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Abstract

This paper addresses the challenges in accurate and real-time
traffic congestion prediction under uncertainty by proposing
Ising-Traffic, a dual-model Ising-model-based traffic predic-
tion framework that delivers higher accuracy and lower la-
tency than SOTA solutions. While traditional solutions face
the dilemma from the trade-off between algorithm com-
plexity and computational efficiency, our Ising-model-based
method breaks away from the trade-off leveraging the Ising
model’s strong expressivity and the Ising machine’s strong
computation power. In particular, Ising-Traffic formulates
traffic prediction under uncertainty into two Ising mod-
els: Reconstruct-Ising and Predict-Ising. Reconstruct-Ising is
mapped onto modern Ising machines and handles uncertainty
in traffic accurately with negligible latency and energy con-
sumption, while Predict-Ising is mapped onto traditional pro-
cessors and predicts future congestion precisely with only
at most 1.8% computational demands of existing solutions.
Our evaluation shows Ising-Traffic delivers on average 98 x
speedups and 5% accuracy improvement over SOTA.

1 Introduction

With rapid economic development, urbanization, and an in-
crease in personal vehicle ownership in the past decade,
traffic congestion has become a significant problem in
metropolitan centers around the world, resulting in more ac-
cidents, higher fuel consumption, greater emission of green-
house gas and pollutants, health hazards, and lower pro-
ductivity at the workplace. One of the best approaches to
avoiding congestion is to predict it accurately and promptly.
However, the uncertainty from unobserved traffic informa-
tion due to the lack of sensors or cameras at certain road
segments and external shocks like weather, accidents, and
unexpected road conditions makes accurate prediction very
challenging. As wrong or delayed prediction can result in
worse traffic performance and more accidents (Cheng et al.
2022), effective and efficient traffic congestion prediction is
in urgent demand.

There have been many studies on predicting traffic con-
gestion in academia and industry (Kumar and Raubal 2021).
Traditionally, researchers use one or multiple measurements

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9354

£ 1000k Feasible o
> Point o
E £ 100K S
Z 2 STTNe Pareto
Z % 10K3  HGCNe ! Frontier
€8 1Kg _ GTSe
£S5 1004 STGCNe
~1Seq2Seqe
Es o 17
=) 14 °
“ 1 1 1 I 1 L I [
0 93.0 935 945 955 96.5 97.5 985 99.5
Accuracy

Figure 1: Accuracy vs computational demands of
Ising-Traffic and SOTA methods.

among traffic speed, travel time, and queue length of a
road segmentation to define a complex threshold and pre-
dict whether congestion will take place (Akhtar and Morid-
pour 2021). In the past decade, deep learning methods like
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Graph Neural Networks (GNN5s) are
also used in traffic congestion prediction in the real world
(Ranjan et al. 2020). Some of these methods provide high
accuracy (Guo et al. 2021a) while others deliver faster-than-
real-time prediction (Liu and Wu 2017; Peng et al. 2022;
Zeng et al. 2023). However, the common challenge existing
studies face is the trade-off between algorithm complexity
and computational efficiency. Namely, the increase in accu-
racy generally comes from the increase in algorithmic com-
plexity, which normally leads to higher prediction latency.
Furthermore, as the end of Moore’s law is approaching, the
increase of hardware computational capability is inevitably
slowing down, making it increasingly challenging to im-
prove accuracy from this trade-off. Figure 1 compares cur-
rent state-of-the-art methods’ accuracy and computational
efficiency. It shows that the traditional methods following
the trade-off fail to deliver both accurate and fast solutions
that should stand on the right side of the Pareto-frontier. New
methods that breaks away from the trade-off are needed.

We observe that recent studies on the Ising model have
demonstrated that, leveraging the Ising machine’s unique ca-
pability of finding the low-energy states of a system, an mW-
level CMOS-based Ising model implementation (Afoakwa
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Figure 2: Ising-Traffic framework overview. Red/green/black stars represent congestion/non-congestion/unobserved segments.

et al. 2021; Sharma et al. 2022) can solve NP-complete
problems such as graph max/min cuts with orders of mag-
nitude speedups (us-level vs. ms-level) over traditional pro-
cessors like CPU and GPU with over 100W power consump-
tion. This observation motivates us to investigate whether
the Ising model, as a near-future quantum solution, can be
used in traffic congestion prediction and fundamentally ad-
dress the aforementioned challenge. For the convenience of
readers, we first briefly introduce the Ising model

The Ising model is a probabilistic graphical model rooted
in physics that has been widely used to describe com-
plex systems with discrete degrees of freedom. As it natu-
rally favors the spin configuration that minimizes the energy
(Hamiltonian) of systems by design, the Ising model can be
used as a surrogate for a variety of NP-complete optimiza-
tion problems as long as they can be represented using Ising
formulations with specified structural coupling parameters
matching the problems of interest (Cipra 2000).

By expressing the traffic congestion prediction problem
under uncertainty from unobserved data and external shocks
in Ising formulations, we propose, Ising-Traffic, a novel
dual-model Ising Machine Learning (IML)-based traffic
prediction framework that delivers both higher accuracy and
lower latency than SOTA solutions. Figure 2 presents the
overview of the proposed framework where traffic prediction
under uncertainty is divided into two separate Ising model
problems (with their corresponding models): Reconstruct-
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Ising and Predict-Ising.

First, both models’ coupling parameters are learned from
historical traffic data; this learning process is called Inverse
Ising. After the Ising models are trained, a forward problem-
solving step is performed sequentially with the learned pa-
rameters for both models; this step is called Forward Ising.
During Forward Ising, Forward Reconstruct-Ising is used to
handle the uncertainty in traffic and impute the missing data
based on the observed information in the same time slice,
hence mainly learning the spatial correlations among road
segments; while Forward Predict-Ising is in charge of pre-
dicting the future congestion based on the imputed traffic
data in the past time slices from Reconstruct-Ising, hence
mainly learning the temporal correlations among segments.

In order to achieve high accuracy, we propose the fol-
lowing domain-specific optimizations and apply them in In-
verse Ising: (1) robust learning with different levels of uncer-
tainty severity: we inject different levels of uncertainty dur-
ing training to improve the Ising model’s robustness to ran-
dom uncertainties from the real world. (2) geographical in-
formation embedding: we incorporate traffic’s geographical
information in the spatial correlation learning; (3) message
passing with dynamic attention: we propose a dynamic mes-
sage passing method with online-updated attention to better
propagate the influence from the neighboring segments in
the Ising model;

In order to achieve high performance, Ising-traffic (1)



conducts sparse Inverse Ising training to create the Ising
model with high sparsity for reduced computational com-
plexity and (2) performs Forward Ising with heterogeneous
hardware platforms for better performance. In particular, we
use an Ising machine to conduct Forward Reconstruct-Ising,
which delivers precise graph reconstruction with over 10¢ x
speedups over traditional methods. For the execution of For-
ward Predict-Ising, we still use traditional processors con-
sidering the mechanism to apply the Ising model to tempo-
ral information analysis is yet to be verified. Note that, al-
though not being mapped directly to an Ising machine, For-
ward Predict-Ising only requires at most 1.8% arithmetic op-
erations of current SOTA solutions.

To the best of our knowledge, Ising-Traffic is the first
work that demonstrates that Ising methods can outperform
traditional solutions to real-world applications. Our contri-
butions are summarized as follows:

* We propose Ising-Traffic, a novel and efficient dual-
model Ising-based traffic congestion prediction frame-
work with the support of uncertainty handling.

* We propose domain-specific optimizations for Inverse
Ising, including robust learning with different levels of
uncertainty severity, geographical information embed-
ding, and dynamic message passing, to improve the ac-
curacy of Ising-Traffic.

* We propose to use heterogeneous platforms with CMOS-
based Ising machines and traditional processors to accel-
erate Ising-based spatial and temporal information anal-
ysis, respectively, to achieve high performance.

» Experimental results demonstrate that compared with 7
traditional SOTA methods, Ising-Traffic delivers on av-
erage 98 x speedups with 5% accuracy improvement.

2 Background
2.1 Ising Model

The Ising model is a foundation for describing statistical
physics systems of correlated binary spin variables o; €
{£1}, up to quadratic interactions. Formally, an Ising
model of N spins is an exponential family model for binary
N-spin data s = {01,-- ,on} € {£1}" up to quadratic
sufficient statistic taking the Boltzmann form:

P(s) = % exp {—FH(s)}

1
= —exp

N
z —ﬁ Z JijO'in +

4,J=1

N
E hz 0; )
i=1

ey
where data s is the configuration of N spins o; € {£1},
B is the inverse temperature, and Z = ZS e PM() ig the
partition function. The graphical structure of the system
of interest is encoded into the Ising energy function H(s)
through the symmetric N x N interaction strength matrix
J = {Jij}ij:l with zeros on the diagonals, and the exter-
nal field vector h = {h;}¥ ;. In this paper, since we do not
consider any thermal change effects, we simply set the in-
verse temperature 3 = 1 and absorb it into (J, k). Further,
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for later convenience, we denote an Ising model by an Ising
parameter matrix I = (J, h), where h is embedded into J
as its diagonal elements, see Figure 3.

Physically, the lowest energy state (the ground state) of
such a statistical physics system naturally corresponds to the
most probable configuration. Therefore, an Ising machine
can be utilized to find the ground state of a given Ising model
with annealing methods (Inagaki et al. 2016), and many NP
problems, that can be easily cast into Ising formulation (Lu-
cas 2014), can be solved accordingly.

2.2 Ising Machine

The Ising machine is the physical system implementation
of the Ising model, which naturally tends to evolve to-
wards the state s = {01, ...,0,} with lower energy H (s)
and therefore can be used as a solution to optimization
problems that can be represented in the Ising formulation.
Many hardware Ising machines have been developed, in-
cluding D-quantum Wave’s annealers (King et al. 2021),
Coherent Ising Machines (CIMs) (Inagaki et al. 2016),
Electronic Oscillator-based Ising Machines (OIM) (Vaidya,
Surya Kanthi, and Shukla 2022), and the recently developed
CMOS-compatible BRIM (Afoakwa et al. 2021; Sharma
et al. 2022). Among them, BRIM provides direct and physi-
cal coupling and higher-order interaction among spins and
automatically and quickly finds the lowest-energy states
via charging and discharging of nano-scale capacitors. The
emergence of BRIM addresses many critical issues in pre-
vious Ising Substrates that hurdle the applications of Ising
Machines. Therefore, Ising-Traffic uses BRIM in Forward
Reconstruct-Ising.

2.3 Related Works

Traditional Methods: With the increase in the computa-
tional power of emerging computing hardware, recent stud-
ies have developed complex approaches based on neural
networks for traffic congestion prediction. Yaguang Li (Li
et al. 2017) proposes a diffusion Convolutional RNN that
models the traffic as a diffusion process to capture spatial
and temporal dependencies with sampling. In the GNNs do-
main, Shang Chao (Shang, Chen, and Bi 2021) proposes a
graph for time series (GTS) approach, a graph probability
model, to optimize desired performance on a graph probabil-
ity distribution. Fanglan Chen (Chen et al. 2020) presents the
Deep Kalman Filtering Network which combines two mod-
ules, the self-dependency modeling network and the neigh-
bor dependency modeling network. However, as illustrated
in Figure.1, they are all extremely computationally expen-
sive, leading to significantly delayed prediction.

Ising Methods: As discussed above, there are not many
studies on Ising methods in real-world applications due to
the limitations of previous Ising hardware. Most applica-
tions discussed in Ising studies are relatively simple, e.g.,
max-cut and min-cut of graphs (Haribara, Utsunomiya, and
Yamamoto 2016). Some researchers try to use Ising to solve
complex real-world problems such as stock price prediction
(Liu et al. 2023; Zhao, Bao, and Li 2018). Although they the-
oretically demonstrate the potential of mapping such appli-
cations onto the Ising model, these works fail to deliver com-



a. Traffic Graph G and Spin States|b. Ising Parameters Matrix I
--Unob d A h... A|B|C|D
+Unobserved & . B JD Al2l4l0]3
--- State = 1 .-:é’":"" ™ D B|4|3]6|8
T | Li=hi o623
+‘" State=-1 | D Iij=Jij D3 8|35

c. Neighboring Influence Matrix M|d. Observing Matrix O
AlB|C|D “n‘_w@ (Al B
alolalofo] e 11
2 'j - ; ; “Etzﬁ Observed
FG d[0 10 \"i MiSSing
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parable accuracy to traditional methods and rarely report
computational performance such as latency and throughput
(Son, Jeong, and Noh 2006). With the emergence of more ef-
ficient Ising machines and the approaching end of Moore’s
law, we contend it is time to develop end-to-end Ising-based
machine learning solutions for the real world.

3 Methodology

This section introduces the design of the Ising-Traffic frame-
work. We first provide an overview of the framework and
then discuss the details of Inverse training and Forward pro-
cessing of Reconstruct-Ising and Predict-Ising, respectively.

3.1 Framework Overview

As illustrated in Figure 2, the Ising-Traffic framework
consists (i) Reconstruct-Ising model for data imputation
and uncertainty handling in the same time slice, and (ii)
Predict-Ising model for future congestion prediction based
on the completed graphs from Reconstruct-Ising. In both
Reconstruct-Ising and Predict-Ising, the first step is to solve
an inverse problem that accurately learns their coupling pa-
rameters (J, h) reflecting road segments’ spatial and tem-
poral correlations. The local and global minima of the en-
ergy landscape shaped by the learned parameters represent
the correct graph imputation and traffic congestion predic-
tion. After Inverse Ising, the process of learning coupling
parameters from data, we use a BRIM Ising machine to solve
the Forward Ising problem targeting the same time slice,
i.e., Reconstruct-Ising, and impute the missing data in traffic
graphs. Leveraging Ising’s inherent capability of accurately
chasing the lowest energy states, Ising-Traffic can accurately
impute graph data with even ns-level latency. Meanwhile,
we use traditional processors to solve the Forward Ising
problem for inter-time-slice analysis, i.e., Predict-Ising. The
proposed Inverse Ising with 2-step learning guarantees that
the computational demands of Forward Predict-Ising is at
most 1.8% of existing SOTA solutions although it is also
performed on traditional digital processors (e.g. GPUs and
CPUs); hence, although Ising Machine is not used for pre-
diction, Ising-Traffic still delivers significant speedups.

3.2 Reconstruct-Ising

This subsection introduces Reconstruct-Ising. We first de-
scribe how to map a generic traffic problem onto the Ising
model. Next, we introduce our traffic-domain-specific algo-
rithm of Inverse Ising, with which the coupling parameters
of Reconstruct Ising can be trained to precisely represent the

& h),
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(c) Neighboring Influence Matrix, (d) Observing Matrix.

correlations among the target road segments. Finally, we dis-
cuss how to apply the trained Reconstruct-Ising model onto
Ising machines to perform Forward Reconstruct-Ising and
reconstruct the missing congestion data.

Mapping Traffic Graphs onto Reconstruct-Ising:

As traffic networks and the Ising model can be embed-
ded as graphs, we define an undirected graph representation
G = (N,V,E,C, D) to represent a traffic network and its
corresponding Ising model. Each node in the set V' repre-
sents a road segment in the traffic network and a spin in the
Ising model. Each edge e;; in the set I represents a physi-
cal or logical connection between two segments (two spins
in the Ising model) with the coupling J;; as its weight. IV is
the number of nodes (spins); the attribute of each node rep-
resents the congestion state of a segment as well as the +
of the spin; C' is the set of such attributes over nodes. Also,
edges have a set of attributes D determined by the physical
distances between neighboring segments.

This graph directly maps a traffic network to an Ising
model with a probability distribution over 2%V possible con-
figurations given by (1).

Inverse Reconstruct-Ising:

Inverse Reconstruct-Ising is the process of learning the
precise couplings J;; and external fields h; using train-
ing samples which are historical congestion states of road
segments, i.e., configurations of spins in the Ising model,
observed in the same time slice (therefore, samples are
also called observations). With a large number of ob-
servations Si, So,...,Sk, We try to estimate the parame-
ters of the Ising model that maximize the likelihood of
p(s1, 82, -, Sk |Jij, hi), which can be formulated as:

i)

However, maximum likelihood estimation is computa-
tionally intractable because of the intractable Ising parti-
tion function Z. Therefore, we adopt a neighborhood pur-
suit algorithm (Zhao, Roeder, and Liu 2012) to recover the
graph and the parameters instead. Neighborhood pursuit not
only provides accurate enough estimations for the problem
of interest but also leads to significantly reduced algorithmic

K
H P(Sk|Jij, hl)

k=1

{Jij, hl} = argmax

gyt



complexity. Starting from Equation 1, we have

P(s) = P(0s,0\;)
1 N
= Eexp — %:JMO'Z‘O']‘—FZ:}I,'UZ‘

N
hiO',‘—‘rZJijO'iO'j—FOé ,
J

1
= S X
Z p

with o = Z;V hjo; + Z;\; & 030k. Then the probability of
a certain spin conditioned on the status of all other spins is
formulated as follows,

P(oy =1,041)
P(O’l = 170'\1) —|—P(O’1 = —1,0'\1)

e—(h,l«kzé\] J1_7'<7]‘+CY)
=z
e—(h,ﬁ-zj.\’ Jljaj+a) e+(h,1+2;.\’ Jljaj+a)
Z zZ
1

1_~_e+2(h1+z§v:2 Jljoj) ’

P(oy = 1]o\1)

3

where the last line takes a logistic regression formulation.
The conditional probability of the target spin only depends
on the status of the spins that are directly connected with it,
hence the neighborhood pursuit.

With Equantion (3), the conditional probability of any
spin; can be realistically computed with the neighboring
spins’ status. To further improve the precision of the traf-
fic Ising model, we propose the following domain-specific
optimization methods for traffic problems.

(a) Message Passing with Dynamic Attention: Inspired by
message passing and attention-based aggregation in GNN’s
(Geng et al. 2020, 2021; You et al. 2022; Zhang et al. 2021),
we propose to use a Neighboring Influence Matrix M! to
represent the severity of congestion in each segment’s neigh-
borhood in the certain time slice. This Neighboring Influ-
ence Matrix can be used as attention in training making the
resulting Reconstruct-Ising model better take in information
from the propagation of congestion from neighborhoods.
Note that as each segment may have different congestion sta-
tus in different time slices leading to an evolving neighbor-
hood congestion map, the Neighboring Influence Matrix is
dynamic. Figure 3 illustrates how to create the Neighboring
Influence Matrix using a simplified traffic network as a mo-
tivational example. In particular, the neighboring influence
from Segment A to B is determined by the congestion ratio
of A’s directly physically connected neighbors, excluding B.
If two segments are not connected, their neighboring influ-
ence is 0. During training, this Neighboring Influence Matrix
will be online updated upon the change of time slices. With
the neighboring influence data enabled as attentions, the
training process focuses more on the impact of the conges-
tion from the neighborhood that can be timely propagated
through the physical traffic network. More importantly, with
the proposed Neighboring Influence Matrix enabled, the
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congestion messages of the indirectly-connected neighbors
of a certain segment are first aggregated as neighborhood-
level messages and then are efficiently passed onto the the
target node, which improves Reconstruct-Ising’s capability
to represent the cascading effects of traffic congestion.

(b) Geographical Information Embedding: With the Ising
parameter matrix I;, we propose a domain-specific £1 reg-

ularizer, AZ(.k) = /\‘ Mi(k) Dy - IiH , which uses two traffic
1

matrices including: for the ith spin, (i) the ¢th row of the dy-
namic neighboring influence matrix ,M;, labeled by sample
index k and (ii) the ith row of the distance matrix D; that
records the geometric information between the ¢’th spin and
its physically connected neighbors. Using this norm to regu-
larize the coupling parameters, Reconstruct-Ising efficiently
learns the delay of congestion message propagation among
the physically connected segments. Specifically, the £’s im-
pact increases with shorter distance, and vice versa.
(c) Robust Learning with Different Levels of Uncertainty
Severity: We inject different levels of uncertainty in train-
ing and average their loss values to update the parameters,
making the regression more robust to the traffic graph recon-
struction tasks with random uncertainty from the real world.
We use training data with different missing rates to repre-
sent different levels of uncertainty. We use an Observing
Matrix O to record whether the traffic state of each seg-
ment is missing/unobserved. Figure 3(d) gives an example
of Observing Matrix. During training, this matrix is used as
a mask to filter out the information of unobserved spins.
With all these optimizations applied, to accurately esti-
mate the coupling parameter J;; and h; of Reconstruct-Ising
model, we need to solve the {y,.-constrained logistic re-
gression problem for each spin ¢; by minimizing the fol-
lowing loss L.

| K U=60% “
_ k K k & k
Li_ﬁz Z yi In(9;7) + (1 =) In(1—97) + A,
k=1 u=0%
4

where K is the number of samples, and

N 1

iy = , (5)

R PSR

is the probability of o; +1 in the kth sample which is
k

evaluated with observation 5V using Observation Matrix O;
indicating which nodes are unobserved.

To summarize, we use the following algorithm to learn
Reconstruct-Ising and estimate its parameters.

Forward Reconstruct-Ising with Ising Machine:

After Inverse Reconstruct-Ising, we conduct Forward
Ising with the learnt Ising model to impute the missing data
and reconstruct the graph, which will be further used for pre-
diction. As discussed in Section 2, BRIM is used for graph
reconstruction in Ising-Traffic. A simple first-principle anal-
ysis shows that it takes simulated annealing an average of
about 10° instructions to mimic one step in the random walk
of a 1000-node energy landscape. The same effect in BRIM



Algorithm 1: Inverse Reconstruct-Ising

: for each node 05,4 € [0, N] do
Initialize I; = [Ii,h ]i’g, ey I@N]
where L,‘,j = Jiﬁj, Ii,z‘ = hi
I; + argmin;{Equation (4)} through mini-batch gradient
descent with learning rate decay.
end for
. concatenate {lo, I1, ..., In} to amatrix I € RNVXN
: return (I +17) /2

DN —

A

o))

requires a single spin flip resulting from a single charge/dis-
charge of a nano-scale capacitor (e.g., S0fF) which can hap-
pen on the order of pico-seconds. More details can be found
in (Afoakwa et al. 2021; Sharma et al. 2022). The latency of
traffic graph data reconstruction is evaluated in Section 4.3,
demonstrating that BRIMs can reconstruct traffic graphs ac-
curately within 100 ns.

Mapping the Ising Model to the Ising Machine: To cor-
rectly map the Ising model trained during the inverse process
onto BRIM, we set resistor values as R;; = 1/.J;;.

3.3 Predict-Ising

Mapping Time Sequence Prediction onto Predict-Ising:

Unlike Reconstruct-Ising, which only focuses on spatial
correlations in the same time slice, Predict-Ising learns tem-
poral correlations among segments and spins from histor-
ical congestion data across different time slices. That is,
the probability function used for Reconstruct-Ising (Equa-
tion (1)) needs to be augmented to support temporal infor-
mation. We derive the Predict-Ising augmentation in the fol-
lowing steps.

First, we transform the joint probability given by Equa-
tion (3) to

1
P(s) = Z exp{—Hi = Hui(s\0)} , ©6)

where H; = h;o; + Z;V Jijoio; and Hy; = Z;V hjo; +
Z;L , 0j0k. According global Markov property, we know
that given an undirected graph, if a certain subset of nodes
v is a separator of two sets of remaining nodes A and B,
we have P(A, B|y) = P(Aly) - P(B]y). Then it can be
easily proved that the probability of each spin’s state de-
pends solely on its directly-connected neighborhoods. Thus,
the probability function can be recast into the following ex-
pression:

1 _
= —e

Z

:e_

P(s) HiemMuilon) o g7 -

(hLO'L-‘y-Z;V Jijo'iaj) ,

Furthermore, we are able decompose the transition of the
global congestion distribution between adjacent time slices
into the transition of the congestion status of individual spin.
For the transition of each spin, we use an augmented regres-
sion model as expressed in Equation (8) where H; defined

9359

in Equation (7) is used in logit transformation.

1

P(O’t = — 1
14 e Hi

i = 1s(t—1))
. (®)

b

t—1 N t—1
14 e (it Jijoi ™)

With this expression, a similar learning approach to Inverse
Reconstruct-Ising can be used to learn Predict-Ising.
Inverse Predict-Ising:

As mentioned above, the Inverse Predict-Ising process is
similar to Reconstruct-Ising. Therefore, we mainly intro-
duce their differences. Unlike reconstruction, the prediction
needs to consider temporal information in parameter esti-
mation. Hence, we extend the loss function of Reconstruct-
Ising to the following expression:

T
1 + ~t t ~t t
o t ft ot _ gt 9
L; T;:lylln(yl)ﬂl yi)In(L—g;) +A", (9)

where ¢! denotes the probability of o; in time slice ¢ and

At = X||M] ™" - distancey; - I;||,. We further apply the dy-

namic Neighboring Influence Matrix M (Fig. 3(c)) and get:
1

[t 0l i)

g = (10)

t—1
1+4¢%
The learning algorithm of Inverse Predict-Ising is similar
to Algorithm 1. Note that we propose to learn Predict-Ising
jointly with Reconstruct-Ising for the following reasons: (1)
joint-learning alleviates the influence of cascading errors
from congestion imputation to prediction; (2) joint-learning
makes the models better learn the correlations between tem-
poral and spatial relationships among segments.

Forward Predict-Ising with Traditional Processors:

Instead of using the Ising Machine for annealing to find
the ground states of Predict-Ising model as prediction re-
sults, Forward Predict-Ising directly runs the transition prob-
ability function (Equation (8)) on traditional processors to
predict the configurations of spins in the next time slice
(s(t 4+ 1)) based on the current states (s(t)). As discussed
in Section 1, although we do not use an Ising machine for
the Forward Predict-Ising, the Forward Predict-Ising per-
formed on traditional processors can still provide significant
speedups as it only requires 1.8% arithmetic operations of
SOTA methods.

4 Experimental Results

This section first evaluates the accuracy of Ising-Traffic, in-
cluding the accuracy of graph reconstruction only, prediction
only, and reconstruction + prediction and then evaluates the
prediction latency of Ising-Traffic.

4.1 Experimental Setup

Datasets: We use four real-world datasets (Q-traffic,
PEMS4, PEMSS, PEMS-BAY). Q-traffic contains traffic
speed per 15-minutes of 15,073 city road segments in Bei-
jing, including 5856 time slices.



Missing Rate | LRTC-TNN (Baseline) Ising-1 Ising-2 Ising-final (Final Design)
10% 82.20/97.01/96.05/95.42 | 89.73/87.43/83.06/82.46 | 94.69/93.77/96.71/95.15 | 96.75/99.45/99.23/99.74
20% 82.18/96.95/95.93/94.98 | 89.78/83.26/74.96/77.63 | 94.63/92.34/95.47/93.75 | 96.66/99.21/99.07/99.63
30% 82.17/96.88/95.89/94.75 | 89.39/80.03/70.17/74.20 | 94.4/90.54/93.40/91.48 96.41/98.98/98.83/99.49
40% 82.16/96.81/95.86/94.67 | 89.40/76.98/64.72/71.34 | 94.15/88.25/89.01/89.02 | 96.19/98.69/98.68/99.12
50% 82.05/96.66/95.67/94.42 | 89.72/74.40/63.06/68.73 | 93.51/85.47/85.82/85.56 | 95.85/98.43/98.50/98.97
60% 81.56/96.41/95.39/94.21 | 88.81/70.84/56.71/66.24 | 93.35/81.91/80.29/81.83 | 95.13/98.21/98.43/98.92

Table 1: Accuracy of Reconstruct-Ising & Baseline. Q-traffic, PEMS8, PEMS4, PEMS-BAY are separated by dashes.

P4(%) | P8(%) | PB(%)

Ising-Joint | 99.72 | 99.62 | 99.48
HA 93.56 | 92.44 | 91.91
ARIMA 95.63 | 96.79 | 95.30
TGCLSTM | 97.52 | 96.61 | 97.55
Seq2Seq 97.51 | 97.99 | 97.62
STTN 98.52 | 97.94 | 97.75
DKFN 97.76 | 96.78 | 97.49
GTS 97.69 | 97.77 | 97.73
STGCN 97.89 | 98.52 | 98.01
HGCN 96.93 | 97.77 | 98.05

Table 2: Accuracy comparison of Predict-Ising & baselines.

PEMS4 (P4) contains speed data in San Francisco Area
from 01/01 to 02/28 in 2018 with 307 freeway segments.
PEMSS8 (P8) contains speed data in San Bernardino from
06/01 to 08/31 in 2016 with 170 freeway segments. PEMS-
BAY (PB) contains speed data in Bay Area from 01/01 to
05/31 in 2017 with 325 freeway segments.

Baselines: This research compares the proposed approach
with carefully selected SOTA works in congestion predic-
tion as baselines for the prediction stage including Histor-
ical Average (HA), Autoregressive Integrated Moving Av-
erage (ARIMA), TGCLSTM (Cui et al. 2019), Seq2Seq
(Sutskever, Vinyals, and Le 2014), STTN (Xu et al. 2020),
DKFN (Chen et al. 2020), GTS (Shang, Chen, and Bi 2021),
STGCN (Yu, Yin, and Zhu 2017), and HGCN (Guo et al.
2021b). These works use different methodologies as fol-
lows. TGCLSTM is based on Convolutional Long Short-
Term Memory Neural Network. Seq2Seq uses the encoder-
decoder architecture with gated recurrent units. STTN is a
spatial-temporal network using Transformer to learn spatial-
temporal correlations. DKFN uses Kalman filtering net-
work. GTS learns a graph structure among multiple time
slices and predicts simultaneously. STGCN combines the
gated temporal convolution and graph convolutions. HGCN
is a hierarchical Graph Convolution Network that divides
traffic graphs into micro and macro parts. Moreover, we se-
lect the current SOTA traffic reconstruction model, LRTC-
TNN, as the baseline for reconstruction.

Platforms: The Forward Reconstruct-Ising of Ising-Traffic
is performed on a simulated BRIM system (Afoakwa et al.
2021). The GPU and CPU used to evaluate the latency of
baseline solutions and perform Forward Predict-Ising are
Nvidia A100-40GB and Intel Xeon Gold 6330.
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4.2 Evaluation of Accuracy

Reconstruction Only: We first evaluate the accuracy of re-
construction. Table 1 compares the accuracy of Reconstruct-
Ising with different optimization choices with the baseline,
LRTC-TNN, at different levels of uncertainty. Ising-1 is the
basic version of Reconstruct-Ising learned with gradient de-
scent and the lasso for sparsity but without the proposed
domain-specific algorithmic optimizations discussed in Sec-
tion 3. Ising-2 is trained with the support of robust training
with different levels of uncertainty. Ising-final is the final
design with all optimizations enabled and is used for the rest
of the evaluation. Our results demonstrate that the proposed
optimizations can improve data reconstruction accuracy sig-
nificantly. In particular, Ising-1 provides 85.67% accuracy
on average; Ising-2 improves the accuracy to 95.08%; Ising-
final further improves the accuracy to 98.79%. Compared to
the baseline, the proposed Reconstruct-Ising delivers 6.12%
improvement in accuracy.

Prediction Only: Table 2 compares the prediction-only ac-
curacy of Predict-Ising and baseline models without uncer-
tainty. In another word, the input traffic graphs include com-
plete and accurate congestion information of previous time
slices. The evaluation shows that the proposed Predict-Ising,
which only requires at most 1.8% operations of baselines, is
able to deliver over 99.4% prediction accuracy, outperform-
ing all 9 baselines. Note that it only takes 10 epochs to train
Predict-Ising to achieve high accuracy , but it takes over 100
epochs to train the baselines to reach acceptable accuracy.
Reconstruction + Prediction: Table 3 compares the overall
accuracy of the proposed Ising-Traffic framework and base-
line models with different levels of uncertainty. In particu-
lar, the input graphs only include partial congestion informa-
tion of an entire traffic system. The missing information is
first imputed through Reconstruct-Ising for Ising-Traffic and
LRTC-TNN for baseline models, and then the resulting im-
puted graphs are used for congestion prediction. The results
from our method without imputation (Ising-N) show that un-
certainty from input graphs results in significant accuracy
degradation. In the case of a 50% missing rate, the accuracy
is decreased by over 22%. With Ising-Traffic (Ising-F), the
prediction accuracy with 50% uncertainty is still over 99%,
only 0.4% lower than the ones without uncertainty reported
in Table 2 and 5% higher than baselines.

4.3 Evaluation of Latency

This subsection evaluates the computational efficiency of
Traffic-Prediction systematically.



Ising-N Ising-F TGCLSTM Seq2Seq STTN DKFN GTS STGCN HGCN
P8 train / test train / test train / test train / test train / test | train/ test train / test train / test train / test
10% | 95.4/95.1 | 99.7/99.6 | 95.6/93.7 | 97.1/955 | 96.9/95.0 | 95.8/93.8 | 96.8/94.8 | 96.9/94.9 | 96.8/94.8
50% | 722/71.6 | 99.7/99.3 | 94.4/93.3 | 95.8/94.7 | 95.8/94.6 | 94.6/93.5 | 95.6/94.5 | 95.7/94.6 | 95.6/94.5
P4 train / test | train/ test train / test train /test | train/test | train/test | train/test | train/test | train/test
10% | 95.5/952 | 99.3/99.2 | 955/93.6 | 95.5/93.6 | 96.5/94.6 | 95.8/93.8 | 957/93.8 | 96.5/94.6 | 95.0/93.1
50% | 73.4/71.3 | 99.1/99.0 | 94.4/93.2 | 944/93.2 | 953/942 | 94.6/93.5 | 94.6/93.4 | 953/94.2 | 93.8/92.7
PB train / test train / test train / test train / test train / test | train/ test train / test train / test train / test
10% | 95.5/95.0 | 99.4/99.4 | 95.6/93.0 | 95.6/93.1 | 95.8/93.2 | 955/93.0 | 95.7/93.2 | 96.0/93.5 | 96.0/93.5
50% | 72.0/71.6 | 99.2/99.1 | 93.2/92.1 93.3/92.1 | 93.4/92.2 | 93.2/92.0 | 93.4/922 | 93.7/92.5 | 93.7/92.5

Table 3: Overall Accuracy Comparison of Ising-Traffic & 7 Baselines with 10% & 50% unobserved data from 3 datasets.
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Figure 4: Overall latency comparision of Ising-Traffic and baselines with PEMS4, PEMSS, and PEMS-BAY datasets.

5 Conclusion

This paper tackles the challenges in accurate and real-time
traffic congestion prediction with uncertainty by proposing

Missing Rate | Ising Machine (ns) | LRTC-TNN (ms)
10% 6.6/2.2/4.4 3/6/4
20% 6.6/2.2/4.4 3/3/4
30% 6.6/2.2/4.4 7/4/4
40% 6.6/2.2/4.4 2/5/5
50% 6.6/2.2/4.4 4/5/5

Ising-Traffic, an efficient dual-model IML-based traffic pre-
diction framework. Leveraging the Ising model and the Ising

Table 4: Reconstruction latency of Ising-Traffic & baseline

We first compare the latency of Forward Reconstruct-
Ising on BRIMs and LRTC-TNN on Xeon Gold 6330 CPU
for data imputation. Table 4 demonstrates that the latency
of annealing on BRIMs, i.e., finding the lowe-energy states
representing the reconstruction results with 98.7% accuracy,
is 105 x faster and hence negligible compared with LRTC-
TNN. Besides the annealing latency, it also takes tens of mi-
croseconds to program Ising Machine, which is a one-time
cost hence excluded from the results listed in the Table. Note
that even if the programming latency is counted, Forward
Reconstruct-Ising is still 103 x faster than the baseline.

Figure.4 compares the overall latency of Ising-Traffic, in-
cluding the forward process of both Ising models and seven
baselines with 10% uncertainty. The total latency of pre-
diction with Ising-Traffic consists of two parts: the Ising
machine’s annealing for Reconstruction and prediction us-
ing traditional processors, i.e., Xeon Gold 6330. Obviously,
the proposed Ising-Traffic framework can predict conges-
tion with uncertainty more accurately and, on average, 98 x
faster than other traditional methods.

machine’s inherent and unique capability of finding the low-
energy state of a dynamic system and applying it to traffic
prediction, Ising-Traffic delivers on average 98 x speedups
and 5% accuracy improvement over SOTA methods with
real-world traffic datasets.
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