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Abstract

Diabetic retinopathy (DR) is the main cause of irreversible
blindness for working-age adults. The previous models for
DR detection have difficulties in clinical application. The
main reason is that most of the previous methods only use
single-view data, and the single field of view (FOV) only
accounts for about 13% of the FOV of the retina, resulting
in the loss of most lesion features. To alleviate this prob-
lem, we propose a multi-view model for DR detection, which
takes full advantage of multi-view images covering almost
all of the retinal field. To be specific, we design a cross-
interaction self-attention based module (CISAM) that inter-
fuses local features extracted from convolutional blocks with
long-range global features learned from transformer blocks.
Furthermore, considering the pathological association in dif-
ferent views, we use the feature jigsaw to assemble and learn
the features of multiple views. Extensive experiments on the
latest public multi-view MFIDDR dataset with 34,452 images
demonstrate the superiority of our method, which performs
favorably against state-of-the-art models. To the best of our
knowledge, this work is the first study on the public large-
scale multi-view fundus images dataset for DR detection.

Introduction
The IDF Diabetes Atlas 10th edition (Federation 2021) re-
ported that the destructive effects of diabetes are set to con-
tinue as a result of the predicted increase in prevalence
from 537 million in 2021 to 783 million in 2045. Diabetic
retinopathy (DR) is one of the most common complications
of diabetes and is a leading cause of preventable blindness in
the working-age population. According to the international
clinical diabetic retinopathy disease severity scales (Oph-
thalmoscopy and Levels 2002), the severity of DR can be
graded into 0-4 stages: normal, mild, moderate, severe, and
proliferative DR (PDR). Over the past decade, computer vi-
sion and deep learning-based algorithms have largely con-
tributed to the research in medical image processing. With
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Figure 1: (a) Single-view fundus image. (b) A schematic dia-
gram of long-range global features of the same lesion in dif-
ferent image patches, showing the lesions of hemorrhages.
(c) Multi-view fundus images. (d) The related area of the
same lesion in different retinal views from one eye, where
hemorrhages are marked in the blue boxes.

the successful development of neural network (Huang et al.
2022; Hu, Shi, and Ye 2022; Huang et al. 2021), frame-
works such as image classification have been used to pre-
dict and analyze the progression of DR (Wang et al. 2017;
Luo et al. 2022). However, most previous works are trained
on the single-view databases (e.g., MESSIDOR (Decenciere
et al. 2014), EyePACS (EyePACS 2015)), which face a risk
of losing a large proportion of the lesion features on the
retina. The reason is that the single-view data typically has
a FOV of only about 45◦-50◦. Most of the retinal regions
are missing in the fundus images used for training, result-
ing in the poor performance of these single-view models
in clinical applications. Furthermore, clinical medical stud-
ies (Hu et al. 2019) have also shown that 45◦ single-view
Non-mydriatic fundus photography does not meet the tech-
nical requirements of DR screening, because of the inability
to detect microaneurysms and retinopathy outside a single
45◦ image. Some studies have shown that multi-view fundus
imaging has better performance in DR detection (Srihatrai
and Hlowchitsieng 2018). The extensive exploration of vari-
ous multi-view methods (Liu et al. 2022a; Wang et al. 2021;
Hu, Lou, and Ye 2022; Wen et al. 2022) indicates that multi-
view method has a great performance in solving the problem
of data defects. Therefore, we propose a multi-view DR de-
tection model that can simultaneously extract features from
four 45◦ views of the same eye, i.e., view V 1-V 4: the field
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centered on the macula (V 1), the field centered on the optic
disc (V 2), and the fields tangent to the upper and lower hor-
izontal lines of the optic disc respectively (V 3 and V 4). By
integrating the features of multi-view fundus images, the de-
ficiency of the single-view method due to information loss
is remedied, and the performance of the model in clinical
application is improved.

Moreover, with extensive applications of deep learning in
DR detection, the methods based on CNN can successfully
extract local features of fundus images (Luo et al. 2023).
The convolution operation can extract features by constantly
learning features in the operation block with the size deter-
mined by the convolution kernel, but it does not consider the
relationship between different operation blocks (Zhu et al.
2022; Wang et al. 2018). Recently, transformer neural net-
works (Liu et al. 2023; Vaswani et al. 2017) have been intro-
duced into the field of image processing. In the vision trans-
former (ViT) algorithm (Dosovitskiy et al. 2021), the whole
image is divided into small image blocks with location infor-
mation. Then the linear embedding sequence of these small
image patches is fed into the network as the input of the
Transformer to obtain the long-range information between
different image patches. A transformer neural network can
easily learn global features of images, but it lacks the induc-
tive bias of translation equivariance and locality compared
with CNN. In DR detection tasks, not only the feature of lo-
cal patches can provide important information, but the non-
local connections between scattered lesion patches (such as
microaneurysms, hemorrhages, and exudations) on fundus
images are also useful. As shown in Fig. 1, although the
hemorrhages are scattered in different areas on the retinal
image, there is a long-distance dependence between the le-
sions because they belong to the same category. Therefore,
the extraction of long-distance global features of fundus im-
ages is also important for DR detection tasks.

Inspired by (Peng et al. 2021), we propose a multi-view
DR detection model that can cross-fuse local and global fea-
tures, including convolutional blocks named Conv-Blocks
and transformer blocks named Trans-Blocks for feature in-
teractive learning. Conv-Blocks take advantage of induc-
tive bias in images to obtain key local features of im-
ages. The Trans-Blocks retrieve long-range global infor-
mation through the self-attention mechanism. For the in-
teraction fusion of local features and global features, the
cross-interaction self-attention based module (CISAM) is
designed. In CISAM, the dimensions of features gener-
ated in different branches are adjusted through the Conv-
Fusion function and Trans-Fusion function, so that features
of Conv-Blocks and Trans-Blocks can be integrated with
each other to improve the ability of feature expression. In ad-
dition, since our model was trained based on multiple views,
there is also long-distance dependence between lesions from
different views of the same eye. Thus, we further use the
non-local block (NLB) (Wang et al. 2018) and Multilayer
Perceptron (MLP) (Dosovitskiy et al. 2021) mechanism to
learn long-range information between different views after
concatenating the feature maps of multiple views. Compared
to the previous methods, this work has the following advan-
tages and contributions:

• We propose a novel multi-view model for DR detec-
tion. Compared with the traditional single-view DR de-
tection methods, our multi-view method is more suitable
for practical clinical application and can learn more com-
plete features from multi-view retinal images.

• Our network combines both CNN-based and
transformer-based learning mechanisms. In the pro-
cess of feature learning, local and global information
is integrated by CISAM to enhance representation
learning.

• Our proposed model takes advantage of long (global) de-
pendence between the multiple views from the same eyes
to improve the performance of the multi-view model.

• To our knowledge, this work is the first study on the pub-
lic large-scale multi-view fundus images dataset for DR
detection by integrated learning multi-view real fundus
image data to improve the performance of the automated
DR detection model in clinical applications.

Related Work
CNN–Based Approaches of DR Detection
In order to improve the performance of the CNN model in
the DR screening task, Li et al. (Li et al. 2017) pre-trained
the model in a large-scale natural image dataset, and then
carried out transfer learning in a specified retinal image
dataset. On the basis of transfer learning, Wang et al. (Wang
et al. 2017) proposed a Zoom-in-net network based on CNN
to improve DR diagnosis by highlighting suspicious areas.
Zoom-in-net simulated the process of clinicians’ examina-
tion of fundus images and enlarged the suspicious areas.
Pao et al. (Pao et al. 2020) proposed a bichannel CNN that
fuses entropy image grayscale and green component features
to improve the performance of DR detection through deep
learning. However, these DR detection methods are based
on single-view fundus images that usually only have a 45◦-
FOV view centered on macula without taking the features
of multi-view fundus images from the same subject into
account. Thus, we propose a novel multi-view DR detec-
tion method, which can integrate the features from multiple
views to make up for the information loss of the single-view
method, by learning the retinal images that contain the most
important area for diagnosis including the posterior polar re-
gion and some peripheral fundus.

Transformer–Based Approaches of DR Detection
To make up for the deficiency of the CNN-based method
in capturing long-distance features, some methods (Doso-
vitskiy et al. 2021; Wu et al. 2021; Sun et al. 2021) based
on transformer have been proposed. Wu et al. (Wu et al.
2021) proposed a DR grading model based on ViT, embed-
ding fundus images into a sequence of image patches with
location information. Sun et al. (Sun et al. 2021) proposed a
novel lesion-aware transformer (LAT) model for DR predic-
tion and lesion discovery. Kamran et al. (Amit Kamran et al.
2021) presented a ViT-based generative adversarial network,
which could generate retinal vascular images from normal
or diseased fundus images and simultaneously achieve reti-
nal disease prediction. Although these models can easily
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obtain long-range information, they have no natural abil-
ity to perceive local features. In order to better combine the
long-distance dependent features and local features, we pro-
pose a cross-Interaction network combining the advantages
of CNN and Transformer. Specifically, a cross-interaction
self-attention based module (CISAM) is used to transfer and
integrate the feature maps generated from the Conv-Blocks
and Trans-Blocks.

Method
Overview
In the clinical diagnosis of DR, ophthalmologists usually
find the location, size, and number of lesions by observing
fundus images taken from multiple directions of the same
eye, and determine the DR grade according to the observa-
tion results. Our proposed model can simultaneously per-
form a four-view analysis of fundus images, in turn, can
fully emulate the ophthalmologists’ reading practice. Since
fundus images of the four views are similar, the four-view
images are first input into the Sharing Unit for feature ex-
traction to reduce model parameters. In this training process,
the images of the four views will share network parameters.
Meanwhile, to obtain the precision feature of each view, af-
ter rough feature extraction of Sharing Unit, the network is
split into four subnets to learn features of the four views re-
spectively.

It is doubtless that humans would do context reasoning,
i.e., to judge an ambiguous region by observing not only the
local information around the region but also the associated
global information. This inspires us to focus on both local
features and long-range global features of fundus images
when extracting features. In our proposed network, Conv-
Blocks and Trans-Blocks can be used to extract local fea-
tures and long-distance dependent features respectively, and
the two kinds of extracted features can complement each
other. Further, CISAM is designed for the fusion of features
generated by Conv-Blocks and Trans-Blocks, which carries
out dimension reconstruction and feature map addition.

To realize the feature fusion of multiple views, we pro-
pose Muti-View Fusion Unit. Since each view is fed into
Conv-Blocks and Trans-Block for learning, each view ob-
tains a CNN feature map and a transformer embedded
sequence. We splice the feature maps and embedded se-
quences of the four views into new feature maps and se-
quences respectively and input them into the corresponding
special classifier. Finally, the prediction scores of the two
classifiers is fused to obtain the final prediction result. An
overview of the proposed model is depicted in Fig. 2.

Sharing Unit
The details of Sharing Unit are shown in Fig. 2. We define
the input multi-view data as V = [V1, V2, ..., Vi, ..., VN ],
where N is the number of views. Assuming that the in-
put image is Vi ∈ RCi×Hi×Wi , feature extraction of Vi

is carried out through the convolutional branch and trans-
former branch. Vi goes through 8 Conv-Blocks in convo-
lutional branch to obtain Ii

c′ ∈ RC′×H′×W ′
. Meanwhile,

after Vi is input into transformer branch, an embedded patch

Algorithm 1: The training process of MVCINN
Input: Multi-view fundus images V =
[V1, V2, ..., Vi, ..., VN ] and corresponding labels y.
Parameters: Hypeparameters learning rate and γ, training
epochs Epo, embedding dimension Da.
Initialization: Randomly initialize the network weights.
Output: A trained model.

1: for k=1 to Epo do
2: Preprocess the input image to the size of 224×224.
3: Extract feature map of 3-channel images by Sharing

Unit to obtain Ii
t′ and Ii

t′ .
4: Input Iit

′
and Ii

t′ into N blocks to learn the features
of N views.

5: Fuse N view features in MVFU.
6: Compute the final prediction scores Pf = Pc ⊕ Pt to

obtain the DR-grade results.
7: Compute focal loss and update gradient.
8: end for

Ei ∈ RLi×Di can be obtained through flatten function first,
and then Ei is sent to extract features by 8 Trans-Blocks and
output feature Ii

t′ ∈ RL′×D′
. Among them, the features

calculated by Conv-Block and Trans-Block conduct infor-
mation interaction and fusion through CIASM. The internal
structure of Conv-Block and Trans-Block can be seen in Fig
3. In addition, in order to ensure the specificity of the feature
captured from each view, after Sharing Unit, the network is
split into N branches to learn the features of N views.

Cross-Interaction Self-Attention Based Module

As shown in Fig. 3, cross-interaction self-attention based
module (CISAM), as the main structure to realize the inter-
action and fusion of local features and long-distance global
features, contains two important network partitions, namely
Conv-Block and Trans-Block. Inspired by (Peng et al. 2021),
the intersectional network design ensures that either Conv-
Block or Trans-Block in CISAM can learn features gener-
ated from the last Conv-Block and Trans-Block simultane-
ously. Let Icoi ∈ RCo×Ho×Wo and Itoi ∈ R(Lo+1)×Do rep-
resent the feature maps and embedded patches that are in-
put to CISAM respectively. Firstly, in Conv-Block, the input
features Icoi and Itoi are fused by Conv-Fusion box. In Conv-
Fusion box, the input embedded patches Itoi can adjust the
feature dimension to Co × Ho × Wo by up-sampling, and
then add with the input feature maps Icoi to obtain the fea-
ture map Xc

i . Through convolutional calculation Fconv(·),
which contains three convolutional layers with convolution
kernel size of 1 × 1, 3 × 3, 1 × 1 respectively, the feature
Fconv(X

c
i ) is obtained. In order to improve network perfor-

mance and avoid network degradation caused by the high
complexity of the deep network, residual learning of ResNet
(He et al. 2016) is used as reference. Thus, the final output
of Conv-Block is defined as Îci ∈ RĈ×Ĥ×Ŵ :

Îci = Fconv(X
c
i )⊕Xc

i , (1)
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Figure 2: The flow diagram of our proposed MVCINN.

where the ⊕ operation is performed by a residual connection
of matrix addition.

For Trans-Block, similar to Conv-Block, it receives fea-
tures Icoi and Itoi at the same time and conducts feature fu-
sion through the Trans-Fusion box. In the Trans-Fusion box,
Icoi is firstly expanded into embedded patches with dimen-
sion Lo×Do, and then the classification token of Itoi is com-
bined with it into feature Xt

i with dimension (Lo+1)×Do.
The fundus image of DR is scattered with a variety of le-
sions that have a long-distance relationship. We use Multi-
Feature Self-Attention Class (MFSAC) to extract multiple
global correlation features, so as to capture more accurate
features of lesions.

In MFSAC (as shown in Fig. 4), adopting the mecha-
nism of multi-layer perceptron (MLP) (Dosovitskiy et al.
2021), the input embedded patches Xa is initially and ran-
domly divided into multiple heads Xb ∈ RLa×Db×H , Xb =
[Xb1, Xb2, . . . , Xbm, . . . , XbH ] to learn multiple features.
The heads’ number H can be regarded as the number of fea-
ture groups:

H = Da/Db. (2)
The three generators Q(·), K(·), and V(·) are employed to
convert Xb to query Q(Xb), key K(Xb), and value V(Xb),
respectively. We consider the operations of three generators
which are defined as:
Q(Xb) = Xb ·wQ, K(Xb) = Xb ·wK , V(Xb) = Xb ·wV ,

(3)
where wQ, wK , and wV are learnable parameters. Specifi-
cally, the vector Q(Xb) can be regarded as a feature selector
for channels of matrix K(Xb).

In the process of self-attention calculation, we define the
pairwise function of Q(Xb) and K(Xb) as a matrix multi-
plication:

G(Xb) = Q(Xb)K(Xb)
T , (4)

where T operation means matrix transpose. Moreover, the
generated G(Xb) ∈ RLa×Lb×H also plays the role of fea-
ture selector for value V(Xb). Then, global attention can be
defined as:
A(Xb) = softmax(G(Xb))V(Xb), A(Xb) ∈ RLa×Db×H ,

(5)
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Figure 3: The architecture of our Cross-Interaction Self-
Attention Based Module (CISAM).

where the goal of softmax function is to normalize the
G(Xb).

Next, the output Ĩti ∈ RLa×Da of the MFSAC can be
roughly described as the splicing of attention maps of multi-
feature groups:

Ĩti = Linear(reshape(A(Xb))). (6)

Specifically, the Linear and reshape functions are de-
signed to ensure that the output is concatenated from the
group of the obtained attention maps and has dimension
La ×Da.

After the MFSAC, in order to improve the feature ex-
pression ability of the network, two linear layers and resid-
ual connections are added to Trans-Block. The final output
Îti ∈ RL̂×D̂ of Trans-Block can be regarded as:

Îti = Ftr2(Ftr1(X
t
i )⊕Xt

i )⊕ (Ftr1(X
t
i )⊕Xt

i )

= Ïti ⊕ (Ĩti ⊕Xt
i ).

(7)

In detail, the specific calculations of Ftr1(·) and Ftr2(·) are
as follows:

Ĩti = Ftr1(X
t
i )

= MFSAC(LayerNorm(Xt
i ))

= MFSAC(Xa),

(8)
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Ïti = Ftr2(Ftr1(X
t
i )⊕Xt

i )

= Ftr2(Ĩti ⊕Xt
i )

= Linear2(LayerNorm(Ĩti ⊕Xt
i )),

(9)

where the ⊕ operation can be regarded as the element-wise
addition, the LayerNorm function stands for normalization
of features, and the Linear2 function consists of two linear
layers.

Multi-View Fusion Unit
After N view images are input into the network for fea-
ture extraction, each view can obtain one convolutional
feature and one transformer feature. Convolutional fea-
tures Fc = [F c

1 , F
c
2 , . . . , F

c
i , . . . , F

c
N ] ∈ RN×Cc×Hc×Wc

for N views splice multi-view feature maps into Fcj ∈
RCc×Hc·

√
N×Wc·

√
N through feature-jigsaw function Jc(·).

Subsequently, we take the obtained feature jigsaw Fcj as the
input of classifier Fclasc(·), and obtain the output prediction
scores Pc ∈ [0, 1]C of the convolutional branch, where C is
the total number of classes. Similarly, the N -view features
of transformer branch Ft = [F t

1 , F
t
2 , . . . , F

t
i , . . . , F

t
N ] ∈

RN×Lt×Dt are spliced into Ftj ∈ RLt×Dt·N by the feature-
jigsaw function Jt(·). Then, the feature jigsaw Fcj is input
into the classifier Fclast(·) to obtain the transformer-branch
prediction scores Pt ∈ [0, 1]C . The final output prediction
scores of the network can be defined as:

Pf = Pc ⊕ Pt, (10)

where the ⊕ operation here represents the corresponding ad-
dition of the prediction scores for each category. The classi-
fication result can be obtained according to the prediction
scores Pf = [P f

1 , P
f
2 , . . . , P

f
ii , . . . , P

f
C ] ∈ R1×C .

Since there are global features between the lesions of
multiple views, inspired by Wang et al.(Wang et al. 2018),
nonlocal-block (NLB) is added to the convolutional clas-
sifier Fclasc(·) to learn the global features of the feature
jigsaw. Besides, since long-range connections also exist
in multi-view feature jigsaws, two fully connected layers
are added to transformer classifier Fclast(·), which can be
roughly treated as the MLP structure.

In addition, owing to the fundus image data obtained in
real life which is collected based on the actual proportion of

Method Acc. Prec. Spec. F1 Time
Inception
ResNet V2 70.53 65.69 67.13 65.43 78.41

Inception V3 71.78 67.38 69.07 67.51 53.68
Inception V4 71.32 67.58 71.86 68.13 65.91
MobileNet V2 70.01 64.14 64.03 63.30 60.04
ResNet101 73.08 69.81 71.61 69.38 53.16
ResNet50 71.92 68.10 71.25 68.50 49.01
ResNext50 32x4d 72.01 67.84 70.07 67.99 58.17
VGG19 bn 74.11 71.27 73.59 70.71 66.84
Swin-B 74.06 71.13 72.36 70.35 43.18
Swin-S 73.04 69.33 71.90 69.37 41.00
Swin-T 71.73 67.71 70.33 67.75 41.32
ConvNeXt-B 74.43 71.97 73.92 71.06 42.47
ConvNeXt-S 73.59 70.60 72.55 69.92 40.01
ConvNeXt-T 73.41 70.29 72.68 69.82 38.88
MVCINN 80.10 78.90 83.32 78.86 49.59

Table 1: Comparison of single-view models that use V1-
view data and our proposed MVCINN method that use four-
view data. Quantitative results of accuracy(Acc., %), preci-
sion (Prec., %), specificity (Spec., %), F1 score (F1, %) and
the total elapsed time (Time, s) of testing. The best results
are highlighted in bold.

patients, there is a problem of category imbalance. To solve
this problem, we employ the focal loss (Lin et al. 2017) here:

loss = −
C∑

ii=1

(1− P̂ii)
γ log(P̂ii), (11)

P̂ii = [y]ii · [P ]ii, P = softmax(Pf ), (12)

where γ > 0 is the adjustable factor, Pf ∈ R1×C is the
predicted score from the model for C classes, and y ∈ R1×C

denotes the sample label in the form of one-hot vector. The
[·]ii stands for the ii-th element in array. The training pro-
cess of MVCINN can be seen in Algorithm 1.

Experiments
Experimental Setups
Dataset. We conducted experiments on the multi-field
imaging dataset for DR detection (MFIDDR1), which is the
only publicly available large-scale dataset of multi-view fun-
dus images on DR so far. The dataset contains 34,452 color
retinal images captured by Zeiss Visucam NM/FA camera.
Four images per sample of eyes, for example, the image fo-
cused on the macula, and the images revolved around the
optic disc, which matches the center, top horizon, and bot-
tom horizon of the optic disc respectively. Seven ophthal-
mologists used multi-view images to classify DR grades of
each subject in accordance with international standards. All
records are anonymous and retrieved with the patient’s con-
sent and with the permission of the hospital to disseminate
the information, and there is no ethics conflict. Training and
testing sets have been distributed on the MFIDDR, including
25,848 training images and 8,604 test images.

1https://github.com/mfiddr/MFIDDR
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Method Grade 0 Grade 1 Grade 2 Grade 3 Grade 4
Prec. Sens. F1 Prec. Sens. F1 Prec. Sens. F1 Prec. Sens. F1 Prec. Sens. F1

Inception
ResNet V2 A 74.58 96.14 84.00 42.41 12.75 19.52 46.46 37.16 41.20 62.84 58.78 60.73 78.77 19.23 30.84

Inception V3 A 76.04 95.13 84.52 41.37 17.68 24.76 48.11 34.70 40.21 62.50 62.00 62.20 76.25 23.72 35.95
Inception V4 A 78.09 94.83 85.65 45.70 22.82 30.37 50.23 33.74 40.36 61.50 70.27 65.53 68.18 25.00 35.78
MobileNet V2 A 74.61 96.25 84.05 40.71 11.07 17.15 47.31 37.30 41.40 61.97 64.36 62.93 71.08 15.39 24.99
ResNet101 A 78.14 96.09 86.19 49.01 22.15 30.46 50.73 42.49 46.20 63.16 62.00 62.51 71.11 18.59 29.42
ResNet50 A 78.24 95.30 85.93 48.26 22.60 30.68 50.62 41.26 45.37 63.79 66.72 65.12 79.59 22.44 34.53
ResNext50
32x4d A 77.99 95.00 85.66 44.87 22.48 29.87 49.25 36.48 41.81 63.90 65.71 64.74 73.44 24.36 36.47

VGG19 bn A 79.72 95.63 86.94 52.63 24.33 33.17 50.76 45.36 47.64 62.27 69.94 65.85 76.13 25.64 37.52
Swin-B A 80.62 96.10 87.67 56.12 27.29 36.45 53.91 45.36 48.98 62.39 74.66 67.96 78.29 21.16 33.05
Swin-S A 79.47 96.48 87.15 53.10 25.00 33.91 53.54 43.44 47.81 63.95 69.93 66.79 81.69 22.44 35.14
Swin-T A 79.93 96.42 87.40 54.19 26.01 35.09 50.79 44.95 47.55 64.30 67.74 65.90 82.51 19.87 31.79
ConvNeXt-B A 79.54 96.57 87.23 53.05 24.50 33.45 53.64 45.90 49.37 65.68 68.75 67.15 85.73 28.85 42.82
ConvNeXt-S A 78.48 96.76 86.66 50.48 21.70 30.26 52.08 42.62 46.78 65.15 67.74 66.39 79.33 21.80 33.91
ConvNeXt-T A 78.29 96.03 86.26 48.60 20.30 28.58 49.76 46.99 48.29 65.11 64.19 64.64 77.75 19.87 31.52
MVCINN 86.71 96.33 91.26 68.25 48.10 56.43 57.44 61.20 59.26 70.00 66.22 68.06 68.42 33.33 44.83

Table 2: Comparison of multi-view methods and our proposed MVCINN method. Quantitative results of precision(Prec.),
sensitivity (Sens.), and F1 score in DR grades 0-4. The best results are highlighted in bold. (Unit: %)

Method Acc. Prec. Spec. F1 Time
Inception
ResNet V2 A 69.83 64.77 65.31 64.39 78.89

Inception V3 A 70.32 65.53 67.78 65.91 60.42
Inception V4 A 71.71 67.67 71.07 68.02 69.65
MobileNet V2 A 69.87 64.31 65.36 64.00 50.88
ResNet101 A 72.41 68.59 71.00 68.54 57.85
ResNet50 A 72.30 68.69 71.29 68.63 57.00
ResNext50 32x4d A 71.65 67.61 70.85 68.00 49.68
VGG19 bn A 73.50 70.36 73.55 70.07 67.97
ConvNeXt-B A 74.65 71.96 74.85 71.39 57.09
ConvNeXt-S A 73.94 70.76 73.04 70.39 56.06
ConvNeXt-T A 74.05 71.07 73.73 70.65 55.74
Swin-B A 74.14 70.99 73.14 70.64 56.62
Swin-S A 73.20 69.51 71.46 69.20 57.32
Swin-T A 72.55 68.78 71.30 68.56 55.85
MVCINN 80.10 78.90 83.32 78.86 49.59

Table 3: Comparison of multi-view methods and our pro-
posed MVCINN method. The best results are highlighted in
bold. (Unit: %)

Method Acc. Prec. Spec. F1 Time
Bα 78.34 77.74 78.50 75.16 52.81
Bβ 66.71 57.61 57.63 58.97 52.08
Bα + Bβ 75.59 72.26 72.81 71.84 48.42
Bα + Bβ +Mϕ 80.10 78.90 83.32 78.86 49.59
w/o MVFU 75.17 72.77 76.25 72.82 436.03
w/o NLB 78.85 77.65 82.84 77.65 57.39

Table 4: Ablation studies in MVCINN. The overall model
is denoted as ’Bα + Bβ + Mϕ’, where ’Bα’, ’Bβ’, and
’Mϕ’ indicate the baseline convolutional branch, trans-
former branch, and CISAM respectively. ’w/o MVFU’ and
’w/o NLB’ denote that MVFU and NLB are removed from
overall model, respectively. The best results are highlighted
in bold. (Unit: %)

Implementation Details. The backbone of the convolu-
tional branch with Conv-Block in our network is initial-
ized by ResNet-50 (He et al. 2016) pre-trained on ImageNet
(Deng et al. 2009). The transformer branch with Trans-
Block is composed of a 12-layers transformer encoder with
9 heads, which is first pre-trained on the ImageNet dataset.
During training, we adopt Mixup (Zhang et al. 2017) strat-
egy for data enhancement to improve the generalization per-
formance and robustness of the model. Furthermore, our
model is achieved on PyTorch, and we use a random gra-
dient coefficient with a base learning rate 1e−5 to improve
our model.

Evaluation Metric. For the five DR categories, we adopt
the commonly-agreed evaluation metrics (Trevethan 2017;
Sasaki 2007) including accuracy (Acc.), precision(Prec.),
sensitivity (Sens.), specificity (Spec.), F1 score, and the total
elapsed time. Notably, F1 score provides a comprehensive
evaluation of model performance to avoid the assessment
bias of the model caused by sample imbalance.

Compared Methods. Several open source methods are
adopted, which can be coarsely categorized into mod-
els based on CNN and Transformer: Inception Resnet V2
(Szegedy et al. 2016), Inception V3 (Szegedy et al. 2016),
Inception V4 (Szegedy et al. 2016), MobileNet V2 (San-
dler et al. 2018), ResNet101 (He et al. 2016), ResNet50
(He et al. 2016), ResNext50 32x4d (Xie et al. 2017),
VGG19 bn (Simonyan and Zisserman 2014), Swin-B (Liu
et al. 2021), Swin-S (Liu et al. 2021), Swin-T (Liu et al.
2021), ConvNeXt-B (Liu et al. 2022b), ConvNeXt-S (Liu
et al. 2022b) and ConvNeXt-T (Liu et al. 2022b). All base-
line models have been pre-trained on the ImageNet dataset.

Main Results
Comparisons on Single-View Methods. Due to the data
limitation, most of the previous methods only use the single-
view 45◦ images centered on the macula (i.e. V1-view im-
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Figure 5: Evaluation of the hyperparameters. Comparative
analysis of (a) learning rate, and (b) γ in loss function.

ages). To verify the effectiveness of the multi-view method
for DR detection, our multi-view method using four-view
data is compared with the single-view methods using V1-
view data. As shown in Table 1, our multi-view method
MVCINN obtains the best performance in the comparisons,
which indicates the features learning from multi-view im-
ages benefit the classification of five DR grades. Specifically,
our method obtains an accuracy of 80.10% that outperforms
the accuracy of single-view methods by 5.67%-10%. More-
over, MVCINN achieves the best performance of overall
precision, specificity, F1 score in the comprehensive evalu-
ation, proving the superiority of the our multi-view method.
The total elapsed time of MVCINN model is 49.59s, which
is not the shortest time, but is better than average in terms of
performance and network complexity.

Comparisons on Multi-View Methods. To our knowl-
edge, there are few works to conduct DR detection using
multi-view data. In order to demonstrate the effectiveness of
our MVCINN to multi-view DR detection, we compare our
approach to the multi-view methods implemented by fusing
the results of multiple views. With the state-of-the-art open
source models as the backbone, the models learn the data of
each view separately, and finally take the average of the clas-
sification results of each view as the results of the multi-view
methods. The experimental results are shown in Tables 3 and
2, and the suffix ’ A’ is added after the name of the base-
line method to distinguish it. Compared with the multi-view
methods, MVCINN achieves the best performance with the
average improvements of 7.66%, 10.29%, 12.34%, 10.40%,
and 9.77s in terms of overall accuracy, precision, specificity,
F1 score and elapsed time, respectively. In particular, Table
2 provides the precision, sensitivity, and F1-score results for
each grade in classification. Thus, we can conclude that our
method achieves better results through the combination of
multi-view features than the methods that simply use multi-
view data without considering the correlation of views.

Ablation Studies
Through the experiment, we scrutinize the contribution of
each component to the proposed model, as described in Ta-
ble 4. Our model as a whole mark ’Bα + Bβ +Mϕ’, where
’Bα’, ’Bβ’, and ’Mϕ’ indicate that the use of the single con-
volutional branch, single transformer branch, and the cross-
interaction self-attention based module (CISAM), respec-

tively. Furthermore, we also verify the impact of Multi-View
Fusion Unit (MVFU) by removing it.

Analysis on Dual Branches. Our network can be roughly
regarded as a dual-branch network, which can be divided
into a network branch based on CNN (Bα) and a branch
based on transformer mechanism (Bβ). First, we adopt the
baselines Bα and Bβ in investigation of DR detection. As
shown in the first two lines of Table 4, the performance is
unsatisfactory. In ’Bα + Bβ’, two branches are used to ex-
tract features independently without information interaction,
which balances the results of two single branches.

Effectiveness of CISAM. Furthermore, the CISAM is
added into the overall network (i.e., Bα +Bβ +Mϕ). Com-
paring the results of the third and fourth rows in Table 4,
CISAM can make full use of the advantages of dual branches
to fuse local and long-distance features so as to improve the
performance of the model.

Effectiveness of MVFU. Considering the correlation be-
tween multiple views, we carry out fusion learning of multi-
view features through MVFU. To verify the effectiveness of
MVFU, we removed this unit from the overall model and
then implemented the classification using the sum of multi-
view results. As shown in Table 4, the model trained without
MVFU drops sharply compared to the overall model, which
indicates the effectiveness of MVFU. In addition, the degra-
dation of model performance after removing NLB indicates
that it is effective to consider long-distance features between
views when fusing multi-view features.

Hyperparameter Evaluations. We analyze the influence
of the learning rate and the γ parameter in loss function on
the model. We find that with the increase of learning rate,
the model accuracy tends to decrease. Our model chooses
a learning rate of 1e−5, and use the AdamW optimizer
(Kingma and Ba 2015) with the cosine annealing schedule
(Loshchilov and Hutter 2017). As shown in Fig. 5, we also
evaluate the influence of γ. Our model achieves much better
performance when γ = 2.

Conclusion
In this paper, we present a novel multi-view model for
DR detection by interactive learning local and long-distance
features of multiple views. Our method makes use of the
roughly complete retinal information from multiple views,
which makes up for the loss of feature information in the
current common single-view methods. Specially, the model
utilizes location information to merge multi-view features
in MVFU, which is better than simply adding or averag-
ing the results of each view. To enhance the representation
of the model, we propose a mechanism to simultaneously
learn local and long-range lesion features on fundus images
and use CISAM to perform an interactive fusion of these
two features. Experimental results prove that CISAM plays
a key role in developing local and long-range features and
improving model performance. Our future work will expand
the number of samples by increasing unlabeled images with
semi-supervised learning to improve detection performance
of the model.
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