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Abstract
The integration of discrete algorithmic components in deep
learning architectures has numerous applications. Recently,
Implicit Maximum Likelihood Estimation, a class of gradient
estimators for discrete exponential family distributions, was
proposed by combining implicit differentiation through per-
turbation with the path-wise gradient estimator. However, due
to the finite difference approximation of the gradients, it is
especially sensitive to the choice of the finite difference step
size, which needs to be specified by the user. In this work, we
present Adaptive IMLE (AIMLE), the first adaptive gradi-
ent estimator for complex discrete distributions: it adaptively
identifies the target distribution for IMLE by trading off the
density of gradient information with the degree of bias in the
gradient estimates. We empirically evaluate our estimator on
synthetic examples, as well as on Learning to Explain, Discrete
Variational Auto-Encoders, and Neural Relational Inference
tasks. In our experiments, we show that our adaptive gradient
estimator can produce faithful estimates while requiring orders
of magnitude fewer samples than other gradient estimators.

Introduction
There is a growing interest in end-to-end learnable models
incorporating discrete algorithms that allow, e.g. to sample
from discrete latent distributions (Jang, Gu, and Poole 2017;
Paulus et al. 2020) or solve combinatorial optimisation prob-
lems (Pogancic et al. 2020; Mandi et al. 2020; Niepert, Min-
ervini, and Franceschi 2021). These discrete components
are not continuously differentiable, and an important prob-
lem is to efficiently estimate the gradients of their inputs to
perform backpropagation. Reinforcement learning, discrete
Energy-Based Models (EBMs, LeCun et al. 2006), learn-
ing to explain (Chen et al. 2018), discrete Variational Auto-
Encoders (VAEs, Kingma and Welling 2014), and discrete
world models (Hafner et al. 2020) are additional examples of
neural network-based architectures that require the ability to
back-propagate through expectations of discrete probability
distributions.

The main challenge these approaches have in common is
the problem of (approximately) computing gradients of an
expectation of a continuously differentiable function f :

∇θEz∼p(z;θ)[f(z)], (1)
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Figure 1: (Top) cosine similarity between the true and esti-
mated gradients ∇θEz∼p(z;θ)[∥z − b∥2], with b ∼ N (0, I)

and z = {0, 1}50 such that
∑

i zi = 1, where estimates are
computed using IMLE (Niepert, Minervini, and Franceschi
2021) with S = 103 samples, the Straight-Through Esti-
mator (STE, Bengio, Léonard, and Courville 2013) with
S = 105 samples, and the Score Function Estimator (SFE,
Williams 1992) with S = 105 samples, and (bottom) sparsity
(% of zero elements) of the estimate IMLE gradient – results
were averaged across 128 seeds. For λ→ 0, the IMLE gra-
dient estimate is 0, while increasing λ leads to increasingly
more biased gradient estimates.

where the expectation is taken over a complex discrete proba-
bility distribution with intractable marginals and normalisa-
tion constant.

In principle, one could use the Score Function Estimator
(SFE, Williams 1992). Unfortunately, it suffers from high
variance typically exacerbated by the distribution p(z;θ)
being intractable.

Implicit Maximum Likelihood Estimation (IMLE, Niepert,
Minervini, and Franceschi 2021), a recently proposed general-
purpose gradient estimation technique, has shown lower vari-
ance and outperformed other existing methods, including
the score function estimator and problem-specific continu-
ous relaxations, in several settings (Niepert, Minervini, and
Franceschi 2021; Betz et al. 2021; Qian et al. 2022). For
instance, for the synthetic problem in Fig. 1, the gradient
estimate produced by SFE based on 105 samples is worse
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than the estimate based on 103 — two orders of magnitude
fewer — samples using IMLE due to the high variance of
the SFE. IMLE combines Perturb-and-MAP sampling with a
finite difference method for implicit differentiation originally
developed for loss functions defined over marginals (Domke
2010). In IMLE, gradients are approximated as:

∇θEz∼p(z;θ) [f(z)] ≈
n∑

i=1

1

λ

{
MAP(θ + ϵi)− MAP (θ + ϵi − λ∇zi

f(zi))

}
, (2)

where MAP(θ) is a maximum-probability state of the dis-
tribution p(z;θ), ϵi ∼ ρ(ϵ) is a perturbation drawn from
a noise distribution, and zi = MAP(θ + ϵi). Computing
MAP the states MAP(θ) instead of sampling from p(z; θ)
is especially interesting since, in many cases, it has lower
computational complexity than sampling the corresponding
distribution (Niepert, Minervini, and Franceschi 2021).

Crucially, the parameter λ determines the step size of
the finite difference approximation. When the input to f
is p(z;θ)’s continuously differentiable marginals, we have
that smaller values of λ lead to less biased estimates. Hence,
in this setting, λ is typically set to a value that depends on
the machine precision to void numerical instabilities (Domke
2010). In the setting, we consider, however, that the input
to f is discrete and discontinuous. Setting λ to a very small
value, in this case, results in zero gradients. This is illus-
trated in Fig. 2 (right) for the forward difference method.
Hence, the crucial insight is that λ trades off the bias and
sparsity of the gradient approximation. In Fig. 1 (top) and
(bottom), we plot, respectively, the bias and the sparsity of
the gradient estimates for different values of λ on a toy op-
timisation problem. As we can see, larger values of λ re-
sult in a higher bias, and low values of λ result in gradient
estimates almost always being zero. With this paper, we
propose to make the parameter λ adaptive. We also pro-
vide empirical results showing that making λ adaptive re-
duces the bias and improves the results on several bench-
mark problems. All source code and datasets are available at
https://github.com/EdinburghNLP/torch-adaptive-imle.

Problem Definition
We consider the problem of computing the gradients of an
expectation over a discrete probability distribution of a con-
tinuously differentiable function f , that is,

∇θEz∼p(z;θ)[f(z)] (3)

where p(z;θ) is a discrete probability distribution over bi-
nary vectors z and with parameters θ. Specifically, we are
concerned with settings where p(z;θ) is a discrete proba-
bility distribution with an intractable normalisation constant.
Moreover, we assume that the function f is a parameter-
ized non-trivial continuously differentiable function which
makes existing approaches such as direct loss minimisation
and perturbed optimizers (Berthet et al. 2020) not directly
applicable.

More formally, let θ ∈ Θ ⊆ Rm be a real-valued parame-
ter vector. The probability mass function (PMF) of a discrete

constrained exponential family r.v. is:

p(z;θ) =

{
exp (⟨z,θ⟩ −A(θ)) if z ∈ C,
0 otherwise. (4)

Here, ⟨·, ·⟩ is the inner product. A(θ) is the log-partition
function, defined as A(θ) = log

(∑
z∈C exp (⟨z,θ⟩)

)
, and

C is an integral polytope of feasible configurations z. We
call ⟨z,θ⟩ the weight of the state z. The marginals (ex-
pected value, mean) of the r.v.s Z are defined as µ(θ) :=
Ez∼p(z;θ)[z]. Finally, the most probable states also referred
to as the Maximum A-Posteriori (MAP) states, are defined as
MAP(θ) := argmaxz∈C ⟨z,θ⟩.

AIMLE: Adaptive Implicit
Maximum-Likelihood Learning

We base our estimator on a finite difference method for im-
plicit differentiation (Domke 2010; Niepert, Minervini, and
Franceschi 2021), which is generally applicable to any dis-
crete distribution as defined in Eq. (4). For the initial deriva-
tion, we assume that we can compute exact samples from the
distribution p(z;θ) using Perturb-and-MAP (Papandreou and
Yuille 2011) with noise distribution ρ(ϵ). We write θ + ϵ for
a perturbation of the parameters θ by a sample ϵ from a noise
distribution ρ(ϵ). Since, in general, this is not possible for
complex distributions, using approximate Perturb-and-MAP
samples introduces a bias in the gradient estimates. For now,
however, we assume that these perturbations are exact, i.e.,
that MAP(θ+ ϵ) ∼ p(z;θ). Under these assumptions, and by
invoking the law of the unconscious statistician (Mohamed
et al. 2019), we obtain:

∇θEz∼p(z;θ) [f(z)] = ∇θEϵ∼ρ(ϵ)[f(MAP(θ + ϵ))].

We now approximate MAP(θ + ϵ) by µ
(
θ+ϵ
τ

)
for a small

τ > 0. That is, we replace a MAP state with a corresponding
vector representing the marginal probabilities where we can
make the probabilities increasingly spikier by lowering a
temperature parameter τ . The approximation error between
these two terms can be made arbitrarily small since:

Eϵ∼ρ(ϵ) [f(MAP(θ + ϵ))] = Eϵ∼ρ(ϵ)

[
f

(
lim
τ→0

µ

(
θ + ϵ

τ

))]
.

The above equality holds almost everywhere if the noise
distribution is such that the probability of two or more com-
ponents of θ + ϵ being equal is zero. This is the case in the
standard setting where ρ(ϵ) ∼ Gumbel(0, 1) (Papandreou
and Yuille 2011). Therefore, we can write that, for some
τ > 0,

∇θEϵ∼ρ(ϵ) [MAP(θ + ϵ)] ≈ ∇θEϵ∼ρ(ϵ)

[
f

(
µ

(
θ + ϵ

τ

))]
.

Writing the expectation as an integral, we have:

∇θEϵ∼ρ(ϵ)

[
f

(
µ

(
θ + ϵ

τ

))]
= ∇θ

∫
R
p(ϵ)f

(
µ

(
θ + ϵ

τ

))
dϵ.

(5)
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Now we can exchange differentiation and integration since,
for finite τ > 0, f and µ are continuously differentiable:

∇θEϵ∼ρ(ϵ)

[
f

(
µ

(
θ + ϵ

τ

))]
(6)

=

∫
R
p(ϵ)∇θf (µ) dϵ with µ := µ

(
θ + ϵ

τ

)
= Eϵ∼ρ(ϵ) [∇θf (µ)]

= Eϵ∼ρ(ϵ)

[
lim
λ→0

1

λ

{
µ− µ

(
θ + ϵ

τ
− λ∇µf(µ)

)}]
.

The last equality uses implicit differentiation by perturba-
tion (Domke 2010), which is a finite difference method for
computing the gradients of a function defined on marginals.
Finally, we again approximate the expression µ = µ

(
θ+ϵ
τ

)
with z := MAP(θ + ϵ) and obtain:

∇θEz∼p(z;θ) [f(z)] ≈ (7)

Eϵ∼ρ(ϵ)

[
lim
λ→0

1

λ

{
z − MAP (θ + ϵ− λ∇zf(z))

}]
.

Again, the approximation error of the above expression is
arbitrarily small (but not zero) because the derivation shown
here is valid for any τ > 0. A finite sample approximation
of Eq. (7) results in the IMLE gradient estimator of Eq. (2)
given in the introduction. While we could, in principle, use
the marginals as input to the function f as in relaxed gradient
estimators (Maddison, Mnih, and Teh 2017; Jang, Gu, and
Poole 2017; Paulus et al. 2020), computing marginals for the
complex distributions we consider here is not tractable in
general, and we have to use approximate Perturb-and-MAP
samples.

An Adaptive Optimiser for Finite-Difference based
Implicit Differentiation
An important observation that motivates the proposed adap-
tive version of IMLE is that we need to choose a hyperpa-
rameter λ ∈ R+ for Eq. (2). Choosing a very small λ leads
to most gradients being zero. Consequently, the gradients
being back-propagated to the upstream model fv are zeros,
which prevents the upstream model from being trained. If we
choose λ too large, we obtain less sparse gradients, but the
gradients are also more biased. Hence, we propose an opti-
miser that adapts λ during training to trade off non-zero but
biased and sparse but unbiased gradients. Similar to adaptive
first-order optimizers in deep learning, we replace a single
hyperparameter with a set of new ones but show that we
obtain consistently better results when using default hyperpa-
rameters for the adaptive method.

Normalisation of the perturbation strength. Our first
observation is that the magnitude of the perturbation λ in
the direction of the negative downstream gradient in Eq. (7)
highly depends on θ, the gradients of the downstream func-
tion f . To mitigate the variations in the downstream gradients
norm relative to the parameters θ, we propose to set a pertur-
bation magnitude (the norm of the difference between θ and
the perturbed θ) to be a fraction of the norm of the parameter

vector θ. In particular, let α ≥ 0 be such a fraction, then we
seek λ such that:

∥θ − θ′∥2 = α ∥θ∥2 ⇔ λ ∥∇zf(z)∥2 = α ∥θ∥2

⇔ λ = α
∥θ∥2

∥∇zf(z)∥2
.

(8)

This way, we ensure that a global value for λ roughly trans-
lates to the same input-specific magnitude of the perturbation
in the direction of the negative gradient.

Trading off Bias and Sparsity of the Gradient Estimates.
For computing λ as in Eq. (8), we track the sparsity of the
gradient estimator with an exponential moving average of
the gradient norm. Since the gradients – i.e. the difference
between the two MAP states – in Eq. (2) for each i are always
in {−1, 0, 1}, we take the L0-norm which is here equivalent
to the number of non-zero gradients.

Consider a batch of N inputs during training. Let
∇̂θ(j) := MAP(θj + ϵj)− MAP(θj + ϵj − λ∇zj

f(zj)) with
zj = MAP(θj+ϵj) be a single-sample gradient estimate from
Eq. (2) for an input data point j ∈ {1, ..., N} with input pa-
rameters θj and without the scaling factor 1/λ. We compute,
in every training iteration t > 0 and using a discount factor
0 < γ ≤ 1, the exponential moving average of the number
of non-zero gradients per training example:

gt+1 = γgt + (1− γ)
1

N

N∑
j=1

∥∥∥∇̂θ(j)
∥∥∥
0
. (9)

Similarly to adaptive optimisation algorithms for neural net-
works, we introduce an update rule for λ. Let c be the desired
learning rate, expressed as the number of non-zero gradients
per example. This is the target learning rate, that is, the de-
sired number of gradients we obtain on average per example.
A typical value is c = 1.0, meaning that we aim to adapt
the value for λ to obtain, on average, at least one non-zero
gradient per example. We now use the following update rule
for some fixed η > 0:

αt+1 =

{
αt + η if gt+1 ≤ c,
αt − η otherwise. (10)

Hence, by increasing or decreasing α by a constant factor
and based on the current exponential moving average of the
gradient sparsity, we adapt λ through Eq. (8), which relates
λ and α. Algorithm 1 lists the gradient estimator as a layer
in a neural network with a forward and backward pass.

Forward and centred finite difference approxima-
tion. Gradient estimation in IMLE, as outlined in
Eq. (2), is analogous to gradient estimation with for-
ward (one-sided) finite difference approximations,
where [g(x+ h)− g(x)] /h ≈ g′(x). A better approx-
imation can be obtained by the centred (two-sided)
difference formula [g(x+ h)− g(x− h)] /2h, which
is a second-order approximation to the first deriva-
tive (Olver 2013). Following this intuition, we replace
1
λ [MAP (θ + ϵ)− MAP (θ + ϵ− λ∇zf(z))] in Eq. (2) with
1
2λ [MAP (θ + ϵ+ λ∇zf(z))− MAP (θ + ϵ− λ∇zf(z))],
leading to the update equation in Algorithm 1.
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Algorithm 1 Central Difference Perturbation-based Adaptive Implicit Maximum Likelihood Estimation (AIMLE).

function INIT
α← 0 // Initial value of α
g ← 1 // Initial gradient norm estimate
η ← 10−3 // Update step for α

function FORWARDPASS(θ)
// Sample from the noise distribution ρ(ϵ)
ϵ1, . . . , ϵN ∼ ρ(ϵ)
// MAP states of perturbed θ
zi ← MAP(θ + ϵi), for i = 1, . . . , N
save θ, ϵ1, . . . , ϵN , and z1, . . . , zN
return z1, . . . , zN

function BACKWARDPASS(∇z1f(z1), . . . ,∇zN
f(zN ))

load θ, ϵ1, . . . , ϵN , and z1, . . . , zN
λ = α 1

N

∑N
i=1

∥θ∥2

∥∇zi
f(zi)∥

2

(see Eq. (8))

for i = 1, . . . , N do
θ′
Ri
← θ − λ∇zif(zi)

θ′
Li
← θ + λ∇zi

f(zi)

gi ← 1
2λ

[
MAP(θ′

Li
+ ϵi)− MAP(θ′

Ri
+ ϵi)

]
// Moving average of the gradient norm
g ← 0.9 g + 0.1 1

N

∑N
i=1 ∥gi∥0

// Update α to make g closer to c
α← [α+ (η if g ≤ c else− η)]+
return 1

N

∑N
i=1 gi

θθ−λ𝛁f θ+λ𝛁f
λ𝛁f λ𝛁f

θθ−λ𝛁f θ+λ𝛁f
λ𝛁f λ𝛁f

f(μ(θ))

forward-difference

central-difference

backward-difference

0

1

f(MAP(θ))

forward-difference

central-difference

backward-difference

0

1

Figure 2: Finite difference approximation of a downstream
function f on continuous marginals (left) and discrete sam-
ples (right). The step size λ trades off bias and sparsity of the
gradient approximations for discrete samples and we propose
to make the step size λ adaptive.

Related Work
Continuous relaxations. Several works address the gradi-
ent estimation problem for discrete random variables, often
resorting to continuous relaxations. Maddison, Mnih, and
Teh (2017); Jang, Gu, and Poole (2017) propose the Gumbel-
Softmax (or concrete) distribution to relax categorical random
variables, which was extended by Paulus et al. (2020) to more
complex probability distributions. The Gumbel-Softmax dis-
tribution only directly applies to categorical variables: for
more complex distributions, one has to come up with tailor-
made relaxations, or use the STE or SFE – e.g., see Kim,
Sabharwal, and Ermon (2016) and Grover et al. (2019). RE-
BAR (Tucker et al. 2017) and RELAX (Grathwohl et al.
2018) use parameterized control variates based on continuous
relaxations for the SFE. In this work, we focus explicitly on
problems where only discrete samples are used during train-
ing. Furthermore, REBAR is tailored to categorical distribu-
tions, while IMLE and AIMLE are intended for models with
complex distributions and multiple constraints. Approaches
that do not rely on relaxations are specific to certain distri-
butions (Bengio, Léonard, and Courville 2013; Franceschi
et al. 2019; Liu et al. 2019) or assume knowledge of the con-
straints C (Kool, van Hoof, and Welling 2020). AIMLE and
IMLE provide a general-purpose framework that does not

require access to the linear constraints and the corresponding
integer polytope C. SparseMAP (Niculae et al. 2018) is an
approach to structured prediction and latent variables, replac-
ing an exponential distribution with a sparser distribution;
similarly to our work, it only presupposes the availability of
a MAP oracle. LP-SparseMAP (Niculae and Martins 2020)
is an extension of SparseMAP that uses a relaxation of the
underlying optimisation problem.

Differentiating through combinatorial solvers. A series
of works about differentiating through combinatorial opti-
misation problems (Wilder, Dilkina, and Tambe 2019; El-
machtoub and Grigas 2022; Ferber et al. 2020; Mandi and
Guns 2020) relax ILPs by adding a regularisation term, and
differentiate through the KKT conditions deriving from the
application of the cutting plane or the interior-point methods.
These approaches are conceptually linked to techniques for
differentiating through smooth programs (Amos and Kolter
2017; Donti, Kolter, and Amos 2017; Agrawal et al. 2019;
Chen et al. 2020; Domke 2012; Franceschi et al. 2018) that
arise in modelling, hyperparameter optimisation, and meta-
learning. Black-box Backprop (Pogancic et al. 2020; Rolínek
et al. 2020) and DPO (Berthet et al. 2020) are methods that
are not tied to a specific ILP solver. Black-box Backprop,
originally derived from a continuous interpolation argument,
can be interpreted as special instantiations of IMLE and
AIMLE. DPO addresses the theory of perturbed optimiz-
ers and discusses Perturb-and-MAP in the context of the
Fenchel-Young losses. All the combinatorial optimisation-
related works assume that either optimal costs or solutions are
given as training data, while IMLE and AIMLE can also be
applied in the absence of such supervision by making use of
implicitly generated target distributions. Other authors focus
on devising differentiable relaxations for specific combina-
torial problems such as SAT (Evans and Grefenstette 2018)
or MaxSAT (Wang et al. 2019). Machine learning intersects
with combinatorial optimisation in other contexts, e.g. in
learning heuristics to improve the performances of combi-
natorial solvers — we refer to Bengio, Lodi, and Prouvost
(2020) for further details.
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Figure 3: Cosine similarity between the estimated gradi-
ent and the true gradient (y-axis) using several estimators
(IMLE, AIMLE, STE, and SFE) with S samples, with
S ∈ {100, 101, . . . , 105} (x-axis) — the gradient estimates
produced by AIMLE, both in its forward and central dif-
ference versions, are significantly more similar to the true
gradient than the estimates produced by other methods.

Direct Loss Minimisation (DLM, McAllester, Hazan, and
Keshet 2010; Song et al. 2016) is also related to our work,
but it relies on the assumption that examples of optimal states
z are given. Lorberbom et al. (2019) extend the DLM frame-
work to discrete VAEs using coupled perturbations: their
approach is tailored to VAEs, and is not general-purpose.
Under a methodological viewpoint, IMLE inherits from clas-
sical MLE (Wainwright and Jordan 2008) and Perturb-and-
MAP (Papandreou and Yuille 2011). The theory of Perturb-
and-MAP was used to derive general-purpose upper bounds
for log-partition functions (Hazan and Jaakkola 2012; Sh-
pakova and Bach 2016).

Experiments
Similarly to Niepert, Minervini, and Franceschi (2021), con-
ducted three different types of experiments. First, we analyse
and compare the behaviour of AIMLE with other gradient
estimators (STE, SFE, IMLE) in a synthetic setting. Second,
we consider a setting where the distribution parameters θ
are produced by an upstream neural model, denoted by f in
Eq. (3), and the optimal discrete structure is not available
during training. Finally, we consider the problem of differ-
entiating through black-box combinatorial solvers, where
we use the target distribution derived in Eq. (7). In all our
experiments, we fix the AIMLE hyper-parameters and use
the target gradient norm c to c = 1, and the update step η to
η = 10−3, based on the AIMLE implementation described
in Algorithm 1. More experimental details and additional
experiments on the Warcraft dataset proposed by Pogancic
et al. (2020) are available in the appendix.

Synthetic Experiments. We conducted a series of ex-
periments with a tractable categorical distribution where
z ∈ {0, 1}n with n ∈ {10, 20, 30, 50} and

∑
i zi = 1.

We set the loss to L(θ) = Ez∼p(z;θ)[∥z − b∥2], where
b ∼ N (0, I).

In Fig. 3, we plot the cosine similarity between the gradient
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Figure 4: Cosine similarity between the estimated gradient
and the true gradient (y-axis) using several estimators —
namely IMLE with a varying λ ∈ [0, 5] (x-axis), AIMLE,
STE, and SFE — with S = 1000 samples.

estimates produced by the Straight-Through Estimator (STE,
Bengio, Léonard, and Courville 2013) the Score Function
Estimator (SFE, Williams 1992), Implicit Maximum Likeli-
hood Estimation (IMLE, Niepert, Minervini, and Franceschi
2021), and AIMLE. For STE and IMLE, we use Perturb-
and-MAP with Gumbel noise. For IMLE and AIMLE, we
evaluated both their forward difference (Forward) and cen-
tral difference (Central) versions. We evaluated all estimators
using S ∈ {100, 101, . . . , 105} samples, and report how S
influences the cosine similarity between the gradient estimate
and true gradient. Statistics are over 32 runs. From the results,
outlined in Fig. 3, we can see that AIMLE, both in its cen-
tral and forward difference versions, produces significantly
more accurate estimates of the true gradient compared to
IMLE, STE, and SFE, with orders of magnitude fewer sam-
ples. Furthermore, we report the cosine similarity between
the true and the estimated gradient for AIMLE, STE, SFE,
and IMLE with a varying value of λ ∈ [0, 5] — all estimators
use S = 1000 samples. Results are outlined in Fig. 4: we
can see that AIMLE can produce gradient estimates that are
comparable to the best estimates produced by IMLE, without
the need of training a λ hyper-parameter.

Learning to Explain. The BEERADVOCATE
dataset (McAuley, Leskovec, and Jurafsky 2012) con-
sists of free-text reviews and ratings for 4 different aspects of
beer: appearance, aroma, palate, and taste. Each sentence
in the test set has annotations providing the words that best
describe the various aspects. Following the experimental
setting in Paulus et al. (2020); Niepert, Minervini, and
Franceschi (2021), we address the problem of learning a
distribution over k-subsets of words that best explain a
given aspect rating, introduced by Chen et al. (2018). The
complexity of the MAP problem for the k-subset distribution
is linear in k.

The training set has 80,000 reviews for the aspect appear-
ance and 70,000 reviews for all other aspects. Since the orig-
inal dataset (McAuley, Leskovec, and Jurafsky 2012) did not
provide separate validation and test sets, following Niepert,
Minervini, and Franceschi (2021), we compute 10 different
evenly sized validation and test splits of the 10,000 held out
set and compute mean and standard deviation over 10 mod-
els, each trained on one split. Subset precision was computed

9204



Method
Test MSE Subset Prec.

Mean SD Mean SD
Aspect: aroma, K = 5

SoftSub (τ = 1.0) 2.515 0.087 55.453 2.338
STE (τ = 0.0) 4.660 0.053 44.593 0.523
SST (τ = 0.5) 4.788 0.486 56.854 3.752

IMLE (F, λ = 103, τ = 1.0) 2.413 0.055 53.744 5.635
IMLE (C, λ = 103, τ = 0.0) 2.266 0.050 50.888 5.453

AIMLE (F, τ = 1.0) 2.499 0.089 44.668 6.936
AIMLE (C, τ = 3.0) 2.385 0.049 62.056 2.107

Aspect: aroma, K = 10

SoftSub (τ = 2.0) 2.543 0.044 44.513 2.958
STE (τ = 0.0) 4.310 0.039 39.635 0.281
SST (τ = 0.1) 5.213 0.295 24.328 12.463

IMLE (F, λ = 103, τ = 1.0) 2.368 0.075 48.215 2.182
IMLE (C, λ = 103, τ = 0.0) 2.256 0.043 45.339 3.115

AIMLE (F, τ = 2.0) 2.402 0.042 48.397 1.967
AIMLE (C, τ = 2.0) 2.419 0.061 53.260 2.271

Aspect: aroma, K = 15

SoftSub (τ = 2.0) 2.711 0.035 37.202 1.374
STE (τ = 0.5) 4.062 0.054 36.267 0.161
SST (τ = 0.1) 5.787 0.517 24.551 9.827

IMLE (F, λ = 103, τ = 1.0) 2.411 0.087 41.850 1.477
IMLE (C, λ = 103, τ = 0.0) 2.508 0.396 40.057 7.172

AIMLE (F, τ = 1.0) 2.408 0.064 41.688 2.246
AIMLE (C, τ = 3.0) 2.470 0.026 47.109 2.863

Table 1: Detailed results for the aspect aroma. Test MSE and
subset precision, both ×100, for k ∈ {5, 10, 15}.

using a subset of 993 annotated reviews. We use pre-trained
word embeddings from (Lei, Barzilay, and Jaakkola 2016).
We extend the implementations provided by Niepert, Min-
ervini, and Franceschi (2021), which use a neural network
following the architecture introduced by Paulus et al. (2020)
with four convolutional layers and one dense layer. This
neural network outputs the parameters θ of the distribution
p(z;θ) over k-hot binary latent masks with k ∈ {5, 10, 15}.

We compare AIMLE (both the forward and central dif-
ference versions) to relaxation-based baselines L2X (Chen
et al. 2018) and SoftSub (Xie and Ermon 2019); to STE with
Gumbel perturbations; and to IMLE (Niepert, Minervini,
and Franceschi 2021) with Gumbel perturbations. We used
the standard hyperparameter settings of Chen et al. (2018)
and chose the temperature parameter t ∈ {0.1, 0.5, 1.0, 2.0}
for all methods. For IMLE we choose λ ∈ {10, 100, 1000}
based on the validation MSE. We trained separate models
for each aspect using MSE as the training loss, using the
Adam (Kingma and Ba 2015) optimiser with its default hyper-
parameters.

Table 1 lists detailed results for the aspect aroma. We can
see that AIMLE, in its central differences version, system-
atically produces the highest subset precision values while
yielding test MSE values comparable to those produced by
IMLE, while not requiring tuning the λ hyper-parameter.
In the appendix, we report the results for the other aspects,
where we notice that AIMLE produces significantly higher
subset precision values in all other aspects.

Discrete Variational Auto-Encoder. Following Niepert,
Minervini, and Franceschi (2021), we compare IMLE, STE,
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Figure 5: Training dynamics for a DVAE using AIMLE and
IMLE for K = 10 (top) and K = 1 (bottom).
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Figure 6: Training dynamics for a DVAE using AIMLE and
Gumbel-Softmax for K = 1.
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Figure 7: Training dynamics for a DVAE using AIMLE and
STE for K = 10 (top) and K = 1 (bottom).

and the Gumbel-Softmax trick (Maddison, Mnih, and Teh
2017; Jang, Gu, and Poole 2017) using a discrete K-subset
Variational Auto-Encoder (VAE). The latent variables model
a probability distribution over K-subsets of — or top-K
assignments — binary vectors of length 20; note that, for
K = 1, this is equivalent to a categorical variable with 20
categories. We follow the implementation details in Niepert,
Minervini, and Franceschi (2021), where the encoder and the
decoder of the VAE consist of three dense layers, where the
encoder and decoder activations have sizes 512-256-20×20,
and 256-512-784, respectively. The loss is the sum of the
reconstruction losses — binary cross-entropy loss on output
pixels — and the KL divergence between the marginals of
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T=10 T=20

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

SST (Hard) -2301.47 ± 85.86 33.75 ± 9.44 60.40 ± 23.23 -3407.89 ± 221.53 57.40 ± 17.87 70.42 ± 8.22
IMLE (Forward) -2289.94 ± 4.31 23.94 ± 0.03 95.75 ± 0.14 -3820.68 ± 25.32 20.28 ± 0.12 20.28 ± 0.12
IMLE (Central) -2341.71 ± 41.68 43.95 ± 7.22 43.95 ± 7.22 -3447.29 ± 550.38 40.25 ± 14.26 40.25 ± 14.26

AIMLE (Forward) -1877.90 ± 277.53 55.23 ± 11.86 55.23 ± 11.86 -1884.83 ± 124.62 40.48 ± 4.25 40.48 ± 4.25
AIMLE (Central) -2018.39 ± 357.16 29.32 ± 6.89 41.83 ± 21.51 -1999.57 ± 856.27 70.89 ± 24.77 83.73 ± 1.31

Table 2: Latent Graph Structure Recovery – Stochastic Softmax Tricks (SST,][]paulus2020gradient defining a spanning tree
over undirected edges (with hard sampling), in comparison with IMLE (Niepert, Minervini, and Franceschi 2021) and AIMLE,
where the MAP function is computed by Kruskal’s algorithm (Kruskal 1956). AIMLE yields the lowest test ELBO values in the
T=10 (shorter sequences) and T=20 (longer sequences) settings.
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Figure 8: Training dynamics for a DVAE using AIMLE
with a different number of samples (i.e. S ∈ {1, 5, 10}) for
K = 10 (top) and K = 1 (bottom).

the variables and the uniform distribution.
For AIMLE, IMLE, and STE, we use Gumbel(0, 1)

perturbations for K = 1, and Sum-of-Gamma perturba-
tions (SoG, Niepert, Minervini, and Franceschi 2021) for
K = 10, with a temperature of τ = 1. For IMLE, we select
the hyper-parameter λ ∈ {1, 10, 100} on a held-out valida-
tion set based on the validation loss. For IMLE and AIMLE,
we report the results for both the forward and central differ-
ence versions. We train the DVAE for 100 epochs and report
the loss on a held-out test set. In Fig. 5, we show the test
losses for IMLE and AIMLE (forward and central differ-
ence versions) for K = 10 and K = 1. We can see that,
for K = 10, AIMLE produces significantly lower test loss
values than IMLE, and, for K = 1, the central difference
version of AIMLE produces test loss values comparable to
IMLE. We also compare AIMLE to the Gumbel-Softmax
trick (see Fig. 6) and STE (see Fig. 7): AIMLE produces
significantly lower test losses than STE (K ∈ {1, 10}) while
producing higher test losses than Gumbel-Softmax (K = 1).
When increasing the number of samples S in AIMLE (see
Fig. 8), we found that higher values of S produce signifi-
cantly lower test loss values, to the point that, for K = 1,
AIMLE with S ∈ {5, 10} produces lower test loss values
than Gumbel-Softmax, but with a higher computational cost.
All hyper-parameters and an analysis of the evolution of λ
during training are available in the appendix.

Neural Relational Inference for Recovering Latent Graph
Structures. In this experiment, we investigated the use of

AIMLE for recovering latent graph structures and predict-
ing the evolution of a dynamical system. In Neural Rela-
tional Inference (NRI, Kipf et al. 2018), a Graph Neural
Network (GNN, Micheli 2009; Scarselli et al. 2009) encoder
is used to generate a latent interaction graph, which is then
used to produce a distribution over an interacting particle
system. NRI is trained as a variational auto-encoder to max-
imise a lower bound (ELBO) on the marginal log-likelihood
of the time series. Based on the implementation provided by
Paulus et al. (2020), we compared the Stochastic Softmax
Tricks (SST, Paulus et al. 2020) encoder that induces a span-
ning tree over undirected edges, with an encoder producing a
maximum spanning tree using Kruskal’s algorithm (Kruskal
1956), and using either IMLE or AIMLE to back-propagate
through it. In this setting, Kruskal’s algorithm represents the
MAP estimator for a distribution over the latent graph struc-
tures. Our dataset consisted of latent prior spanning trees over
10 vertices sampled from the Gumbel(0, 1) prior. Given a
tree, we embed the vertices in R2 by applying T ∈ {10, 20}
iterations of a force-directed algorithm (Fruchterman and
Reingold 1991). The model saw particle locations at each it-
eration, not the underlying spanning tree. Results are outlined
in Table 2: we found that AIMLE performed best, improving
on both ELBO and the recovery of latent structure over the
structured SST baseline proposed by Paulus et al. (2020).

Conclusions

We introduced Adaptive Implicit Maximum Likelihood
Estimation (AIMLE), an efficient, simple-to-implement,
and general-purpose framework for learning hybrid mod-
els. AIMLE is an extension of IMLE (Niepert, Minervini,
and Franceschi 2021) that, during training, can dynamically
select the optimal target distribution by identifying the update
step λ that yields the desired gradient norm. Furthermore,
AIMLE incorporates insights from finite difference meth-
ods, improving its effectiveness in gradient estimation tasks.
In our experiments, we show that AIMLE produces better
results than relaxation-based approaches for discrete latent
variable models and approaches that back-propagate through
black-box combinatorial solvers. A limitation is that AIMLE
relies on a warm-up period for selecting the optimal λ, whose
duration varies depending on the update step η — which we
fix to η = 10−3. A potential solution to this problem is to
use adaptive update steps, such as momentum (Qian 1999).
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