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Abstract

Positive Unlabeled (PU) learning, which has a wide range of
applications, is becoming increasingly prevalent. However, it
suffers from problems such as data imbalance, selection bias,
and prior agnostic in real scenarios. Existing studies focus
on addressing part of these problems, which fail to provide a
unified perspective to understand these problems. In this pa-
per, we first rethink these problems by analyzing a typical PU
scenario and come up with an insightful point of view that
all these problems are inherently connected to one problem,
i.e., positive distribution pollution, which refers to the inaccu-
racy in estimating positive data distribution under very little
labeled data. Then, inspired by this insight, we devise a vari-
ational model named CoVPU, which addresses all three prob-
lems in a unified perspective by targeting the positive distribu-
tion pollution problem. CoVPU not only accurately separates
the positive data from the unlabeled data based on discrete
normalizing flows, but also effectively approximates the pos-
itive distribution based on our derived unbiased rebalanced
risk estimator and supervises the approximation based on a
novel prior-free variational loss. Rigorous theoretical analy-
sis proves the convergence of CoVPU to an optimal Bayesian
classifier. Extensive experiments demonstrate the superiority
of CoVPU over the state-of-the-art PU learning methods un-
der these problems.

Introduction
Positive Unlabeled (PU) learning has attracted great atten-
tion in recent years, which is widely used in scenarios
such as information retrieval (Dupret and Piwowarski 2008),
anomaly detection (Pang, Shen, and van den Hengel 2019)
and disease diagnosis (Chen et al. 2020b). PU learning refers
to a binary classification task that only part of the samples
from the positive class is labeled while the remaining hard-
distinguished positive samples and the samples from the
negative class are unlabeled. In real practice, some challeng-
ing problems, e.g., data imbalance, selection bias, and prior
agnostic, remain unsolved, which reduces the performance
of PU learning. Therefore, it is necessary to address these
challenging problems for effective PU learning in practice.

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Definition. (P1) Data imbalance refers to the
phenomenon that the available labeled data is far less than
the unlabeled data. Note that the very few labels of posi-
tive data often originate from an extremely imbalanced class
ratio, so class imbalance should also be considered in this
problem. (P2) Selection bias refers to the phenomenon that
the selected labeled data is biased and can not represent all
positive data. (P3) Prior agnostic refers to the phenomenon
that the class prior (Jain et al. 2020) in hindsight is unknown.

Existing PU learning studies address these problems from
different perspectives. Firstly, from the perspective of inves-
tigating data features, existing methods extract additional
positive data (Hu et al. 2021) or its features (Na et al. 2020)
used for mitigating the selection bias or data imbalance
problems. In addition, from the perspective of samples selec-
tion mechanisms, existing methods address the data imbal-
ance problem by oversampling the positive data (Su, Chen,
and Xu 2021; Hu et al. 2021), which, however, becomes un-
necessary data repetitions when the data itself is selected
with bias. Both the above two perspectives rely on the in-
put of class prior, which is agnostic in real practice. To ad-
dress this problem, some methods look into the perspec-
tive of data’s intrinsic properties for class prior estimation
(Bekker and Davis 2018; Jain et al. 2020). However, their
estimations tend to be collapsed unless the selection bias and
data imbalance problems are well addressed. Overall, each
of these perspectives addresses partial problems and lacks a
unified understanding of all the three problems.

In this paper, we rethink the above problems and raise a
question: Whether there exists a unified perspective for ad-
dressing these challenging problems simultaneously?

Motivating Example. To answer this question, we take a
real loan scenario in a bank as an example, aiming to gain
deeper insights into the generality of these challenging prob-
lems. Figures 1(a) and (b) depict the characteristics and pro-
cedure of the loan scenario. Obviously, this is a typical PU
learning scenario. In the loan procedures, the bank experts
first detect high-risk loan requests before they become de-
faulted (Positive Labeled, PL) according to their expertise,
and only offer loans to the remaining requests (Unlabeled,
U). Subsequently, some of the loans will be detected after
they have defaulted (Positive Unlabeled, PU), and some will
maintain benign (Negative, N). In Figure 1(c), we depict the
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Figure 1: A real-world motivating example from a bank.

distributions of positive data in this loan scenario under the
three problems, from which we have the following three ob-
servations. Firstly, the positive labeled distribution deviates
from the positive distribution. This is caused by the data im-
balance problem, which is common in loan scenarios where
defaulters are in the minority and only a tiny fraction of the
defaulters are labeled for not disturbing normal customers.
This deviation phenomenon makes sense because fitting a
distribution with very little data is highly unstable, in which
very small changes in data can lead to large perturbations
in the estimation. Secondly, the positive labeled distribution
deviates from the positive unlabeled distribution. The pos-
itive labeled data is selected with bias because of experts’
limited knowledge in recognizing all defaulters. Completely
trusting all labeled data with selection bias inevitably leads
to inaccuracy in distribution estimation. Thirdly, the positive
distribution is estimated inaccurately if the inaccurate class
prior, i.e., higher deviated or lower deviated value, is pro-
vided. In real practice, the underlying defaulted class ratio,
i.e., positive class prior, is agnostic to the bank, and the de-
viated class priors will lead to inaccurate estimations of the
positive distribution. Theoretically, given a mixture distribu-
tion without class priors, there will be a variety of compo-
nent separations, and the positive distribution can not be ac-
curately estimated unless the correct class prior is provided,
which explains this observation.

In conclusion, all the three challenging problems can be
unified as the problem of inaccurate distribution estimation
of positive data under very little labeled data, which we term
as Positive Distribution Pollution.

In this paper, to address the positive distribution pollu-
tion problem, i.e., the unified perspective of the challeng-
ing data imbalance, selection bias, and prior agnostic prob-
lems, we propose a novel PU learning model named CoVPU,
which includes three key modules, i.e., VPU-Calibrator,
VPU-Classifier, and VPU-Collaborator. Firstly, according to
our aforementioned analysis, only utilizing the very little
and biased labeled data will lead to pollution in positive dis-
tribution estimation, so we design VPU-Calibrator to addi-
tionally exploit the unlabeled data, i.e., mining positive un-
labeled samples and their distributions, for improving the
accuracy of the estimation. Specifically, the VPU-Calibrator

separates the two-component mixture distribution of the un-
labeled data based on discrete normalizing flows, which is
used for fitting of the underlying diverse positive distribu-
tion (for addressing P1 and P2). Secondly, to supervise the
learning of the positive distribution estimation, we design
VPU-Classifier with a novel prior-free variational classifier
learning mechanism, which not only has a relaxed data se-
lection assumption (for addressing P2), but also accurately
measures the accuracy of the estimated positive distribu-
tion under the data imbalance and prior agnostic problems
(for addressing P1 and P3). Specifically, the VPU-Classifier
first inferences the positive distribution based on a Bayesian
classifier, then leverages our devised variational loss to esti-
mate the distance between the estimated positive distribu-
tion and an ideal one for supervising the learning of the
positive distribution. Thirdly, because VPU-Calibrator and
VPU-Classifier are unable to process individually and are in
need of the knowledge from each other for final decisions,
we designed VPU-Collaborator, which fully exploits the two
modules’ positive consensus, i.e., samples whose compo-
nent assignment and class assignment are both positive, on
the unlabeled data to further boost the learning of both the
VPU-Calibrator and VPU-Classifier.

To the best of our knowledge, this is the first work in
the literature to provide a unified perspective, i.e., positive
distribution pollution, for understanding and addressing the
challenging data imbalance, selection bias, and prior agnos-
tic problems in PU learning. Our main contributions are as
follows: (1) Model: we propose a novel variational model
named CoVPU for positive distribution modeling, which si-
multaneously addresses all the three challenging problems
from a unified perspective; (2) Theory: we theoretically
prove that CoVPU converges to the optimal classifier. (3) Ex-
periment: we have conducted extensive experiments, which
demonstrate the superiority of CoVPU over the state-of-the-
art PU learning methods.

Related Work
PU learning has attracted increasing attention in recent years
(Bekker and Davis 2018; Jaskie and Spanias 2019). Early
works employed two-step strategies (Li and Liu 2003; Liu
et al. 2002; Yu, Han, and Chang 2002), which lack rigorous
guarantee on convergence. Risk estimation based methods
enhance theory guidance (Plessis, Niu, and Sugiyama 2014;
Kiryo et al. 2017). To enhance the feasibility, recent stud-
ies target three challenging problems, i.e., data imbalance,
selection bias, and prior agnostic, separately.

For the data imbalance problem, most existing studies fo-
cus on enlarging the positive sample size. Resampling meth-
ods repeat the existing data without any modification, lead-
ing to the lack of data diversity (Su, Chen, and Xu 2021).
Generative methods learns data distribution for increasing
the diversity (Hou et al. 2018). However, the quality of the
generated data cannot be guaranteed, which introduces un-
certainty in classifiers.

For the selection bias problem, most existing studies ex-
ploit diverse data based on various assumptions such as or-
der invariance (Kato, Teshima, and Honda 2019) and nega-
tive sample invariance (Hammoudeh and Lowd 2020). How-
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ever, their performance can not be guaranteed once their
assumptions contradict reality. Another attempt (Na et al.
2020) generates positive samples based on a given class
prior that which may be agnostic in reality.

For the class prior agnostic problem, methods can be di-
vided into two kinds. The first kind (Zeiberg, Jain, and Radi-
vojac 2020; Perini, Vercruyssen, and Davis 2020; Akujuobi
et al. 2020) estimates class priors (Jain et al. 2020) sepa-
rately without designing much on the downstream classi-
fier. The second kind (Chen et al. 2020a; Zhang, Hou, and
Zhang 2020; Hu et al. 2021; Ivanov 2020) unifies the class
prior estimation and the classifier, which regard the clas-
sifier’s expectation as class prior for further adjusting the
classifier. However, these methods are designed based on
the selected completely at random assumption, which may
perform poorly under selection bias scenarios.

In general, each of the above studies targets partial prob-
lem only based on various assumptions or techniques. To the
best of our knowledge, no existing study can provide a uni-
fied perspective to simultaneously address the above three
challenging problems in PU learning.

Problem Settings and Preliminaries
Problem Settings
In PU learning, a dataset X of size n is composed of two
sets, i.e., XPL of size nPL containing positive labeled data
and XU of size nU containing unlabeled data. In hindsight,
XU is composed of a positive unlabeled dataset XPU of size
nPU and a negative dataset XN of size nN. Therefore, |XP| =
nP = nPL+nPU and |X | = n = nP+nN. We denote the main
notations related to three challenging problems as follows.

Definition 1 (Imbalance Ratio for P1). Given a PU dataset,
the imbalance ratio is defined as IR = nPL

nU
∈ [0, 1]. Data

imbalance refers to the phenomenon that IR≪ 0.5.

Definition 2 (Selection Bias for P2). Let y ∈ {−1,+1} be
the negative or positive label of a sample x ∼ p(x) and
o ∈ {−1,+1} be its unlabeled or labeled indicator. The
labeled and unlabeled samples are drawn independently as

XPL = {xi}nPL
i=1

i.i.d∼ pPL(x) ≜ P(x | y = +1, o = +1),

XPU = {xi}nPU
i=1

i.i.d∼ pPU(x) ≜ P(x | y = +1, o = −1),

XN = {xi}nN
i=1

i.i.d∼ pN(x) ≜ P(x | y = −1, o = −1).

(1)

Selection bias refers to the phenomenon that pPL ̸= pPU.

Definition 3 (Class Prior for P3). Class prior is πP = P(y =
+1) = nP

n . Additionally, we define πPL = nPL
n = IR

IR+1 ,
πPU = nPU

n , πN = nN
n and πU = nU

n . Prior agnostic means
that the underlying πP, πPU, and πN are unavailable.

In this paper, we aim to learn a Bayesian classifier Φ(x)
to predict each sample’s label y with the goal of letting Φ(x)

close to the optimal classifier Φ∗(x) ≜ P(y = +1|x).

Preliminaries
Risk estimation based methods are effective PU learning
methods with rigorous theory to guarantee the performance

of classifiers. They are also important preliminaries for ad-
dressing the positive distribution pollution.

Traditional Risk Estimator. In traditional risk estima-
tion based methods, a risk estimator is used to calculate the
loss ℓ(·, ·) induced in the positive label set and unlabeled set
weighted by the samples’ class prior as follows (Plessis, Niu,
and Sugiyama 2014):

RPU(Φ) =πPEpPL [ℓ+(Φ(x))] + EpU [ℓ−(Φ(x))]

− πPEpPL [ℓ−(Φ(x))],
(2)

where ℓ(·) is any trainable loss function.
Such risk estimator is inapplicable when selection bias or

data imbalance exists, which pollutes the positive expecta-
tion estimation terms.
Selection Unbiased Risk Estimator. For the selection bias
problem, the above traditional risk estimator can be sepa-
rated according to XPL and XPU as follows (Na et al. 2020):

RSU(Φ) = πPLEpPL [ℓ+(Φ(x))] + πUEpU [ℓ−(Φ(x))]

+ πPUEpPU [ℓ+(Φ(x))− ℓ−(Φ(x))],
(3)

which distinguishes between labeled and unlabeled positive
samples to effectively approximate the positive expectations.
Rebalance Risk Estimator. For the data imbalance prob-
lem, pseudo-oversampling technique (Su, Chen, and Xu
2021) can be applied to increase the proportion of pos-
itive samples for rebalancing. Specifically, the pseudo-
oversampling technique increases the small class prior πP
to a larger π′ by modifying the risk only without involving
an actual oversampling procedure as follows:

RbalancePN(Φ) =π′EpP [ℓ+(Φ(x))] +
(
1− π′)EpN [ℓ−(Φ(x))].

(4)

Method
Overview
The architecture of CoVPU is presented in Figure 2,
which contains three key modules, i.e., VPU-Calibrator,
VPU-Classifier, and VPU-Collaborator. Specifically, VPU-
Calibrator separates the latent two-component mixture dis-
tribution of unlabeled samples based on discrete normal-
izing flows within a variational auto-encoder framework.
VPU-Classifier leverages a novel prior-free variational clas-
sifier learning mechanism to minimize the distance between
our learned Φ classifier and an optimal one Φ∗, thereby
boosting the inference of positive distribution. Because both
VPU-Calibrator and VPU-Classifier are not self-contained
and rely on knowledge from each other, VPU-Collaborator
leverages our devised consensus learning mechanism to
fully exploit the two modules’ positive consensus, i.e., sam-
ples whose component assignment and class assignment are
both positive, on the unlabeled data to further boost the
learning of both VPU-Calibrator and VPU-Classifier.

VPU-Calibrator: Variational PU Calibrator
Positive data buried in the unlabeled data is relatively rich
and diverse to calibrate the polluted positive distribution and
address P1, i.e., data imbalance, and P2, i.e., selection bias.
Because there is no supervision in unlabeled data, we de-
sign an unsupervised module, named VPU-Calibrator, based
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Figure 2: The architecture of CoVPU, which includes the VPU-Calibrator, VPU-Classifier, and VPU-Collaborator modules.

on the encoder-decoder architecture to separate the complex
two-component, i.e., positive component and negative com-
ponent, mixture distribution in the unlabeled data. We elab-
orate on the architecture and the optimization process.

Variational Assumption. We assume the latent feature
z of unlabeled data obeys a two-component Gaussian mix-
ture distribution and denote the component indicator as c ∈
{−1,+1}. Given a sample x ∈ XU, the joint probability is:

p(x, z, c) = p(x|z)p(z|c)p(c), (5)

where p(c) = Cat(πc) is a categorical distribution parame-
terized by πc = [πPU

πU
, πU−πPU

πU
], p(z|c) = N (µz(c),σ

2
z(c)I)

is a two-component Gaussian mixture distribution con-
trolled by c, and p(x|z) can be multivariate Bernoulli, i.e.,
Ber(µx(z)) or Gaussian, i.e., N (µx(z),σ

2
x(z)I) distribu-

tion controlled by z according to data’s characteristic.
The main challenge of approximating the distribution in

unlabeled data lies in the discrete separation of components,
i.e., c obeys a categorical distribution, which is very hard
to be optimized. Therefore, we approximate it by discrete
normalizing flows, which bridges the gap between a com-
plex categorical distribution and a continuous base distribu-
tion for modeling the complicated data distribution based
on a stack of several planar transformations followed by an
argmax transformation.

Encoder. We can take an inference model as an encoder,
which approximates the distribution p(z, c) using a posterior
distribution qϕ(z, c|x) = qϕc(c|x)qϕz(z|c,x) parameterized
by trainable parameters ϕc, and ϕz.

Firstly, to increase the expressiveness of qϕc(c|x), we
adopt normalizing flows to transform v0 ∈ R2, i.e., the
latent features obeying a simple Gaussian distribution, to a
complex vL ∈ R2 that obeys a complex distribution. Then,
due to c’s discrete property, we apply an argmax transforma-
tion to get c = argmaxk v

L
k . Specifically, we first encode

the variable v0 sampled from a simple Gaussian distribu-
tion p(v0|x) by [µv0 ,σv0 ] = fv(x;ϕv), where fv denotes
a neural network with parameters ϕv. Then, we adopt pla-
nar transformations (Rezende and Mohamed 2015) to gen-
erate the complicated vL via several layers, each of which is
vi+1 = gi(v

i) = vi + uiσ(wi⊤vi + ai) and σ(·) denotes

the tanh activation function. After that, we apply the argmax
transformation to map the continuous vL to a discrete c us-
ing c = argmaxk v

L
k .

Secondly, the variable z can be encoded as qϕz(z|c,x) =
fz(c,x;ϕz), where fz denote neural networks with param-
eters ϕz for learning the distributions of the latent features
from training samples.

Decoder. We apply a generative model as the decoder to
reconstruct the data. More specifically, for a sample x, we
model its generative process as follows:

v0 ∼ p(v0), vL = gL ◦ gL−1 ◦ · · · ◦ g0(v0),

c = argmax(vL), z ∼ p(z|c), p(x|z) = fx(z; θx),
(6)

where fx are networks parameterized by θx, and L is the
number of the planar flows layers.

Variational Lower Bound. The objective of the VPU-
Calibrator is maximizing the given data’s log likelihood
log p(x). Given the generative process in Eq. (6), by using
Jensen’s inequality, log p(x) can be written as:

log p(x) = log

∫
z

∑
c

p(x, z, c)dz

≥ Eq(z,c|x) log
p(x, z, c)

q(z, c | x) = L′
ELBO(x),

(7)

where L′
ELBO(x) is the evidence lower bound (ELBO).

According to Eq. (7), L′
ELBO(x) can be decomposed as:

L′
ELBO(x) = Eq(z,c|x)[log p(x, z, c)− log q(z, c|x)]

= Eq(z,c|x)[log
p(c)

q(c|x) + log
p(z|c)

q(z|c,x) + log p(x|z)].
(8)

While calculating the last two terms is straightforward, the
main difficulty lies in optimizing q(c|x) in the first term. It
can be decomposed as:

q(c | x) =
∫
p

(c | vL)q(vL | x)dvL,

p(c | vL) = δ(c = argmax(vL)),

(9)

which is intractable, so we resort to variational inference
and specify a variational distribution q(vL|c). Due to the
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argmax constraint (Hoogeboom et al. 2021), the varia-
tional distribution q(vL|c) should have support limited to
S(c) = {vL ∈ R2 : c = argmaxvL}. Then, we have

log q(c | x) ≥ log q(vL | x) + Eq(vL|c)[− log q(vL | c)], (10)

where log q(vL|x) = log q(v0|x)−
∑L−1

i=0 log | det dvi+1

dvi |.
When calculating the expectation in terms of q(vL | c), we
first adopt a surjective flow layer (Nielsen et al. 2020) with
Gumbel distribution (Kool, Van Hoof, and Welling 2019)
parameterized by πc to obtain the variational distribution
q(vL|c), then sample vL by a Gumbel sampling algorithm
(see Alg. 4 in (Hoogeboom et al. 2021)).

By substituting the term in Eq. (8) with Eq. (5), Eq. (10)
and using the reparameterization trick, the L′

ELBO(x) can be
upper bounded by:

LELBO(x) = I(q(c|x) = 1) log
πPU

πU
+ I(q(c|x) = 0) log

πU − πPU

πU

−
∑
c

q(c|x)[log q(v0|x)−
L−1∑
i=0

log | det dv
i+1

dvi
|+ Eq(vL|c)[− log q(vL|c)]]

−
∑
c

q(c|x)KL(q(z|c,x))||p(z|c)) + Eq(c,z|x)[log p(x|z)],

(11)
where KL refers to Kullback–Leibler divergence. The de-
tailed deviation of Eq. (11) is presented in our longer ver-
sion.

VPU-Classifier: Variational PU Classifier
To be able to leverage the component separation learned
from VPU-Calibrator for addressing P1 and P2, we first de-
rive an unbiased and rebalanced risk estimator. Then, we an-
alyze the disadvantage of this risk estimator, and design a
prior-free variational loss based on this risk estimator, which
is used to train our Bayesian classifier under the three chal-
lenging problems P1, P2, and P3 more effectively.

Unbiased and Rebalanced Risk Estimator. Combining
Eq. (3) and Eq. (4), the adjusted risk is:

R(Φ) = 1

2
(π′ + πPL)EpPL [ℓ+(Φ(x))]︸ ︷︷ ︸

classify PL samples

+
1− π′

1− πP
πUEpU [ℓ−(Φ(x))]︸ ︷︷ ︸

classify U samples

+
1

2
(π′ − πPL)EpPU [ℓ+(Φ(x))]−

1− π′

1− πP
πPUEpPU [ℓ−(Φ(x))]︸ ︷︷ ︸

classify PU samples

.

(12)

The detailed derivation of Eq. (12) can be found in our
longer version.

Obviously, this unbiased and rebalanced risk estimator
derived based on Eq. (3) and Eq. (4) is able to address the
data imbalance (P1) and selection bias (P2) problems. How-
ever, it highly depends on class priors that are often unavail-
able in reality.

Prior-Free Variational Classifier Learning. In order to
overcome the disadvantage of the unbiased and rebalanced
risk estimator, we first recall our insight that the three chal-
lenging problems can be unified as the positive distribu-
tion pollution problem. Then, we devise a prior-free varia-
tional classifier learning mechanism to supervise the clas-
sifie’s learning based on a variational loss, which measures
the difference between the polluted positive distribution and
the underlying positive distribution instead of measuring the

expection of estimation error. Such variational loss on top of
distribution is much more practical because it is prior-free.

Firstly, because Φ(·) is a Bayesian classifier, we choose
a trainable loss function ℓ+(Φ(x)) = − log(Φ(x)) and
ℓ−(Φ(x)) = − log(1−Φ(x)) in Eq. (12), and infer the pol-
luted positive distribution and the underlying positive distri-
bution based on Eq. (12) as:

pP(x) =
Φ∗(x)(1−π′)
π′(1−Φ∗(x)) pN(x), pΦ(x) =

Φ(x)p(x)
Ep[Φ(x)]

. (13)

Then, the approximation quality of the classifier Φ can
be evaluated by the KL divergence between pP and pΦ, i.e.,
KL (pP∥pΦ). The above analysis leads to Theorem 1.
Theorem 1. For all Φ : Rd 7→ [0, 1] with EP[Φ(x)] > 0,

KL (pP∥pΦ) = Lvar(Φ)− Lvar(Φ
∗), (14)

where Lvar(Φ) is the prior-free variational loss derived
based on Eq.(12) as

Lvar(Φ) = log((
π′ + πPL

2
)EpPL [Φ(x)]

+ (
π′ − πPL

2
)EpPU [Φ(x)] + (1− π′)EpN [Φ(x)])

− (
π′ + πPL

2π′ )EpPL [log(Φ(x))]− (
π′ − πPL

2π′ )EpPU [log(Φ(x))].

(15)

Since the KL divergence is always nonnegative, LRVI(Φ)
provides a variational upper bound of LRVI(Φ

∗), and mini-
mizing LRVI(Φ) equals narrowing pP and pΦ.

VPU-Collaborator
Despite the effectiveness of VPU-Calibrator and VPU-
Classifier, they are unable to process individually. Specifi-
cally, VPU-Calibrator requires a prior distribution with pa-
rameters πc that can be estimated from VPU-Classifier,
whereas VPU-Classifier needs the two components’ separa-
tion from VPU-Calibrator to complete the calculation of the
prior-free variational loss, i.e., Eq. (14). VPU-Collaborator
bridges the two modules based on our devised consen-
sus learning mechanism, which leverages the two modules’
positive consensus on the unlabeled data to calculate the
necessary information for the two modules and completes
CoVPU’s training process.

The overall training process is presented in Algorithm 1.
Specifically, VPU-Calibrator first separates the unlabeled set
into two components (Line 3) and constructs a positive class
predicted set X̃PU based on the Bayesian Classifier from the
unlabeled set XU (Line 4). Then, it selects the top J highest
confident samples, i.e., samples with the highest predicted
Φ(x), from X̃PU (Line 5). The component with more high-
confident samples is set to be the positive component. Then,
it constructs a pseudo positive unlabeled set X̂PU with a con-
sensus, i.e., samples that have positive class assignments and
positive component assignments simultaneously is supposed
to be positive unlabeled samples (Lines 6-10). After that,
CoVPU’s loss is calculated based on the sets X , XPL, and
X̂PU (Lines 11-12) for model update (Line 13). Finally, the
priors are estimated based on the Bayesian classifier accord-
ing to (Chen et al. 2020a) (Line 14). Note that we adopt the
same MixUp based regularization technique in (Chen et al.
2020a) to avoid overfitting.

8741



Algorithm 1: Training process of CoVPU
Input: datasets XPL and XU, number of query nodes

J , number of pretrain epochs T , rebalanced
class prior π′, imbalance ratio IR.

Output: VPU-Classifier Φ(x) for PU task.
1 Initial class prior πU = 1− IR

1+IR , π̂PU = π̂U
2 .

2 while not converged do
3 X 1

U ,X 2
U ← VPU Calibrator(π̂PU, πU,XU).

4 X̃PU ← VPU Classifier(XU).

5 X̃ high c
PU ← Top k(X̃PU, J).

6 X̃ 1,high c
PU ← X 1

U ∩ X̃
high c
PU , X̃ 2,high c

PU ←
X 2

U ∩ X̃
high c
PU .

7 if |X̃ 1,high c
PU | > |X̃ 2,high c

PU | then
8 X̂PU ← X 1

U ∩ X̃PU.
9 else

10 X̂PU ← X 2
U ∩ X̃PU.

11 Approximate Lvar by

L′
var = log(

(π′+πPL)
∑

x∈X̂PL
Φ(x)

2|X̂PL|
+

(π′−πP)
∑

x∈X̂PU
Φ(x)

2X̂ PU
+

(1−π′)
∑

x∈XU−X̂PU
Φ(x)

|XU−X̂PU|
)−

πPL
∑

x∈X̂PL
log(Φ(x))

π′|X̂PL|
−

(π′−πPL)
∑

x∈X̂PU
log(Φ(x))

π′|X̂PU|
.

12 Calculate LELBO according to Eq.(11).
13 Update CoVPU with loss L = −LELBO + L′

var.

14 Re-estimate π̂P =
∑

x∈X Φ(x)

|X | and
π̂PU = π̂P − IR

1+IR .

Theoretical Analysis: Estimation Error Bound
CoVPU’s effective variational mechanisms for addressing
the positive distribution pollution contributes to its asymp-
totic correctness as shown in Theorem 2, which ensures that
a classifier trained by the variational loss function in Eq.
(15) can approximate the optimal Bayesian classifier. De-
tailed proof can be found in our longer version.
Theorem 2. Provided that (1) there exists a set D ⊂ Rd s.t.∫
D pP(x)dx > 0 and Φ∗(x) = 1, ∀x ∈ D, (2) a classifier

is modeled as Φ(x) with parameters θ, and (3) there exists
θ∗ for the optimal Bayesian classifier Φ∗(x), then we can
conclude that Φ : Rd 7→ [0, 1] with supx Φ(x) = 1 satisfies
Lvar(Φ) = Lvar(Φ

∗) iff Φ = Φ∗.

Experiment
In this section, we present the extensive experiments to an-
swer the following question: Q1: How does CoVPU perform
when compared to the state-of-the-art PU learning methods?
Q2: How do CoVPU’s key components contribute to its per-
formance? Q3: How does CoVPU perform in addressing the
three challenging problems?

Experimental Settings
Dataset Descriptions. In experiments, we adopt two widely
used PU learning datasets, i.e., MNIST and Cifar10 (Kiryo

Dataset Class Prior Imbalance
Ratio Size

πP πPL πPU

MNIST 0.1000 0.0020 0.0980 0.0020 70,000
Cifar10 0.1002 0.0020 0.0982 0.0020 60,000

BankLoan 0.0337 0.0010 0.0327 0.0010 238,275

Table 1: Dataset descriptions.

et al. 2017; Su, Chen, and Xu 2021; Hu et al. 2021). Ad-
ditionally, we collect an industrial dataset, i.e., BankLoan,
which contains time series of loan events with disburse dates
between 2021/07/01 to 2021/08/31. The dataset statistics are
presented in Table 1. For data preprocessing, we chronologi-
cally split the time series in BankLoan with ratio 0.6/0.1/0.3
as train/validation/test dataset, and adopt the train/valida-
tion/test dataset splits as provided by the original datasets
for MNIST and Cifar10, which have been widely adopted
in PU leering studies (Kiryo et al. 2017; Su, Chen, and Xu
2021; Chen et al. 2020a). To create the PU learning datasets,
we select part of the positive data as positive labeled data
(see more details in our longer version).

Comparison Methods. Nine methods classified into four
groups and three ablation models are compared:

(1) Traditional PU: uPU (Plessis, Niu, and Sugiyama
2014) and nnPU (Kiryo et al. 2017) are two conventional
risk estimators based PU learning methods.

(2) PU for Data Imbalance Problem: ImbalancednnPU
(Su, Chen, and Xu 2021) and GenPU (Hou et al. 2018)
are two state-of-the-art rebalanced methods by oversampling
and generating data.

(3) PU for Selection Bias Problem: PUSB (Kato,
Teshima, and Honda 2019) and APU (Hammoudeh and
Lowd 2020) are two state-of-the-art methods to approximate
the selection biased positive distribution. VAE-PU (Na et al.
2020) is a state-of-the-art method to separate unbiased posi-
tive data from unlabeled one.

(4) PU for Prior Unavailability Problem: VPU (Chen
et al. 2020a) is a state-of-the-art method, which estimate
class prior based on a Bayesian classifier. PAN (Hu et al.
2021) is a state-of-the-art generative method without class
prior estimation.

(5) Ablation models: To investigate the effectiveness of
CoVPU’s key components, we compare CoVPUwith its sim-
plified variants. CoVPU-w/o-Rebalance refers to CoVPU
without the rebalanced risk estimation mechanism, which
means that the positive distribution is estimated based on
the very few labeled data merely. CoVPU-w/o-Calibrator
refers to CoVPU without VPU-Calibrator, which means that
it is unable to leverage the positive unlabeled data to approx-
imate the positive distribution. CoVPU-w/o-RVI refers to
CoVPU without the prior-free variational classifier learning
mechanism, which is provided with the ground-truth prior
values to estimate the true risk instead of the variational loss.

Evaluation Metrics. In our experiments, we adopt the ac-
curacy (Acc) and F1 score (F1) as evaluation metrics, which
are two popular metrics in PU learning (Na et al. 2020; Su,
Chen, and Xu 2021; Hu et al. 2021). By default, the reported
results are evaluated on test sets, and the mean and standard
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Categories Strategies MNIST Cifar10 BankLoan

F1 Acc F1 Acc F1 Acc

Traditional
PU

uPU 0.915 ± 0.005 0.983 ± 0.001 0.454 ± 0.038 0.887 ± 0.017 0.419 ± 0.012 0.945 ± 0.005
nnPU 0.947 ± 0.002 0.990 ± 0.000 0.480 ± 0.046 0.910 ± 0.006 0.422 ± 0.005∗ 0.954 ± 0.004

PU for Data
Imbalance Problem

ImbalancednnPU 0.955 ± 0.004∗ 0.991 ± 0.001 0.517 ± 0.007∗ 0.866 ± 0.022 0.421 ± 0.007 0.950 ± 0.003
GenPU 0.948 ± 0.027 0.992 ± 0.000∗ 0.482 ± 0.015 0.885 ± 0.016 0.393 ± 0.010 0.929 ± 0.006

PU for
Selection Bias

Problem

PUSB 0.945 ± 0.009 0.989 ± 0.002 0.445 ± 0.016 0.813 ± 0.016 0.405 ± 0.006 0.959 ± 0.001
VAE-PU 0.950 ± 0.005 0.990 ± 0.001 0.448 ± 0.012 0.802 ± 0.038 0.401 ± 0.002 0.959 ± 0.001

APU 0.935 ± 0.004 0.987 ± 0.001 0.450 ± 0.020 0.911 ± 0.002∗ 0.401 ± 0.200 0.908 ± 0.002

PU for Prior
Agnostic Problem

VPU 0.914 ± 0.006 0.983 ± 0.001 0.464 ± 0.024 0.876 ± 0.018 0.408 ± 0.020 0.957 ± 0.009
PAN 0.939 ± 0.008 0.988 ± 0.002 0.451 ± 0.015 0.881 ± 0.012 0.410 ± 0.011 0.961 ± 0.002∗

Ours

CoVPU 0.985 ± 0.008 0.993 ± 0.000 0.527 ± 0.005 0.916 ± 0.001 0.447 ± 0.001 0.987 ± 0.006
CoVPU-w/o-Rebalance 0.971 ± 0.003 0.987 ± 0.004 0.520 ± 0.003 0.825 ± 0.005 0.416 ± 0.046 0.942 ± 0.003
CoVPU-w/o-Calibrator 0.950 ± 0.003 0.989 ± 0.005 0.520 ± 0.014 0.819 ± 0.013 0.392 ± 0.002 0.931 ± 0.010

CoVPU-w/o-RVI 0.966 ± 0.005 0.990 ± 0.002 0.522 ± 0.007 0.825 ± 0.003 0.446 ± 0.005 0.988 ± 0.008

Improvement 1 3.141% 0.101% 1.934% 0.549% 5.924% 2.706%
p-value2 0.000 0.000 0.003 0.012 0.000 0.000

1
Improvement of CoVPU over the best-performing comparison methods.

2
Statistically not different from the best-performing comparison methods if p-value < 0.05 (p-value with paired t-test).

∗
Bold values & Star marked values represent the best & second-best results.

Table 2: Results of all methods (mean ± standard deviation, computed across 10 runs).

deviation values are computed from 10 independent runs.
On each of the 10 independent runs, we re-create the PU
learning datasets according to our data preprocessing.

Implementation Details. We implement CoVPU’s three
parts, i.e., VPU-Calibrator, VPU-Classifier, and the VPU-
Collaborator as follows. In the VPU-Calibrator, we use
the embedding network following (Kiryo et al. 2017) for
MNIST and Cifar10, and use LSTM with hidden dimen-
sion equals 32 as the embedding model for BankLoan as
the encoder. We use 1-layer fully connected neural networks
to encode the µv0 , σv0 , µz, and σz, respectively. We use
a 1-layer fully connected neural network with hidden di-
mension equals 2 as a planar transformation layer and stack
L = 3 planar transformation layers to transform v0 to vL.
The argmax transformation layer is based on the model pro-
posed in (Hoogeboom et al. 2021). We use a 4-layers fully
connected neural network (more specifically, 300-300-300-d
for MNIST, 500-500-500-d for Cifar10, and 32-32-32-d for
BankLoan, where d is the input feature dimension of each
dataset) as the decoder. In the VPU-Classifier, we use the
embedding network with a 1-layer fully connected neural
network as the VPU-Classifier network.

For hyperparameter settings. In our proposed CoVPU, we
set π′ to be 0.5 and J to be 20, and we tune all other hyper-
parameters through grid search. We also carefully tune the
hyper-parameters of all comparison methods through cross-
validation to achieve their best performance. We provide the
ground-truth class prior values to all the comparison meth-
ods that require the input of class prior.

For training details, we adopt Adam optimizer (Kingma
and Ba 2015) and tune the learning rate and weight decay
by a grid select in [10−2, 10−5] for all methods. We set the
batch size to 1024 for batch training. For the surrogate loss,
we utilize the logistic loss as the surrogate loss of the PU
classifier for uPU, NNPU, ImbalancednnPU, and APU, sig-
moid loss for VAE-PU, and logarithmic loss for PUSB, VPU
and CoVPU as recommended in their publications.

More implementation details are in our longer version.

Comparison with Baselines (for Q1)
We compare our proposed CoVPU to the comparison meth-
ods. The Acc and F1 results are presented in Table 2. In gen-
eral, Co-VPU achieves the highest Acc and F1 values with
average improvements of 1.118% and 3.666%, respectively,
over the best-performing comparison methods. Given that
CoVPU does not need class prior unlike most of the base-
lines, this is even more significant.

From the results, we can draw three conclusions. Firstly,
comparing CoVPU with imbalancednnPU and GenPU,
CoVPU achieves the highest Acc and F1 with average
improvements of 3.286% and 6.372%, respectively, be-
cause CoVPU adopts the VPU-Calibrator and the rebalance
risk estimation mechanism to effectively approximate posi-
tive distribution. Secondly, comparing CoVPU with PUSB,
VAEPU, and APU, CoVPU outperforms these methods, es-
pecially on the typical selection biased dataset BankLoan
with average improvements of 4.847% and 11.104%, re-
spectively, on Acc and F1. This is because CoVPU has a
more relaxed assumption and quality assurance on the ex-
ploited positive data. Thirdly, comparing CoVPU with VPU
and PAN, CoVPU outperforms VPU and PAN with average
improvements of 2.650% and 10.280%, respectively, on Acc
and F1, because CoVPU pays attention to the selection bias
problem and performs better than VPU and PAN in model-
ing positive distributions.

Ablation Studies (for Q2)
We conduct ablation experiments with three variants of
CoVPU. Results in Table 2 demonstrates three conclusions.

Firstly, CoVPU outperforms CoVPU-w/o-Rebalance with
average improvements of 5.472% and 25.639% on Acc and
F1, respectively. With the rebalanced risk estimator, CoVPU
is able to reweight the positive data reasonably for approxi-
mating the positive distribution effectively.
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Figure 3: t-SNE on (a) MNIST and (b) BankLoan.

Secondly, CoVPU outperforms CoVPU-w/o-Calibrator
with average improvements of 6.251% and 29.234% on Acc
and F1, respectively. Without VPU-Calibrator for calibrat-
ing positive distribution and extracting diverse positive data,
CoVPU-w/o-Calibrator is unable to rectify the distribution
deviation, thereby leading to poor performance.

Thirdly, CoVPU achieves comparable performance to
CoVPU-w/o-RVI, which replaces the prior-free variational
loss with prior-based risk estimator. The reasons for such re-
sults lie in two aspects: (1) CoVPU-w/o-RVI with the risk
estimator only cares about the “mean” of the estimation er-
ror. By contrast, CoVPU with variational loss considers a
different but more comprehensive perspective on top of the
polluted distribution, leading to a better guide for Bayesian
classifier learning; (2) CoVPU with variational loss delivers
better performance on handling datasets that satisfy the irre-
ducibility assumption, which has been widely adopted in PU
learning studies, i.e., the two-class distributions can be fully
separated. In the MNIST and Cifar10 datasets, positive sam-
ples contain only one class, which satisfies the irreducibil-
ity assumption, resulting in CoVPU’s outperformance over
CoVPU-w/o-RVI. As for the BankLoan dataset, although it
is naturally a binary classification dataset, it contains some
cases that dissatisfy the irreducibility assumption. For ex-
ample, in loan scenarios, there exist some well-camouflaged
defaulters with hard-distinguished distributions from benign
users. Therefore, CoVPU only achieves comparable perfor-
mance to CoVPU-w/o-RVI on this dataset.

Performance on Addressing Problems (for Q3)
For Data Imbalance Problem. Recall that CoVPU achieves
the highest Acc and F1 values on the three datasets over all
comparison methods as presented in Table 2. Combing the
data imbalance ratio presented in Table 1 and CoVPU’s su-
periority on all the three datasets, especially on BankLoan,
i.e., the most data imbalanced dataset with πPL being merely
0.1%, we can conclude that CoVPU can adapt to the data
imbalance scenario well.

For Selection Bias Problem. To verify the performance
of CoVPU in the selection bias scenario, we perform t-SNE
on the three datasets. Results on MNIST and BankLoan
are presented in Figure 3, and results on Cifar10 are pre-
sented in our longer version, in which markers with red,

(a) Cifar 10 (b) MYbank

Figure 4: F1 under varying class prior πP . Dense lines are
the average of 10 runs, and bars denote standard errors.

light blue, green, yellow, and dark blue colors represent pos-
itive labeled (PL), positive unlabeled (PU), accurately pre-
dicted positive (P), unrecognized positive (P), and mispre-
dicted positive (P) data, in sequence. From Figure 3, we can
draw two conclusions. Firstly, the red circles do not neces-
sarily cover the entire positive data, especially on BankLoan,
which is consistent to our analysis that the labeled data are
selected with bias. Secondly, CoVPU can correctly identify
potential positive samples, especially on BankLoan, demon-
strating its effectiveness in addressing selection bias.

For Prior Agnostic Problem. To verify the perfor-
mance of CoVPU in the prior agnostic scenario, we com-
pare the F1 achieved by CoVPU and the class prior
based methods, i.e., uPU, nnPU, ImbalancednnPU, GenPU,
PUSB, VAEPU, PAN, given class priors varying from
{0.8, 0.9, 1.0, 1.1, 1.2} × πP, where πP is the ground-truth
class prior. The results presented in Figure 4 demonstrate
two conclusions. Firstly, the prior-based PU learning meth-
ods are highly sensitive to the given class priors. Their per-
formances decay greatly even with a small deviation from
the real class prior. Secondly, CoVPU outperforms the PU
learning method even though they are provided with the ac-
curate class prior, which demonstrates the effectiveness of
CoVPU in addressing prior agnostic problem.

Conclusions and Future Work
In this paper, we first present an interesting insight that the
data imbalance, selection bias, and prior agnostic problems
in PU learning inherently originate from positive distribu-
tion pollution. Inspired by this insight, we then devise a
model named CoVPU, which addresses these problems si-
multaneously from a unified perspective. Rigorous theoret-
ical analysis proves the convergence of CoVPU. Extensive
experiments demonstrate the superiority of CoVPU over the
state-of-the-art methods. In the future, we plan to fully ex-
ploit CoVPU’s potential in more practical applications such
as disease diagnosis and cyberattacks detection.

Acknowledgements
This work was supported in part by the National Natural Sci-
ence Foundation of China (No.62172362), Leading Expert
of “Ten Thousands Talent Program” of Zhejiang Province
(No.2021R52001), and the cooperation project of MYbank,
Ant Group.

8744



References
Akujuobi, U.; Chen, J.; Elhoseiny, M.; Spranger, M.; and
Zhang, X. 2020. Temporal Positive-unlabeled Learning for
Biomedical Hypothesis Generation via Risk Estimation. In
Proc. of NeurIPS, 4597–4609.
Bekker, J.; and Davis, J. 2018. Estimating the Class Prior in
Positive and Unlabeled Data Through Decision Tree Induc-
tion. In Proc. of AAAI, 2712–2719.
Chen, H.; Liu, F.; Wang, Y.; Zhao, L.; and Wu, H. 2020a. A
Variational Approach for Learning from Positive and Unla-
beled Data. In Proc. of NeurIPS, 14844–14854.
Chen, X.; Chen, W.; Chen, T.; Yuan, Y.; Gong, C.; Chen, K.;
and Wang, Z. 2020b. Self-pu: Self boosted and calibrated
positive-unlabeled training. In Proc. of ICML, 1510–1519.
Dupret, G. E.; and Piwowarski, B. 2008. A user browsing
model to predict search engine click data from past observa-
tions. In Proc. of SIGIR, 331–338.
Hammoudeh, Z.; and Lowd, D. 2020. Learning from posi-
tive and unlabeled data with arbitrary positive shift. In Proc.
of NeurIPS, 13088–13099.
Hoogeboom, E.; Nielsen, D.; Jaini, P.; Forré, P.; and Welling,
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