
Online Hyperparameter Optimization for Class-Incremental Learning

Yaoyao Liu1, 2, Yingying Li3, Bernt Schiele1, Qianru Sun4

1Max Planck Institute for Informatics, Saarland Informatics Campus
2Department of Computer Science, Johns Hopkins University

3Computing and Mathematical Sciences, California Institute of Technology
4School of Computing and Information Systems, Singapore Management University

yliu538@jhu.edu, yingli2@caltech.edu, schiele@mpi-inf.mpg.de, qianrusun@smu.edu.sg

Abstract
Class-incremental learning (CIL) aims to train a classifica-
tion model while the number of classes increases phase-by-
phase. An inherent challenge of CIL is the stability-plasticity
tradeoff, i.e., CIL models should keep stable to retain old
knowledge and keep plastic to absorb new knowledge. How-
ever, none of the existing CIL models can achieve the optimal
tradeoff in different data-receiving settings—where typically
the training-from-half (TFH) setting needs more stability, but
the training-from-scratch (TFS) needs more plasticity. To this
end, we design an online learning method that can adaptively
optimize the tradeoff without knowing the setting as a pri-
ori. Specifically, we first introduce the key hyperparameters
that influence the tradeoff, e.g., knowledge distillation (KD)
loss weights, learning rates, and classifier types. Then, we
formulate the hyperparameter optimization process as an on-
line Markov Decision Process (MDP) problem and propose
a specific algorithm to solve it. We apply local estimated re-
wards and a classic bandit algorithm Exp3 to address the is-
sues when applying online MDP methods to the CIL proto-
col. Our method consistently improves top-performing CIL
methods in both TFH and TFS settings, e.g., boosting the av-
erage accuracy of TFH and TFS by 2.2 percentage points on
ImageNet-Full, compared to the state-of-the-art. Code is pro-
vided at https://class-il.mpi-inf.mpg.de/online/

Introduction
Real-world problems are ever-changing, with new concepts
and new data being continuously observed. Ideal AI systems
should have the ability to learn new concepts from the new
data, also known as plasticity, while maintaining the abil-
ity to recognize old concepts, also known as stability. How-
ever, there is a fundamental tradeoff between plasticity and
stability: too much plasticity may result in the catastrophic
forgetting of old concepts, while too much stability restricts
the ability to adapt to new concepts (McCloskey et al. 1989;
McRae et al. 1993; Ratcliff 1990). To encourage related re-
search, Rebuffi et al. (2017) defined the class-incremental
learning (CIL) protocol, where the training samples of dif-
ferent classes come to the model phase-by-phase and most
of the past data are removed from the memory.

Recently, many methods have been proposed to balance
the stability-plasticity tradeoff for different data-receiving

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

45 50 55 60 65 70 75
Training from half (TFH)

45

50

55

60

65

Tr
ai

ni
ng

 fr
om

 sc
ra

tc
h

(T
FS

)

LwF

iCaRL

LUCIR

AANets

RMM

Ours

Figure 1: Average accuracy (%) on CIFAR-100 25-
phase, using two data-receiving settings: 1) training-from-
half (TFH): a large amount of data is available beforehand
to pre-train the encoder; 2) training-from-scratch (TFS):
classes come evenly in each phase. Dark blue and orange
indicate the baselines and our method, respectively. Light-
color circles are confidence intervals. Notice that methods
with strong KD losses, e.g., LUCIR (Hou et al. 2019),
AANets (Liu et al. 2021a), and RMM (Liu et al. 2021b), tend
to provide worse performance in TFS than TFH, while meth-
ods with weak KD losses, e.g., iCaRL (Rebuffi et al. 2017)
and LwF (Li et al. 2016), tend to provide worse performance
in TFH than TFS. Our method uses an online learning algo-
rithm to produce the key hyperparameters, e.g., the weights
that control which KD losses are used. Thus, our method
achieves the highest performance in both TFS and TFH.

settings of CIL. For example, the strong feature knowl-
edge distillation (KD) loss function is usually adopted when
a large amount of data is available beforehand (e.g., the
training-from-half (TFH) setting) since it encourages stabil-
ity (Hou et al. 2019; Liu et al. 2021a,b); while the weak logit
KD loss function is popular when data and classes are re-
ceived evenly in each phase (e.g., the training-from-scratch
(TFS) setting) since it provides more plasticity (Rebuffi et al.
2017; Belouadah et al. 2019; Li et al. 2016).

Most CIL algorithms pre-fix the tradeoff balancing meth-
ods, usually according to which data-receiving setting will
be used in the experiments. However, in real-world scenar-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

8906

ios, it is difficult to anticipate how data will be received in the
future. Hence, a pre-fixed method is no longer proper for bal-
ancing the stability and plasticity of the actual data stream,
thus generating worse performance. This can also be vali-
dated in Figure 1. Notice that the methods with weak KD,
e.g., iCaRL (Rebuffi et al. 2017) and LwF (Li et al. 2016),
provide worse performance in TFH than in TFS since weak
KD provides too much plasticity for TFH, while the methods
with strong KD, e.g., LUCIR (Hou et al. 2019), AANets (Liu
et al. 2021a), and RMM (Liu et al. 2021b), perform worse in
TFS than in TFH due to too much stability.

Therefore, a natural question is: how to design an adap-
tive trade-off balancing method to achieve good perfor-
mance without knowing how data will be received before-
hand? To tackle this, we propose an online-learning-inspired
method to adaptively adjust key hyperparameters that affect
the trade-off balancing performance in CIL. In our method,
we introduce hyperparameters to control the choice of KD
loss functions, learning rates, and classifier types, which are
key algorithm choices that affect the tradeoff balancing per-
formance.1 In this way, deciding this choice is transformed
into a hyperparameter optimization (HO) problem.

This HO problem cannot be directly solved because future
data are not available. Thus, we borrow ideas from online
learning, which is a widely adopted approach to adaptively
tune the decisions without knowing the future data a priori
while still achieving good performance in hindsight.

However, in CIL, our decisions affect not only the next
phase but also all the future phases, which is different from
the standard online learning setting (Anderson 2008). To
capture the dependence across phases, we formulate the HO
problem in CIL as an online MDP, which is a generalized
version of online learning. Further, we propose a new algo-
rithm based on (Even-Dar et al. 2009) to solve this online
MDP problem. Our algorithm differs from the standard on-
line MDP algorithm in (Even-Dar et al. 2009) in two aspects:
• In CIL, we cannot directly observe the reward (i.e., vali-

dation accuracy) because the validation data is not acces-
sible during training. To address this issue, we estimate
the reward by rebuilding local training and validation sets
during policy learning in each phase, and computing the
estimated reward on the local validation sets.

• In CIL, we only have access to the model generated by
the selected hyperparameters instead of the models gen-
erated by other hyperparameters. In other words, we only
have bandit feedback instead of full feedback as assumed
in (Even-Dar et al. 2009). To address this, we revise the
algorithm in (Even-Dar et al. 2009) by combining it with
a classic bandit algorithm, Exp3 (Auer et al. 2002).

Empirically, we find our method performs well consis-
tently. We conduct extensive CIL experiments by plug-
ging our method into three top-performing methods (LU-

1The impact of KD losses has been discussed before. Learn-
ing rates naturally affect how fast the model learns new concepts.
We also adjust the classifier type because empirical results (Re-
buffi et al. 2017; Hou et al. 2019) show that the nearest class mean
(NCM) and fully-connected (FC) classifiers perform better under
more plasticity and stability, respectively.

CIR, AANets, and RMM) and testing them on three bench-
marks (i.e., CIFAR-100, ImageNet-Subset, and ImageNet-
Full). Our results show the consistent improvements of the
proposed method, e.g., boosting the average accuracy of
TFH and TFS by 2.2 percentage points on ImageNet-Full,
compared to the state-of-the-art (Liu et al. 2021b).

Lastly, it is worth mentioning that our method can also be
applied to optimize other key hyperparameters in CIL, e.g.,
memory allocation (Liu et al. 2021b).

Summary of our contributions. Our contributions are
three-fold: 1) an online MDP formulation that allows online
updates of hyperparameters that affect the balance of the sta-
bility and plasticity in CIL; 2) an Exp3-based online MDP
algorithm to generate adaptive hyperparameters using bandit
and estimated feedback; 3) extensive comparisons and visu-
alizations for our method in three CIL benchmarks, taking
top-performing methods as baselines.

Related Work
Class-incremental learning (CIL). There are three main
lines of work to address the stability-plasticity trade-off in
CIL. Distillation-based methods introduce different knowl-
edge distillation (KD) losses to consolidate previous knowl-
edge when training the model on new data. The key idea is to
enforce model prediction logits (Li et al. 2016; Rebuffi et al.
2017), feature maps (Douillard et al. 2020; Hou et al. 2019),
or topologies in the feature space (Tao et al. 2020) to be
close to those of the pre-phase model. Memory-based meth-
ods (Rebuffi et al. 2017; Shin et al. 2017; Liu et al. 2020;
Prabhu et al. 2020) preserve a small number of old class data
(called exemplars) and train the model on them together with
new class data. Network-architecture-based methods (Rusu
et al. 2016; Xu et al. 2018; Abati et al. 2020; Yan et al. 2021)
design incremental network architectures by expanding the
network capacity for new data or freezing partial network
parameters to keep the knowledge of old classes. However,
all the above methods are either too stable or too plastic to
perform well in both TFS and TFH settings. Our method
learns an online policy to generate hyperparameters that bal-
ance stability and plasticity. Therefore, our method performs
well in both TFS and TFH settings.
Reinforcement learning (RL) aims to learn a policy in
an environment, which is typically formulated as an MDP.
Some CIL papers also deploy RL algorithms in their frame-
works. Xu et al. (2018) used RL to expand its backbone net-
work when a new task arrives adaptively. Liu et al. (2021b)
used RL to learn a policy to adjust the memory allocation
between old and new class data dynamically along with the
learning phases. Our method focuses on learning a policy to
produce key hyperparameters. Besides, the existing methods
need to solve the complete MDP, which is time-consuming.
Here, we formulate the CIL task as an online MDP. Thus,
our method is more time-efficient.
Online learning observes a stream of samples and makes a
prediction for each element in the stream. There are mainly
two settings in online learning: full feedback and bandit
feedback. Full feedback means that the full reward function
is given at each stage. It can be solved by Best-Expert algo-
rithms (Even-Dar et al. 2005). Bandit feedback means that

8907

Model Θ1 Model

New class
data D2

Model

New class
data D3

Exemplars
M2

...

...

Phase 0

Phase 1 Phase 2 ...

Exemplars

New class
data D1

(a)Eq. 3

Eq. 4

Model

 Data Data

Data sequence
from different classes

Phase 1

Model

Phase i

Policy Model
Hyperparameters

Train
TrainTrain

Initialize

... Data

Policy Model

TrainTrain

...
Initialize...

...

...

Hyperparameters

Figure 2: The computing flow of our method. We formulate the CIL task as an online MDP: each phase in CIL is a stage in the
MDP, and the CIL models are the states. We train the policy to produce actions, which contain the hyperparameters we use in
the CIL training. We illustrate the training process of each phase in Figure 3.

only the reward of the implemented decision is revealed.
If the rewards are independently drawn from a fixed and
unknown distribution, we may use e.g., Thompson sam-
pling (Agrawal et al. 2012) and UCB (Auer et al. 2010)
to solve it. If the rewards are generated in a non-stochastic
version, we can solve it by e.g., Exp3 (Auer et al. 2002).
Online MDP is an extension of online learning. Many stud-
ies (Even-Dar et al. 2009; Li et al. 2019a,b, 2021) aim to
solve it by converting it to online learning. In our case, we
formulate the CIL as an online MDP and convert it into a
classic online learning problem. The rewards in our MDP
are non-stochastic because the training and validation data
change in each phase. Therefore, we design our algorithm
based on Exp3 (Auer et al. 2002).
Hyperparameter optimization (HO). There are mainly
two popular lines of HO methods: gradient-based and meta-
learning-based. Gradient-based HO methods (Baydin et al.
2018) make it possible to tune the entire weight vectors as-
sociated with a neural network layer as hyperparameters.
Meta-learning-based HO methods (Franceschi et al. 2018)
use a bilevel program to optimize the hyperparameters.
However, all these methods only consider time-invariant en-
vironments. Our online method learns hyperparameters that
adapt to the time-varying environments in CIL.

Preliminaries
Class-incremental learning (CIL). The general CIL
pipeline is as follows. There are multiple phases during
which the number of classes gradually increases to the max-
imum (Douillard et al. 2020; Hou et al. 2019; Hu et al. 2021;
Liu et al. 2020). In the 0-th phase, we observe data D0, and
use it to learn an initial model Θ0. After this phase, we can
only store a small subset of D0 (i.e., exemplars denoted as
E0) in memory used as replay samples in later phases. In the
i-th phase (i≥1), we get new class data Di and load exem-
plars E0:i−1=E0∪· · ·∪Ei−1 from the memory. Then, we ini-
tialize Θi with Θi−1, and train it using E0:i−1∪Di. We eval-
uate the model Θi on a test set Q0:i for all classes observed
so far. After that, we select exemplars E0:i from E0:i−1 ∪Di

and save them in the memory.
Existing work mainly focus on two data-receiving set-

tings: training-from-half (TFH) (Hou et al. 2019) and
training-from-scratch (TFS) (Rebuffi et al. 2017) settings.
In TFH, we are given half of all classes in the 0-th phase,

and observe the remaining classes evenly in the subsequent
N phases. In TFS, we are given the same number of classes
in all N phases.

Methodology
As illustrated in Figures 2 and 3, we formulate CIL as an
online MDP and learn a policy to produce the hyperparam-
eters in each phase. In this section, we introduce the online
MDP formulation, show optimizable hyperparameters, and
provide an online learning algorithm to train the policy.

An Online MDP Formulation for CIL
Optimizing hyperparameters in CIL should be online inher-
ently: training and validation data changes in each phase, so
the hyperparameters should be adjusted accordingly. Thus,
it is intuitive to formulate the CIL as an online MDP. In the
following, we provide detailed formulations.
Stages. Each phase in the CIL task can be viewed as a stage
in the online MDP.
States. The state should define the current situation of the
intelligent agent. In CIL, we use the model Θi as the state of
the i-th phase/stage. We use S to denote the state space.
Actions. We use a vector consisting of the hyperparameters
in the i-th phase as the action ai. When we take the action ai,
we deploy the corresponding hyperparameters. We denote
the action space as A. Please refer to the next subsection,
Optimizable Hyperparameters, for more details.
Policy p={p(a|Θi)}a∈A is a probability distribution over
the action space A, given the current state Θi.
Environments. We define the training and validation data in
each phase as the environment. In the i-th phase, the envi-
ronment isHi=(E0:i−1∪Di,Q0:i), where E0:i−1∪Di is the
training data and Q0:i is the corresponding validation data.
The environment is time-varying because we are given dif-
ferent training and validation data in each phase.
Rewards. CIL aims to train a model that is efficient in rec-
ognizing all classes seen so far. Therefore, we use the valida-
tion accuracy as the reward in each phase. Our objective is to
maximize a cumulative reward, i.e., R =

∑N
i=1 rHi

(Θi,ai),
where rHi

(Θi,ai) denotes the i-th phase reward, i.e., the
validation accuracy of Θi. The reward function rHi

changes
withHi, so it is time-varying.

8908

Optimizable Hyperparameters
In this part, we introduce the optimizable hyperparameters,
and how to define the actions and action space based on the
hyperparameters. We consider three kinds of hyperparame-
ters that significantly affect stability and plasticity: 1) KD
loss weights, 2) learning rates, and 3) classified types.
1) KD loss weights. We first introduce two KD losses (i.e.,
logit and feature KD losses) and then show how to use the
KD loss weights to balance them.
Logit KD loss is proposed in (Hinton et al. 2015) and widely
applied in CIL methods (Li et al. 2016; Rebuffi et al. 2017;
Liu et al. 2021a). Its motivation is to make the current model
Θi mimic the prediction logits of the old model Θi−1:

Llogi = −
K∑

k=1

ηk(µ(x; Θi−1)) log ηk(µ(x; Θi)), (1)

where µ(x; Θ) is a function that maps the input mini-batch
(x, y) to the prediction logits using the model Θ. ηk(v) =

v
1/τ
k /

∑
j v

1/τ
j is a re-scaling function for the k-th class pre-

diction logit and τ is a scalar set to be greater than 1.
Feature KD loss (Hou et al. 2019; Douillard et al. 2020)
aims to enforce a stronger constraint on the previous knowl-
edge by minimizing the cosine similarity between the fea-
tures from the current model Θi and the old model Θi−1. It
can be computed as follows,

Lfeat = 1− Sc(f(x; Θi), f(x; Θi−1)), (2)

where f(x; Θ) denotes a function that maps the input image
x to the features using the model Θ. Sc(v1, v2) denotes the
cosine similarity between v1 and v2.
The overall loss in the i-th phase is a weighted sum of the
classification and different KD losses:

Loverall = LCE + βiLlogi + γiLfeat, (3)

where βi and γi are the weights of the logit and feature KD
losses, respectively.LCE is the standard cross-entropy classi-
fication loss. Existing methods (Li et al. 2016; Rebuffi et al.
2017; Hou et al. 2019; Liu et al. 2021a,b) can be viewed as
using fixed heuristic KD loss weights, e.g., βi≡1 and γi≡0
in iCaRL (Li et al. 2016; Rebuffi et al. 2017). Instead, our
method optimizes βi and γi online. Thus, we can balance the
model’s stability and plasticity by adjusting βi and γi. We
apply different weights for the logit and feature KD losses
so that we can achieve fine-grained control over the intensity
of knowledge distillation.
2) Learning rate is another important hyperparameter that
affects the model’s stability and plasticity. We empirically
find that a lower learning rate makes the CIL model more
stable, while a higher learning rate makes the CIL model
more plastic. If we use λi to denote the learnable learning
rate in the i-th phase, we update the CIL model as follows,

Θi ← Θi − λi∇ΘiLoverall. (4)

Another hyperparameter, the number of training epochs, has
similar properties to the learning rate. We choose to optimize
the learning rate and fix the number of epochs because it
empirically works better with our online learning algorithm.

3) Classifier type. Motivated by the empirical analysis, we
consider two classifier types in our study: nearest class mean
(NCM) (Rebuffi et al. 2017; Snell et al. 2017) and fully-
connected (FC) (Hou et al. 2019; Liu et al. 2020) classifiers.
For the NCM classifier, we first compute the mean feature
for each class using the new data and old exemplars. Then
we perform a nearest neighbor search using the Euclidean
distance on the L2 normalized mean features to get the final
predictions. It is observed empirically that the NCM classi-
fier tends to work better on the models with high plasticity,
while the FC classifier performs better on the models with
high stability (Rebuffi et al. 2017; Hou et al. 2019). Thus,
we propose to use a hyperparameter, classifier type indica-
tor δi, to control the final predictions during the evaluation:
µ(x; Θi) = µncm(x; Θi)[δi = 1] + µfc(x; Θi)[δi = 0], (5)

where δi ∈ {0, 1}, µncm and µfc are the predictions on the in-
put image x using the NCM and FC classifiers, respectively.
Summary: actions and action space. In summary, we de-
fine the action as ai=(βi, γi, λi, δi,), which consists of
the following hyperparameters: KD loss weights βi and γi,
learning rate λi, and classifier type indicator δi. For the hy-
perparameters that may vary in a continuous range, we dis-
cretize them to define a finite action space.2 In the next sub-
section, we show how to learn the policy in each phase.

Policy Learning
A common approach to solving an online MDP is to approx-
imate it as an online learning problem and solve it using
online learning algorithms (Even-Dar et al. 2005; Agrawal
et al. 2012; Auer et al. 2002). We also take this approach, and
our approximation follows (Even-Dar et al. 2009), which
achieves the optimal regret. In their paper, Even-Dar et al.
(2009) relax the Markovian assumption of the MDP by de-
coupling the cumulative reward function and letting it be
time-dependent so that they can solve the online MDP by
standard online learning algorithms. Such a decoupling re-
quires the following assumptions. 1) Fast mixing: in CIL,
the hyperparameters in an early phase do not have much im-
pact on the test accuracy of the classes observed in the cur-
rent phase. 2) The algorithm changes the hyperparameters
slowly (this can be observed in Experiments & Figure 5).
Thus, these assumptions fit our CIL problem.

However, we cannot directly apply the algorithms pro-
posed in (Even-Dar et al. 2009) to our problem. It is be-
cause their paper assumes full feedback, i.e., we can ob-
serve the rewards of all actions in each phase. Therefore,
its online learning problem could be solved by Best Ex-
pert algorithms (Even-Dar et al. 2005). In CIL, we cannot
observe any reward (i.e., validation accuracy) because the
validation data is not accessible during training. To address
this issue, we rebuild the local training and validation sets
in each phase. In this way, our problem has bandit feed-
back: we can compute the reward of the implemented action.
Therefore, we can solve our online learning problem based
on Exp3 (Auer et al. 2002), a famous bandit algorithm.

2Though discretization suffers the curse of dimensionality, our
experiments show that with a coarse grid, we already have signifi-
cant improvements over pre-fixed hyperparameters.

8909

Local validationLocal training

New data Old exemplars

Temporary model Temporary model

Train Test

Policy

CIL model

Hyperparameters (action)

Hyperparameters

Train
Po

lic
y

le
ar

ni
ng

C
IL

 tr
ai

ni
ng

Update
Validation acc. (reward)

Figure 3: The training process of our online learning method in the i-th phase. It includes policy learning and CIL training.
(a) Policy learning. 1) We construct a class-balanced subset from all training data as the local validation set and use the remain-
ing data as the local training set. 2) We initialize the temporary model with Θi−1. 3) We sample an action using the current
policy and deploy the hyperparameters on the temporary model according to the action. 4) We train it on the local training set
for M1 epochs, and evaluate it on the local test set. 5) We use the validation accuracy as the reward and update the policy. We
update the policy for T iterations by repeating Steps 2-5. (b) CIL training. We sample an action using the learned policy and
deploy the hyperparameters on the CIL model. Then, we train the CIL model on all training data for M2 epochs.

In the following, we show how to rebuild the local train-
ing and validation sets, compute the decoupled cumulative
reward, and learn the policy with Exp3.
Rebuilding local datasets. In the i-th phase, we need to ac-
cess the validation set Q0:i to compute the reward (i.e., the
validation accuracy). However, we are not allowed to use
Q0:i during training because it violates the CIL benchmark
protocol. Therefore, we replace Q0:i with a class-balanced
subset B0:i sampled from the training data E0:i−1 ∪Di. B0:i
contains the same number of samples for both the old and
new classes. In this way, we can rebuild the local train-
ing and validation sets, and obtain the local environment
hi = ((E0:i−1 ∪ Di) \ B0:i,B0:i).
Decoupled cumulative reward. We create the decoupled
cumulative reward function R̂ based on the original cumu-
lative reward function R =

∑N
j=1 rHj

(Θj ,aj). In the i-th
phase, we compute R̂ as follows,

R̂(ai, hi) =
i−1∑
j=1

rHj
(Θj ,aj)︸ ︷︷ ︸

Part I

+
i+n∑
j=i

rhi
(Θj ,ai)︸ ︷︷ ︸

Part II

, (6)

where Part I is the historical rewards from the 1-st phase to
the (i-1)-th phase. It is a constant and doesn’t influence pol-
icy optimization. Part II is the long-term reward of a time-
invariant local MDP based on the local environment hi. We
use Part II as an estimation of the future rewards, follow-
ing (Even-Dar et al. 2009). Because we don’t know the total
number of phases N during training, we assume there are
n phases in the future. Furthermore, we fix the action ai in
Part II to simplify the training process. Thus, R̂ can be re-
viewed as a function of ai and hi.
Training policy with Exp3. Exp3 (Auer et al. 2002) intro-
duces an auxiliary variable w = {w(a)}a∈A. After updat-

ing w, we can determine the policy p={p(a|Θi)}a∈A by
p = w/||w||. The updating rule of w is provided below.

In the 1-st phase, we initialize w as {1, . . . , 1}. In each
phase i (i≥1), we update w for T iterations. In the t-th iter-
ation, we sample an action at∼p, apply the action at to the
CIL system, and compute the decoupled cumulative reward
R̂(at, hi) using Eq. 6. After that, we update w(at) in w as,

w(at)← w(at) exp(ξR̂(at, hi)/p(at|Θi)), (7)

where ξ can be regarded as the learning rate in Exp3.

Experiments
We evaluate the proposed method on three CIL benchmarks,
incorporate our method into three top-performing baseline
methods, and boost their performances consistently in all
settings. Below we describe the datasets and implementation
details, followed by the results and analyses.

Datasets and Implementation Details
Datasets. We employ CIFAR-100 (Krizhevsky et al. 2009),
ImageNet-Subset (Rebuffi et al. 2017) (100 classes), and
ImageNet-Full (Russakovsky et al. 2015) (1000 classes) as
the benchmarks. We use the same data splits and class orders
as the related work (Rebuffi et al. 2017; Liu et al. 2021a,b).
Network architectures. We use a modified 32-layer ResNet
for CIFAR-100 and an 18-layer ResNet for ImageNet, fol-
lowing (Rebuffi et al. 2017; Hou et al. 2019; Liu et al.
2021a). We deploy the AANets (2021a) for the experiments
based on AANets and RMM (2021b). Further, we use a co-
sine normalized classifier without bias terms as the FC clas-
sifier, following (Hou et al. 2019; Liu et al. 2020).
Configurations. We discretize the hyperparameter search
space into 50 actions, i.e., card(A)=50. We update the policy

8910

Methods
CIFAR-100, N=5 CIFAR-100, N=25 ImgNet-Sub, N=5 ImgNet-Sub, N=25

TFH TFS Avg. TFH TFS Avg. TFH TFS Avg. TFH TFS Avg.

PODNet (2020) 64.7 63.6 64.2 60.3 45.3 52.8 64.3 58.9 61.6 68.3 39.1 53.7
DER (2021) 67.6 72.3 70.0 65.5 67.3 66.4 78.4 76.9 77.7 75.4 71.0 73.2
FOSTER (2022) 70.4 72.5 71.5 63.8 70.7 67.3 80.2 78.3 79.3 69.3 72.9 71.1

LUCIR (2019) 63.1 63.0 63.1 57.5 49.2 53.4 65.3 66.7 66.0 61.4 46.2 53.8
w/ ours 63.9 64.9 64.4 59.3 52.4 55.9 70.6 68.4 69.5 62.9 54.1 58.5

AANets (2021a) 65.3 63.1 64.2 63.2 44.4 53.8 77.0 68.9 73.0 72.2 60.7 66.5
w/ ours 67.0 65.1 66.1 64.1 50.3 57.2 77.3 70.6 74.0 72.9 64.8 68.9

RMM (2021b) 67.6 70.4 69.0 65.6 58.4 62.0 79.5 80.5 80.0 75.0 71.6 73.3
w/ ours 70.8 72.7 71.8 69.5 65.9 67.7 81.0 82.2 81.6 76.1 73.2 74.7

Table 1: Average accuracy (%) across all phases on CIFAR-100 and ImageNet-Subset (ImgNet-Sub). The first block shows
some recent CIL methods. The second block shows three top-performing baselines (Hou et al. 2019; Liu et al. 2021a,b) w/ and
w/o our method plugged in. “TFH” and “TFS” denote the training-from-half and training-from-scratch settings, respectively.
“Avg.” shows the average of the “TFH” and “TFS” results. For “AANets” (Liu et al. 2021a), we use its version based on
PODNet (Douillard et al. 2020). We rerun the baselines using their open-source code in a unified setting for a fair comparison.

Methods
ImageNet-Full, N=5

TFH TFS Avg.

LUCIR (2019) 64.5 62.7 62.0
w/ ours 65.8 66.1 66.0

RMM (2021b) 69.0 66.1 67.6
w/ ours 70.7 68.9 69.8

Table 2: Average accuracy (%) on ImageNet-Full.

for 25 iterations in each phase, i.e., T=25. For other config-
urations, we follow the corresponding baselines.

Results and Analyses
Tables 1 and 2 present the results of top-performing base-
lines w/ and w/o our method and some recent related
work. Table 3 summarizes the results in seven ablative set-
tings. Figure 4 compares the activation maps (using Grad-
CAM (Selvaraju et al. 2017)) produced by diffident methods
in TFH and TFS. Figure 5 shows the values of hyperparam-
eters produced by our method.
Comparison with the state-of-the-art. Tables 1 and 2 show
that taking our method as a plug-in module for the state-
of-the-art (Liu et al. 2021b) and other baselines (Hou et al.
2019; Liu et al. 2021a) consistently improves their perfor-
mance. For example, RMM (2021b) w/ ours gains 4.3 and
2.2 percentage points on CIFAR-100 and ImageNet-Full,
respectively. Interestingly, we find that we can surpass the
baselines more when the number of phases N is larger. E.g.,
on CIFAR-100, our method improves RMM by 5.7 percent-
age points when N=25, while this number is 2.8 percent-
age points when N=5. Our explanation is that the forgetting
problem is more serious when the number of phases is larger.
Thus, we need better hyperparameters to balance stability
and plasticity.

No.
Optimizing N=5 N=25

(β, γ) (aδa,) (aλa) TFH TFS TFH TFS
1 Baseline 63.11 62.96 57.47 49.16
2 ✓ 63.20 63.60 58.27 50.91
3 ✓ ✓ 63.23 64.08 58.20 51.94
4 ✓ ✓ ✓ 63.88 64.92 59.27 52.44
5 Cross-val fixed 63.33 64.02 57.50 51.64
6 Offline RL (2021b) 63.42 63.88 58.12 51.53
7 Bilevel HO (2018) 63.20 63.02 57.56 49.42

Table 3: Ablation results (average accuracy %) on CIFAR-
100. (β, γ) are KD loss weights. λ and δ denote learning
rates and classifier types, respectively. The baseline is LU-
CIR (2019). Row 4 shows our best result.

Ablation study. Table 3 concerns eight ablation settings,
and shows the results in both TFH and TFS for different
numbers of phases (N=5/25). The detailed analyses are as
follows.
1) First block. Row 1 shows the baseline (Hou et al. 2019).
2) Second block: optimizable hyperparameters. In our
study, we optimize three kinds of hyperparameters that af-
fect the model’s stability and plasticity: KD loss weights
(β, γ), learning rate λ, and classifier type indicator δ. Com-
paring Row 2 to Row 1, we can observe that optimizing
the KD loss weights boosts the TFS accuracy more signifi-
cantly. It is because the baseline, LUCIR (Hou et al. 2019),
applies a strong regularization term (i.e., feature KD loss)
which harms the TFH performance. Our method changes
the regularization term by adjusting the KD loss weights,
so it achieves better performance. Comparing Row 3 to Row
2, we can see that optimizing the classifier type indicator δ
performs further improvements, especially in TFS. It is be-
cause the baseline deploys an FC classifier by default while
our method learns to switch between different classifiers in

8911

Training from half (TFH)

Images iCaRL Ours

Ph
as

e
0

Ph
as

e
3

Ph
as

e
5

Training from scratch (TFS)

Images iCaRL Ours

Ph
as

e
0

Ph
as

e
3

Ph
as

e
5

LUCIR LUCIR

Figure 4: The activation maps using Grad-CAM (Selvaraju
et al. 2017) for the last phase model on ImageNet-Subset
5-phase. Samples are selected from the classes coming in
the 0-th, 3-rd, and 5-th phases. Green ticks mean successful
activation of discriminative features on object regions, while
red crosses mean unsuccessful.

different settings. Comparing Row 4 to Row 3, we can see
the effectiveness of optimizing the learning rates in CIL. In
summary, it is impressive that optimizing three kinds of hy-
perparameters together achieves the best results.
3) Third block: hyperparameter learning methods. For
Row 5, we use cross-validation (i.e., all past, future, and
validation data are accessible) to find a set of fixed hyper-
parameters and apply them to all phases. We can see that
Row 5 results are consistently lower than ours in Row 4,
although it can access more data. It shows that we need to
update the hyperparameters online in different phases. For
Row 6, we use the policy pre-trained in the 0-th phase of the
target CIL task using the framework proposed in (Liu et al.
2021b) (compared to ours, it is offline). Comparing Row 6
with Row 4, we are happy to see that our online learning
algorithm achieves better performance than the offline RL
while we use much less training time (see the analysis in the
supplementary). For Row 7, we use the bilevel hyperparame-
ter optimization method (Franceschi et al. 2018). Comparing
Row 7 with Row 4, we can observe that our method achieves
more significant performance improvements. The reason is
that (Franceschi et al. 2018) is designed for time-invariant
environments, while our online algorithm can adapt to the
time-varying environments in CIL.
Visualizing activation maps. Figure 4 demonstrates the
activation maps visualized by Grad-CAM (Selvaraju et al.
2017) for the final model (obtained after five phases) on
ImageNet-Subset 5-phase. The left and right sub-figures
show the results for training-from-half (TFH) and training-
from-scratch (TFS), respectively. We can observe: 1) LU-
CIR (Hou et al. 2019) makes predictions according to fore-
ground (correct) and background (incorrect) regions in the
TFH and TFS settings, respectively; 2) iCaRL (Rebuffi et al.
2017) behaves opposite to LUCIR in the two settings; 3) our
method always makes predictions according to foreground
(correct) regions in both TFH and TFS. The reasons are as
follows. LUCIR applies a strong (feature) KD by default,
so it performs better in TFH. iCaRL applies a weak (logit)
KD by default, so it performs better in TFS. Our method can
adjust the hyperparameters to change between different KD
losses, so it performs well in both settings.

5 10 15 20
#phases (TFH)

0.2
0.4
0.6
0.8
1.0 Logit KD ()

Feature KD ()

5 10 15 20
#phases (TFS)

0
0.20
0.40
0.60
0.80
1.00

5 10 15 20
#phases (TFH)

0

0.05

0.10

0.15 Learning rate ()

5 10 15 20
#phases (TFS)

0

0.05

0.10

0.15

Figure 5: The hyperparameter values produced by our pol-
icy on CIFAR-100 25-phase for LUCIR (2019) w/ ours. We
smooth all curves with a rate of 0.8 for better visualization.

Hyperparameter values. Figure 5 shows the hyperparame-
ter values produced by our policy on CIFAR-100 25-phase.
1) KD loss weights β and γ. From the figure, we have two
observations. a) The policy learns to produce a larger ini-
tial value for γ and β in TFH and TFS, respectively. Our
explanation is as follows. In TFH, we already have a pre-
trained model, so we need a strong regularization term (i.e.,
feature KD loss) to make the model more stable and avoid
forgetting. In TFS, we start from random initialization, so
we need a weak regularization term (i.e., logit KD loss) to
improve the model’s plasticity. b) Both β and γ increase in
TFH, while β decreases and γ increases in TFS. It is because
we need stronger regularization to maintain the knowledge
when more data is observed. The policy achieves that in dif-
ferent ways: it assigns higher weights for both KD losses in
TFH, while it transfers from logit KD to feature KD in TFS.
2) Learning rates λ. In Figure 5, we can observe that the
learning rate in TFS is much higher than in TFH. It can be
explained that 1) we need a higher learning rate in TFS as
the model is trained from scratch and needs to capture more
new knowledge; 2) we need a lower learning rate in TFH
because we need to avoid forgetting the pre-trained model.
3) Classifier type indicator δ. On CIFAR-100 25-phase, our
policy learned to choose the NCM and FC classifiers in TFS
and TFH, respectively.

Conclusions

In this study, we introduce a novel framework that allows
us to optimize hyperparameters online to balance the sta-
bility and plasticity in CIL. To achieve this, we formulate
the CIL task as an online MDP and learn a policy to pro-
duce the hyperparameters. Our approach is generic, and it
can be easily applied to existing methods to achieve large-
margin improvements in both TFS and TFH settings. It is
worth mentioning that our method can also be applied to op-
timize other key hyperparameters in CIL.

8912

Acknowledgments
This research was supported by A*STAR under its AME
YIRG Grant (Project No. A20E6c0101).

References
Abati, D.; Tomczak, J.; Blankevoort, T.; Calderara, S.; Cuc-
chiara, R.; and Bejnordi, B. E. 2020. Conditional Chan-
nel Gated Networks for Task-Aware Continual Learning. In
CVPR, 3931–3940.
Agrawal, S.; and Goyal, N. 2012. Analysis of Thompson
Sampling for the Multi-armed Bandit Problem. In COLT,
volume 23, 39.1–39.26.
Anderson, T. 2008. The theory and practice of online learn-
ing. Athabasca University Press.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002. The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1): 48–77.
Auer, P.; and Ortner, R. 2010. UCB revisited: Improved re-
gret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2): 55–65.
Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; and Siskind,
J. M. 2018. Automatic differentiation in machine learning:
a survey. JMLR, 18: 1–43.
Belouadah, E.; and Popescu, A. 2019. Il2m: Class incre-
mental learning with dual memory. In CVPR, 583–592.
Douillard, A.; Cord, M.; Ollion, C.; Robert, T.; and Valle, E.
2020. PODNet: Pooled Outputs Distillation for Small-Tasks
Incremental Learning. In ECCV, 86–102.
Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2005. Experts
in a Markov decision process. In NIPS, 401–408.
Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2009. On-
line Markov decision processes. Mathematics of Operations
Research, 34(3): 726–736.
Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; and Pon-
til, M. 2018. Bilevel programming for hyperparameter opti-
mization and meta-learning. In ICML, 1568–1577.
Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. arXiv, 1503.02531.
Hou, S.; Pan, X.; Loy, C. C.; Wang, Z.; and Lin, D. 2019.
Learning a Unified Classifier Incrementally via Rebalanc-
ing. In CVPR, 831–839.
Hu, X.; Tang, K.; Miao, C.; Hua, X.-S.; and Zhang, H. 2021.
Distilling Causal Effect of Data in Class-Incremental Learn-
ing. In CVPR, 3957–3966.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto.
Li, Y.; Das, S.; and Li, N. 2021. Online optimal control with
affine constraints. In AAAI, 8527–8537.
Li, Y.; and Li, N. 2019a. Online learning for markov deci-
sion processes in nonstationary environments: A dynamic
regret analysis. In 2019 American Control Conference
(ACC), 1232–1237. IEEE.

Li, Y.; Zhong, A.; Qu, G.; and Li, N. 2019b. Online markov
decision processes with time-varying transition probabilities
and rewards. In ICML workshop on Real-world Sequential
Decision Making.
Li, Z.; and Hoiem, D. 2016. Learning Without Forgetting.
In ECCV, 614–629.
Liu, Y.; Schiele, B.; and Sun, Q. 2021a. Adaptive Aggre-
gation Networks for Class-Incremental Learning. In CVPR,
2544–2553.
Liu, Y.; Schiele, B.; and Sun, Q. 2021b. RMM: Reinforced
Memory Management for Class-Incremental Learning. In
NeurIPS, 3478–3490.
Liu, Y.; Su, Y.; Liu, A.; Schiele, B.; and Sun, Q. 2020.
Mnemonics Training: Multi-Class Incremental Learning
without Forgetting. In CVPR, 12245–12254.
McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation, vol-
ume 24, 109–165. Elsevier.
McRae, K.; and Hetherington, P. 1993. Catastrophic Inter-
ference is Eliminated in Pre-Trained Networks. In CogSci.
Prabhu, A.; Torr, P. H.; and Dokania, P. K. 2020. GDumb: A
Simple Approach that Questions Our Progress in Continual
Learning. In ECCV, 524–540.
Ratcliff, R. 1990. Connectionist models of recognition
memory: Constraints imposed by learning and forgetting
functions. Psychological Review, 97: 285–308.
Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. iCaRL: Incremental classifier and representation
learning. In CVPR, 5533–5542.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. IJCV, 115(3): 211–252.
Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell,
R. 2016. Progressive neural networks. arXiv, 1606.04671.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization.
In CVPR, 618–626.
Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual
learning with deep generative replay. In NIPS, 2990–2999.
Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical
networks for few-shot learning. In NIPS, 4077–4087.
Tao, X.; Chang, X.; Hong, X.; Wei, X.; and Gong, Y.
2020. Topology-Preserving Class-Incremental Learning. In
ECCV, 254–270.
Wang, F.-Y.; Zhou, D.-W.; Ye, H.-J.; and Zhan, D.-C. 2022.
FOSTER: Feature Boosting and Compression for Class-
Incremental Learning. In ECCV.
Xu, J.; and Zhu, Z. 2018. Reinforced continual learning. In
NeurIPS, 899–908.
Yan, S.; Xie, J.; and He, X. 2021. DER: Dynamically Ex-
pandable Representation for Class Incremental Learning. In
CVPR, 3014–3023.

8913

