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Abstract

We consider the problem of off-policy evaluation (OPE) in
reinforcement learning (RL), where the goal is to estimate
the performance of an evaluation policy, 7, using a fixed
dataset, D, collected by one or more policies that may be dif-
ferent from 7.. Current OPE algorithms may produce poor
OPE estimates under policy distribution shift i.e., when the
probability of a particular state-action pair occurring under
me is very different from the probability of that same pair
occurring in D. In this work, we propose to improve the ac-
curacy of OPE estimators by projecting the high-dimensional
state-space into a low-dimensional state-space using concepts
from the state abstraction literature. Specifically, we consider
marginalized importance sampling (MIS) OPE algorithms
which compute state-action distribution correction ratios to
produce their OPE estimate. In the original ground state-
space, these ratios may have high variance which may lead
to high variance OPE. However, we prove that in the lower-
dimensional abstract state-space the ratios can have lower
variance resulting in lower variance OPE. We then highlight
the challenges that arise when estimating the abstract ratios
from data, identify sufficient conditions to overcome these is-
sues, and present a minimax optimization problem whose so-
lution yields these abstract ratios. Finally, our empirical eval-
uation on difficult, high-dimensional state-space OPE tasks
shows that the abstract ratios can make MIS OPE estimators
achieve lower mean-squared error and more robust to hyper-
parameter tuning than the ground ratios.

1 Introduction

One of the key challenges when applying reinforcement
learning (RL) (Sutton and Barto 2018) to real-world tasks is
the problem of off-policy evaluation (OPE) (Fu et al. 2021;
Voloshin et al. 2021). The goal of OPE is to evaluate a policy
of interest by leveraging offline data generated by possibly
different policies. Solving the OPE problem would enable
us to estimate the performance of a potentially risky pol-
icy without having to actually deploy it. This capability is
especially important for sensitive real-world tasks such as
healthcare and autonomous driving.
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Figure 1: Left side: AntUMaze domain. Right side: Pro-
jecting high-dimensional ant into lower-dimensional point-
mass.

The core OPE problem is to produce accurate policy value
estimates under policy distribution shift. This problem is
particularly difficult on tasks with high-dimensional state-
spaces (Voloshin et al. 2021; Fu et al. 2021). For exam-
ple, consider the AntUMaze problem illustrated on the left
side of Figure 1. In this task, an ant-like robot with a high-
dimensional state representation moves in a U-shaped maze
and receives a reward only for reaching a specific 2D co-
ordinate goal location. The state-space of this task includes
information such as 2D location, ant limb angles, torso ori-
entation etc., resulting in a 29-dimensional state-space. The
OPE task is to evaluate the performance of a particular pol-
icy’s ability to take the ant to the 2D goal location using data
that may be collected by different policies. Policy distribu-
tion shift is common in this type of high-dimensional task
since the chances of different policies inducing similar limb
angles, torso orientations, paths traversed etc. are incredi-
bly slim. Notice, however, that while different policies may
induce different body configurations, they may traverse sim-
ilar 2D paths since all (successful) policies must move the
ant through roughly the same path to reach the goal. More-
over, the only critical information needed from the state-
space to determine the ant’s per-step reward are its 2D co-
ordinates. Motivated by this observation, we propose to im-
prove the accuracy of OPE algorithms on high-dimensional
state-space tasks by projecting the high-dimensional state-
space into a lower-dimensional space. This idea is illustrated



on the right side of Figure 1 where the ant is reduced to a 2D
point-mass.

With this general motivation in mind, in this paper,
we leverage concepts from the state abstraction literature
(Li, Walsh, and Littman 2006) to improve the accuracy of
marginalized importance sampling (MIS) OPE algorithms
which estimate state-action density correction ratios to com-
pute a policy value estimate (Liu et al. 2018a; Xie, Ma, and
Wang 2019; Yin and Wang 2020). Due to the low chances
of similarity between states of policies in high-dimensional
state-spaces, current MIS algorithms can produce high vari-
ance state-action density ratios, resulting in high variance
OPE estimates. However, if we are given a suitable state
abstraction function, we can project the high-dimensional
ground state-space into a lower-dimensional abstract state-
space. The projection step increases the chances of similar-
ity between these lower-dimensional states, resulting in low
variance density ratios and OPE estimates. To the best of our
knowledge, this work is the first to leverage concepts from
state abstraction to improve OPE. We make the following
contributions:

1. Theoretical analyses showing: (a) the variance of abstract
state-action ratios is at most that of ground state-action
ratios; and (b) that our abstract MIS OPE estimator is un-
biased, strongly consistent, and can have lower variance
than its ground equivalent.

2. An algorithm, based on a popular class of MIS algo-
rithms, to estimate the abstract state-action ratios.

3. An empirical analysis of our estimator on a variety of
high-dimensional state-space tasks.

2 Preliminaries

In this section, we discuss relevant background information.

2.1 Notation and Problem Setup

We consider an infinite-horizon Markov decision process
(MDP), M = (S, A, R,P,~,dy), where S is the state-
space, A is the action-space, R : S x A — A([0,00)) is
the reward function, P : S x A — A(S) is the transition
dynamics function, v € [0,1) is the discount factor, and
do € A(S) is the initial state distribution. The agent act-
ing, according to policy 7, in the MDP generates a trajec-
tory: sg, ao, 7o, $1,G1,71, ..., where so ~ do, az ~ 7(|s¢),
re ~ R(8t,at), and sp41 ~ P(-|s¢, a;) for t > 0. We define
r(s,a) = B, r(s,q[r] and the agent’s discounted state-
action occupancy measure under policy 7 as d:

T-1 td
dy(s,0) = lim 2zt=0 Y dn(50.01)
T— o0 Zt:o f}/t
where d (s, at) is the probability the agent will be in state
s and take action a at time-step ¢ under policy 7.

In the infinite-horizon setting, we define the perfor-
mance of policy 7 to be its average reward, p(w) :=
E(s,a)wdmrwR(s,a) [7“]

Note that E(s,a)wdw R (s,0) [7’] = (1 —
7) Esy~do,ao~r [qw(s()v aJO)} where qr (57 a’) =

E[ZEOZOWtTHdSt = s,a;4 = a] is the action-
value function which satisfies ¢™(s,a) = r(s,a) +
fYEs’NP(s,a),a’NTr(s’)[qﬂ—(slva/)]-

2.2 Off-Policy Evaluation (OPE)

In behavior-agnostic off-policy evaluation (OPE), the goal
is to estimate the performance of an evaluation policy .
given only a fixed offline data set of transition tuples, D :=
{(s4,ai, 85, r;)} ™, where (s;,a;) ~ dp, m is the batch
size (number of trajectories), and 7T is the fixed length of
each trajectory, generated by unknown and possibly multiple
behavior policies. The difficulty in OPE is to estimate p(7.)
under d,, given samples only from dp.

We define the average-reward in dataset D to be rp :=
E(s,0)~dp,r~R(s,a)[T]- As in prior OPE work, we assume
that if dr_(s,a) > 0 then dp(s,a) > 0. Empirically, we
measure the accuracy of an estimate (7. ) by generating M
datasets and then computing the relative mean-squared error
(MSE): MSE(j(m,)) = &M W where
pi(m.) is computed using dataset D; and 7p, is the average
reward in D;.

Marginalized Importance Sampling (MIS) In this work,
we focus on MIS methods, which evaluate 7. by using the
ratio between d ., and dp. That is, MIS methods evaluate 7,
by estimating p(7.) := E(s q)~dp,r~R(s,a) [C (S, @)7], where

__dqr.(s,a)
C(S,CL) T dD(S,a)

is the state-action density ratio for state-action pair (s, a)
and d.(s,a) = d.(s)m(als). When the true ¢ is known, the
empirical estimate of p(7,) is:
1
p(me) == N;C(Si7ai)r(si;ai) (1
where N is the number of samples. In practice, however, ¢
is unknown and must be estimated.
One set of (-estimation algorithms, which have also
shown potential for good OPE performance (Voloshin et al.

2021), is the DICE family (Yang et al. 2020). While there are
many variations, the general DICE optimization problem is:
max min

S X AR 1v:S x A—R J(Gv) =
E(s.0,5)mdp.atrm, [((5, @) (v(s,0) —yv(s', )] (D)
— (1 =) Esgndg,ag~r. [V(S0, a0)]

where the solution to the optimization, (*(s, a), are the true

ratios. The estimator we present in Section 3 builds upon the
DICE framework.

2.3 State Abstractions

We define a state abstraction function as a mapping ¢ : S —
S?, where S is called the ground state-space and S ¢ is called
the abstract state-space. We consider state abstraction func-
tions that partition the ground state-space into disjoint sets.



We can use ¢ to project the original MDP into a new ab-
stract MDP with the same action-space A and reward and
transition dynamics functions defined as:

R?(s%,a) = Z w(s)R(s,a)
s€EP~1(s?)
P?(s'%|5%,a) = Z w(s)P(s'|s,a)
s€P1(s?),s'€p~1(s'?)

where w : § — [0, 1] is a ground state weighting function
where for each s? € S, D seo-1(ssy W(s) = 1 (Li, Walsh,
and Littman 2006). Similarly a policy can be transformed
into its abstract equivalent as:

w(als?) = Y

s€o=1(s%)

w(s)m(als).

We define the following state-weighting function for an ar-

bitrary policy 7: w,(s) = W and only con-

sider abstractions that satisfy:
Assumption 1 (Reward distribution equality). Vs;,s2 € S
such that ¢(s1) = ¢(s2), Ya, R(s1,a) = R(s2,a).
Assumption 1 implies that, regardless of the choice of
the state-weighting function, for given action a, Vs € s®,
R?(s?,a) = R(s,a) i.e. the reward distribution of an ab-
stract state equals that of the ground states within that ab-
stract state.

3 Abstract Marginalized Importance
Sampling
Marginalized IS methods may suffer from high variance
in high-dimensional state-spaces. To potentially reduce this
high variance, we propose to first use ¢ to project D into
the abstract state-space to obtain: D? = {(s%,a,r?,s'?)}
where s? = ¢(s) and r?(s?,a) = 7(s,a)Vs € s?, and then
use the following estimator on D? to estimate p(7%):

Definition 1 (Abstract estimator). We define our estimator
of p(7?) as follows:

1 i ds(syai)
qub(S?,

ro(sf, ai)
i=1
where N is the number of samples, d.s+(s?, a)
drs(s2)m?(a|s?) with ds(s?) = 2 scp-1(se) dr(s) and

7% constructed using w-.

3)

ai)

In the remainder of this section, we first give an example
d s?.a

to build intuition for why the abstract ratios d;:)(isd):a))
have lower variance than the ground ratios and then show
theoretically that the OPE estimator given in Equation (3) is
strongly consistent and can produce lower variance OPE es-
timates of p(m.) than the ground equivalent (Equation (1))
when the true ratios are known. Finally, when the true ab-
stract ratios are unknown, we identify sufficient conditions
under which unbiased estimation of the ratios is possible and
adapt an existing DICE algorithm to estimate them.

can

9419

3.1 A Hard Example for Ground MIS Ratios

Policies
me(ao|so) = 0.01
7Te(al|50) =0.99 P
mp(aoso) = 0.99 \\So
mp(ailsg) =0.01

Figure 2: TwoPath MDP where ground density ratios for
(s1,a0) and (s2,ap) are high variance. However, upon ag-
gregation of equivalent states (grey dotted lines), the abstract

density ratio of (s‘f, agp) is low variance.

We present a hard example for ground MIS ratios in Fig-
ure 2 that provides intuition for why the abstract MIS ra-
tios can have lower variance ratios than the ground ratios.
Consider two symmetric policies, 7, and 7p, executed in
the ground MDP (left side). In this example, the high vari-

we(gl (10)

ance of the true state-action density ratios ~ 0
d (Sl,ao)
and % ~ 100 can lead to high variance estimates of
=p (52,
p(me). Notice, however, that states s; and s, are essentially

equivalent i.e. r(s1,a) = r(s2,a)Va € A and can be ag-
gregated together into a single state, s“f (Assumption 1). We
find that the state action density ratio in this abstract MDP
Lo (57,a0)
( ,a0)
lead to low variance estimates of p(me).
In general, we prove that the abstract ratios are guaranteed
to have variance at most that of the ground ratios (proof in

Appendix):
e (5,0)
> < Var(dD(ga))

where equality holds if either or both of the following are
true: 1) ¢ is the identity function i.e. ¢(s) = s,Vs € S and
2) if V51,82 € S such that d)(sl) qb(sQ) = 5% and for

dre(51.0) _ drels2.0) oo ¢ 5% ¢ € A

> dp(s1,a) — dp(s2,a)’?
Thus, Theorem 1 implies that projecting S — S ¢ can lower
the variance of density ratios.

(right 51de) = 1 is of low variance, which can

<z>( ,a)
dD<f> (s%,a)

Theorem 1. Var (

a given action a

3.2 MIS OPE with True Abstract Ratios

We now present the statistical properties of our estimator
assuming it has access to the true abstract state-action ratios.
Due to space constraints, we defer proofs to Appendix.

We prove our abstract estimator is unbiased (Theorem 4
in Appendix) and strongly consistent (Theorem 2 and Corol-
lary 1):

Theorem 2. Our estimator;, p(n?), given in Equation 3 is
an asympiotically consistent estimator of p(r.) in terms of
MSE: limy o0 E[(p(7?) — p(7.))?] = 0.



We also compare the variances between our abstract es-
timator and the ground equivalent. If we assume that D is
i.i.d as done in previous work (Sutton et al. 2008; Uehara,
Huang, and Jiang 2020; Nachum et al. 2019; Zhang* et al.
2020), then Var(p(7#)) < Var(p(r.)), where equality holds
only under the same conditions as described below Theo-
rem 1. In general, however, variance reduction depends on
the covariances between the weighted per-step rewards (Liu,
Bacon, and Brunskill 2020):

Theorem 3. If  Assumption 1 and if

for any fixed 1 < t < k < T,
dﬂ_¢>(sf’,at) & dﬂ_¢(si’,ak) "

cor (dpl@f,at)r (8, 00)s G Ggan ™ (55 0%) =

dr, (st,a) dr, (5k,0k)
Cov ( d’De(Stsat) 7 (51, at), dDE(Sk,ak)

Var(p(n¢)) < Var(p(m.)).

3.3 Estimating the Abstract Ratios

Thus far, we have assumed access to the true abstract ratios.
However, in practice, these ratios are unknown and must be
estimated from D?. In this section, we highlight the chal-
lenges in estimating the abstract ratios and identify sufficient
conditions on ¢ that allow for accurate estimation. Once ¢
satisfies these conditions, any off-the-shelf state-action den-
sity estimation method can be used to estimate the abstract
ratios. In this work, we focus on showing that DICE esti-
mates the true abstract ratios. We note that the following new
conditions on ¢ are only needed for unbiased estimation of
the abstract ratios; accurate OPE on the abstracted MDP can
still be realized under only Assumption 1.

We first observe that evaluating 7. using D is equivalent
to evaluating 7% using D? if D? is generated from an ab-
stract MDP with transition dynamics constructed according
to wy, . This equivalence is given by the following proposi-
tion:

r(Sk, ak)) hold  then

Proposition 1. [If Assumption 1 holds, the average reward
of ground policy w executed in ground MDP M, p(r), is
equal to the average reward of abstract policy T executed
in abstract MDP M? constructed with wy, p(n®). That is,
p(m) = p(7?).

Proposition 1 suggests that we can estimate p(7.) by ap-
plying any OPE algorithm to evaluate 7 using D? if the ab-
stract transition dynamics of D¢ are distributed according to
ijwg. Unfortunately, since w,, is unknown, two challenges
arise. Fortunately, there are special cases where unbiased es-
timation of the abstract ratios is still possible using only ex-
isting MIS algorithms.

Challenge 1: Transition dynamics distribution shift.
The off-policy data D? := {(s®, a,r?,s'®)} is distributed
in the following way: (s?,a) ~ dpe,7® ~ R? s¢ ~
Pg_(s?,a) where PJ_ are the transition dynamics of the
abstract MDP constructed with wp as the state-weighting
function. Thus, in addition to the original policy distribution
shift problem, we also encounter a transition dynamics dis-
tribution shift problem due to the projection where we want
to evaluate 7¢ in an MDP with P{f}’ﬂe , but we only have sam-

ples of data generated in an MDP with P2 - Moreover, since
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Wy, is unknown, we cannot compute P[ﬁﬂc and correct the
distribution shift, say through importance sampling (Precup,
Sutton, and Singh 2000), as we would correct for policy dis-
tribution shift. However, one condition on ¢ that will avoid
the transition distribution shift is:

Assumption 2 (Transition dynamics similarity). Vsi, so €
S such that ¢(s1) = ¢(s2), Ya € A,z € S, we have
Zs’Ed)*l(m) P(8/|51’ Cl) = Zs’E(ﬁ*l(w) P(S/|82’ a)’
Together with Assumption 1, ¢ is now the so-called bisim-
ulation abstraction (Ferns, Panangaden, and Precup 2011;
Castro 2020). This property of ¢ eliminates the transition
dynamics distribution shift since now P$W6(5’¢|s¢,a) =
P{f}D (s?]s?,a) = P?(s'?|s?,a) = Yogess P(s']s,a)Vs €
s?,Ya € A (applying Assumption 2 and definition of
P? from Section 2.3). Thus, we have D? distributed with
P;jjﬂe = P?, which then allows us to apply any MIS algo-

rithm to compute the abstract state-action ratios using D?.

Challenge 2: Inaccessible 7¢. To the best of our knowl-
edge, all existing MIS algorithms require access to the eval-
uation policy to estimate the density ratios. However, in the
abstract MDP, ﬂf is inaccessible since w;, is unknown. To
overcome this issue, we identify the following condition on
¢:

Assumption 3 (7, action-distribution equality). Vsi,ss €
S such that ¢(s1) = P(s2), me(s51) = Te(s2)

Assumption 3 then gives us 7¢(s?) = 7.(s),Vs € s¢
(applying Assumption 3 and definition of 7¢ from Section
2.3), which allows us to simulate sampling from 7% (-|¢(s))
by just sampling from 7 (-|s).

Given a ¢ with these properties, we can compute the ab-
stract ratios needed to estimate p(7.) by applying a suitable
MIS algorithm to D?. We use BestDICE (Yang et al. 2020),
and call our algorithm AbstractBestDICE, which solves the
following optimization problem:

rni)\nrngax JW,(,A) := —Eps B((s¢,a)2]

+Epe {C(sqﬁ, a) (’y E, .2 [v(s'?,a")] — v(s?,a) — A)]

+ (1= Eg o[V(s5, a0)] + A

~dyg,a0~TE
4)

where, v : S®x A — R, A € Ryand ¢ : SYx A —
R>o. The solution to the optimization, (*(s?,a)
d_¢(s?,a)/dps(s?,a) is the true abstract ratios. Since the
derivation of AbstractBestDICE follows the same steps as
BestDICE, we defer it to Appendix.

We note that it may be difficult to validate Assumptions
2 and 3 in practice, which may result in loss of the consis-
tency guarantee of Theorem 2. Nevertheless, in Section 4
we show that AbstractBestDICE leads to accurate OPE in
high-dimensional state-spaces even when assumptions may
not hold.

4 Empirical Study

We will now show how projecting S — S¢ can produce
more accurate OPE estimates in practice. We answer the fol-



lowing questions:

1. Do the true abstract ratios produce lower variance OPE
estimates than the true ground ratios?

Does AbstractBestDICE: (a) compute the true ratios
when Assumptions 1, 2, and 3 are satisfied and (b) pro-
duce data-efficient and stable estimates of p(m.) even
when Assumptions 2 and 3 fail to hold?

4.1 Empirical Setup

In this section, we describe the algorithms and domains of
our empirical study. Due to space constraints, we defer spe-
cific details to the Appendix.

Algorithms We compare AbstractBestDICE to ground
BestDICE (Yang et al. 2020). As also reported by Yang
et al. (2020); Fu et al. (2021), we found in preliminary ex-
periments (see Appendix) that BestDICE performed much
better than other MIS methods such as DualDICE (Nachum
etal. 2019), Minimax-Weight Learning (Uehara, Huang, and
Jiang 2020), etc.

Domains We focus on high-dimensional state-space tasks,
which have been known to be particularly challenging for
DICE methods (Fu et al. 2021). For each environment below
we specify a fixed ¢.

e TwoPath MDP. This MDP is pictured in Figure 2. In this
domain, Assumptions 1, 2, and 3 are satisfied. We also
run the same experiments for when these assumptions are
violated (see Appendix).

¢ Reacher (Brockman et al. 2016). A robotic arm tries to
move to a goal location. Here, s € R and ¢ € R2.
Since the reward function is the Euclidean distance be-
tween the arm and goal, ¢ extracts only the arm-to-goal
vector, and angular velocities from the ground state, re-
sulting in s? € R*.

¢ Walker2D (Brockman et al. 2016). A bi-pedal robot tries
to move as fast as possible. Here, s € R!'® and ¢ € RS.
We use the Euclidean distance from the start location as
the reward function and use a ¢ that extracts x and z co-
ordinates and top angle of the walker’s body, resulting in
5% € R3.

e Pusher (Brockman et al. 2016). A robotic arm tries to
push an object to a goal location. Here, s € R?? and a €
R". Since the reward function is the Euclidean distance
between object and arm and object and goal, ¢ extracts
only object-to-arm and object-to-goal vectors, resulting
in s? € RS.

¢ AntUMaze (Fu et al. 2020). This sparse-reward task re-
quires an ant to move from one end of the U-shaped maze
to the other end. Here, s € R2?? and a € R8. We use the
“play” version where the goal location is fixed. Since the
reward function is +1 only if the 2D location of the ant is
at a certain Euclidean distance from the 2D goal location,
¢ extracts only the 2D coordinates of the ant, resulting in
s € R%

For Reacher, Walker2D, Pusher, and AntUMaze, ¢ satis-
fies only Assumption 1.
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4.2 Empirical Results

In this section, we describe our main empirical results; addi-
tional experiments can be found in Appendix.

True Ratios for OPE We conduct an experiment on the
TwoPath MDP to estimate p(7.) where we apply the ground
estimator given in Equation (1) and our abstract estimator
given in Equation (3), assuming both have access to their
respective true ratios. The results of this experiment are il-
lustrated in Figure 3(a). We can observe that the abstract es-
timator with the true abstract ratios produces substantially
more data-efficient and lower variance OPE estimates for
different batch sizes compared to the ground equivalent.

True Abs True Ground

0 200 400
Batch Size (# of Trajectories)

(a) MSE vs. Batch size (# of trajectories). The
vertical axis axis is log-scaled. Errors are com-
puted over 15 trials with 95% confidence in-
tervals. Lower is better. Since p(me) = p(7p)
in this domain, we use regular MSE instead of

relative.
=02
0.1
0.0
0.0 0.1 0.2 0.3
d_+(s%,a)

K

(b) Estimated Liﬂ(;) (vertical axis) vs. true d_, (hor-

izontal axis). Values are averaged over 15 trials. We
expect the dots to be as close to the black line as pos-
sible. Each dot is for each (s?, a). Dots are only at
extreme ends due to choice of ., mp, and ToyMDP
design. Only 4 out of 6 dots are visible due to over-
lap between the dots for (s?,a;) and (s%, a1), and

(S(fv ao) and (837 a’O)'

Figure 3: True ratio experiments.



True Ratio Estimation To verify if AbstractBestDICE ac-
curately estimates the true ratios we conduct the following
experiment on the TwoPath MDP. We give AbstractBest-
DICE data of batch size 300 to estimate the abstract ratios
¢? and then use ¢? to estimate the abstract state-action den-

sities of 72, d_s(s?,a) = (?(s®,a)d_s (s®,a), where we
e D

have access to the true d_ (s, a). We then compare d_s

D e

to the true d_o, which we compute using a batch size of

300 trajectories collected from 7¢ roll-outs, using a correla-
tion plot shown in Figure 3(b). From the figure we can see
AbstractBestDICE accurately estimates the abstract state-
action density ratios. When assumptions are violated, how-
ever, ratio estimation accuracy can reduce (see Appendix).

Data-Efficiency Figure 4 shows the results of our (rela-
tive) MSE vs. batch size experiment for the function approx-
imation case. For a given batch size, we train each algorithm
for 100k epochs with different hyperparameters sets, record
the (relative) MSE on the last epoch by each hyperparameter
set, and plot the lowest MSE achieved by these hyperparam-
eter sets. We find that AbstractBestDICE is able to achieve
lower MSE than BestDICE for a given batch size. We note
that while hyperparameter tuning is difficult in OPE, in this
experiment, we aim to evaluate the performance of each al-
gorithm assuming both had favorable hyperparameters.

Hyperparameter Robustness Finally, we study the ro-
bustness of these algorithms to hyperparameters tuning. In
practical OPE, hyperparameter tuning with respect to MSE
is impractical since the true p(m.) is unknown (Fu et al.
2021; Paine et al. 2020). Thus, we want OPE algorithms to
be as robust as possible to hyperparameter tuning. The main
hyperparameters for DICE are the learning rates of ¢ and v,
a¢ and ay,. For these experiments, we focus on very small
batch sizes, where we would expect high sensitivity. The re-
sults of this study are in Figure 5. We find that our algorithm
has a less volatile MSE than BestDICE (also see Appendix
for more similar results). In a related experiment, we also
find AbstractBestDICE can be more stable than BestDICE
during training (see Appendix).

5 Related Work

MIS and Off-Policy Evaluation. There have been broadly
three families of MIS algorithms in the OPE literature to es-
timate state-action density ratios. One is the DICE family,
which includes: minimax-weight learning (Uehara, Huang,
and Jiang 2020), DualDice (Nachum et al. 2019), Gen-
DICE (Zhang* et al. 2020), GradientDICE (Zhang, Liu,
and Whiteson 2020), and BestDICE (Yang et al. 2020). In
our work, we adapt BestDICE to estimate the abstract ra-
tios. The second family of MIS algorithms is the COP-TD
algorithm (Hallak and Mannor 2017; Gelada and Bellemare
2019), which learns the state density ratios with an on-
line TD-styled update. The third family is the variational
power method (Wen et al. 2020) algorithm which general-
izes the power iteration method to estimate density ratios.
While our focus has been on MIS algorithms, there are many
other OPE algorithms such as model-based methods (Zhang

- | AbstractBestDICE BestDICE

(relative) MSE(p(m.))

0 250 500 750 1000
Batch Size (# of Trajectories)

(a) Reacher

- AbstractBestDICE BestDICE

0 250 500 750 1000
Batch Size (# of Trajectories)

(b) Walker2D

-== AbstractBestDICE BestDICE

0 250 500 750 1000
Batch Size (# of Trajectories)

(c) Pusher

100 |

- AbstractBestDICE BestDICE

107° -
0 250 500 750 1000

Batch Size (# of Trajectories)
(d) AntUMaze
Figure 4: Relative MSE vs. Batch Size (# of trajectories).

Vertical axis is log-scaled. Errors are computed over 15 trials
with 95% confidence intervals. Lower is better.
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Figure 5: Robustness of BestDICE and AbstractBestDICE
to hyperparameters on the AntUMaze domain for batch size
(# of trajectories) of 5. Errors are computed over 15 trials
with 95% confidence intervals. Lower is better.

et al. 2021b; Hanna, Stone, and Niekum 2017; Liu et al.
2018b), fitted-Q evaluation (Le, Voloshin, and Yue 2019),
doubly-robust methods (Jiang and Li 2016; Thomas and
Brunskill 2016), and IS (Precup, Sutton, and Singh 2000;
Thomas 2015; Hanna, Niekum, and Stone 2019; Thomas,
Theocharous, and Ghavamzadeh 2015).

State Abstraction and Representation Learning. The
literature on state abstraction is extensive (Singh, Jaakkola,
and Jordan 1994; Dietterich 2000; Ferns, Panangaden, and
Precup 2011; Li, Walsh, and Littman 2006; Abel 2020).
However, much of this work has been exclusively focused
on building a theory of abstraction and on learning optimal
policies. A related topic to state abstraction is representa-
tion learning. Recently, there has been much work showing
the importance of good representations for offline RL (Wang
et al. 2021; Yin et al. 2022; Geng et al. 2022; Zhan et al.
2022; Chen and Jiang 2022). To the best of our knowledge,
no work has leveraged state abstraction techniques to im-
prove the accuracy of OPE algorithms.

6 Summary and Future Work

In this work, we showed that we can improve the accu-
racy of OPE estimates by projecting the original ground
state-space into a lower-dimensional abstract state-space us-
ing state abstraction and performing OPE in the resulting
abstract Markov decision process. Our theoretical results
proved that: 1) abstract state-action ratios have variance at
most that of the ground ratios; and 2) the abstract MIS
OPE estimator is unbiased, strongly consistent, and can have
lower variance than the ground equivalent. We then high-
lighted the challenges that arise when estimating the abstract
ratios from data, identified sufficient conditions to overcome
these issues, and adapted BestDICE into AbstractBestDICE
to estimate the abstract ratios. In our empirical results, we
obtained more accurate OPE estimates with added hyper-
parameter robustness on difficult, high-dimensional state-
space tasks.

There are several directions for future work. First, As-
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sumptions 2 and 3 are strict. Further investigation is needed
to see if these assumptions can be relaxed. Second, we as-
sumed the abstraction function was given. It would be inter-
esting to leverage existing ideas (Gelada et al. 2019; Zhang
et al. 2021a) to learn ¢. Finally, we want to emphasize that
this work instantiates the general abstraction + OPE direc-
tion. While this work focused exclusively on MIS algo-
rithms, a promising direction will be to apply abstraction
techniques to model-based, trajectory IS, and value-function
based OPE.
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