference is that in each epoch
we use UCB to update 8 and make decisions.

To facilitate fair comparison, we use the same doubling
scheme with identical epoch lengths for all the algorithms.
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The only difference is the method we use to estimate 6 (see
Appendix G for more details of these algorithms). Different
sparsity and reward dependence structure are considered in
the experiments (see the caption in Fig. 6).

Our algorithm outperforms SA-GD significantly when w
is highly sparse (see (al), (a2), (bl), and (b2)). Since SA-
GD is primarily reliant on rank-1 factorization, this indicates
that, relative to low-rankness, sparsity plays a more domi-
nant role in the estimation quality in line with our theory.
Surprisingly, as w becomes less sparse, our algorithm can
still outperform SA-GD, even in the regime sd > d + h.
This supports the difficulty of low-rank matrix estimation
with circulant measurements, which is consistent with our
discussion in Sec. . Yet, stronger theoretical analysis is de-
sirable to formalize these findings beyond our Lemma 1.

AD-Lasso performs as well as SW-MP and UCB-MP,
even when the weights of w are highly concentrated over
few entries. When the weights are more spread out, AD-
Lasso works much better, indicating that simply exploring
and exploiting the largest weight becomes suboptimal.

Concluding Remarks

In this paper, we introduce a novel variation of the stochastic
contextual bandits problem, where the reward depends on s
prior contexts, up to a time horizon of h. Leveraging the
sparsity in the reward dependence pattern, we propose two
algorithms that account for both the data-poor and data-rich
regimes. We also derive horizon-independent (up to log(h)
terms) regret upper bounds for both algorithms, establishing
that their sample efficiency is theoretically guaranteed.

Our work opens up many future potential directions. For
instance, the reward can depend on the prior contexts in
a nonlinear fashion or sparsity pattern can vary in a data-
dependent fashion. In either scenarios learning the reward
dependence pattern will be more challenging. Also, beyond
bandit problems, it is of interest to explore RL and control
scenarios with long-term non-Markovian structures where
new strategies will be required.
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