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Abstract

Generalizing models trained on normal visual conditions to
target domains under adverse conditions is demanding in the
practical systems. One prevalent solution is to bridge the do-
main gap between clear- and adverse-condition images to
make satisfactory prediction on the target. However, previous
methods often reckon on additional reference images of the
same scenes taken from normal conditions, which are quite
tough to collect in reality. Furthermore, most of them mainly
focus on individual adverse condition such as nighttime or
foggy, weakening the model versatility when encountering
other adverse weathers. To overcome the above limitations,
we propose a novel framework, Visibility Boosting and Logit-
Constraint learning (VBLC), tailored for superior normal-to-
adverse adaptation. VBLC explores the potential of getting rid
of reference images and resolving the mixture of adverse con-
ditions simultaneously. In detail, we first propose the visibil-
ity boost module to dynamically improve target images via
certain priors in the image level. Then, we figure out the over-
confident drawback in the conventional cross-entropy loss for
self-training method and devise the logit-constraint learning,
which enforces a constraint on logit outputs during training
to mitigate this pain point. To the best of our knowledge, this
is a new perspective for tackling such a challenging task. Ex-
tensive experiments on two normal-to-adverse domain adap-
tation benchmarks, i.e., Cityscapes — ACDC and Cityscapes
— FoggyCityscapes + RainCityscapes, verify the effective-
ness of VBLC, where it establishes the new state of the art.
Code is available at https://github.com/BIT-DA/VBLC.

Introduction

The past few years have witnessed predominance of deep
learning based methods in fundamental vision tasks, where
scene understanding under extreme vision conditions has
been attracting substantial research interest (Ma et al. 2022;
Sakaridis, Dai, and Gool 2022). In many outdoor applica-
tions, adverse weather conditions are frequently encoun-
tered, causing poor visibility and performance degradation.
For a safer, smoother operating environment, a desirable
perception system should be trustworthy under a wide va-
riety of scenarios (Zhang et al. 2021b; Sakaridis, Dai, and
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Nighttime Mixture of adverse weather conditions

(a) Individual adverse-
condition adaptation

(b) Hybrid adverse-condition adaptation

Figure 1: Problem comparison. (a) Individual adverse-
condition adaptation: reference images (shown in the red
box at bottom right corner) depicting a similar scene are
leveraged as an intermediate domain to assist in a spe-
cific adverse condition, e.g., nighttime or foggy. (b) Hybrid
adverse-condition adaptation: the mixture of images from
multiple adverse conditions are used without any reference.

Van Gool 2021). But, existing studies are mostly centered
around datasets consisting of clean images, yet ignore the
challenge of driving in varying adverse weather conditions,
making them vulnerable in practice. Meanwhile, it is im-
plausible to collect a dataset that fully reflects all situations
and then separate data into discrete domains, since the visual
appearance changes overtime and depends on the specific lo-
cation, season and many other factors, all of which introduce
a natural domain shift between any training (source) and test
(target) distributions.

Accordingly, the emergence of more robust models for
adverse conditions is vital to paving the way for their real-
world utility. Unsupervised domain adaptation (UDA) is an
alternative method (Ganin et al. 2016; Tzeng et al. 2017;
Long et al. 2018; Liu et al. 2020; Park et al. 2020; Li
et al. 2022) to adapt models trained with well-labeled clear
(source) images to adverse (target) images without access to
target annotations. Until now, nighttime image segmentation
and foggy scene understanding are two mainstream tasks.
Given the difficulties of both specific problems, a great deal
of works, such as (Sakaridis, Dai, and Gool 2022; Dai et al.
2020; Wu et al. 2021; Ma et al. 2022), are carefully designed
and highly customized, with the significant prior knowl-
edge, e.g., additional clear-condition images. In Fig. 1(a),



reference images (red boxes), depicting the similar scenes
in correspondence with adverse images, are meant to boost
segmentation performance. Unfortunately, it is no picnic to
gather exactly paired images in the rapidly changing driving
scenes. On the other hand, such a clear and specific distinc-
tion among adverse conditions is hard to define, e.g., test
images are continually varying, which could be collected in
composite conditions.

Driven by the above analysis, we advocate a new ap-
proach without extra clear images for reference, dubbed as
Visibility Boosting and Logit-Constraint learning (VBLC).
It’s worth noting that, this setting is generally regarded as
under-constrained, making it quite difficult and rarely re-
searched into. Take it a step further, we concentrate on a
much more practical scenario where input images feature a
hybrid of adverse conditions, i.e., low-light and flare charac-
teristics of nighttime, veiling effects formed by heavy rain,
dense foggy, snow, and so on (see Fig. 1(b)).

To begin with, we introduce the visibility boost mod-
ule in the input space to close the gap between normal-
and adverse-condition images without the reliant on normal-
adverse image pairs for reference. The absence of such weak
supervision urges us to make the most of the priors as a re-
placement. We provide a saturation-based prior to adaptively
heighten the visibility of incoming images. On top of that,
boosted images are incorporated during training to bridge
the immense gap brought about by adverse conditions.

Second, for the self-training schemes prevailing in UDA,
we observe the insufficient exploitation of predictions on
unlabeled target samples for fear of overconfidence (Wei
et al. 2022). To resolve this, we further propose the logit-
constraint learning to relieve the stringent demand on the
quality of pseudo labels. Through gradient analysis, we
demonstrate that the constraint on logits can slow down the
trend towards overconfidence and capitalize on predictions.

Eventually, we show that VBLC establishes state-of-the-
art performance on two challenging benchmarks. Compared
to the current SOTA method, VBLC improves the rela-
tive performance by 8.9% and 4.9% (mloU) on Cityscapes
— ACDC and Cityscapes — FoggyCityscapes + RainCi-
tyscapes, respectively. We summarize contributions below:

* We tackle a more realistic and challenging task of do-
main adaptive semantic segmentation under adverse con-
ditions without the aid of extra image counterparts to
form a clear-adverse pair.

* We desire to fill the blank through making adjustments at
both ends of the network. The visibility boost module is
proposed to narrow the visibility gap in the input space,
while the logit-constraint learning is included in the out-
put space to handle the overconfidence issue.

* We justify the effectiveness of our VBLC and explore the
mechanism behind its success via extensive experiments.

Related Work

Normal-to-Adverse Domain Adaptation. Domain adap-
tation has been well investigated in both theory (Ben-David
et al. 2010) and practice (Wang and Deng 2018). Here, we
are particularly interested in semantic segmentation task.
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Adversarial training is the most examined method that nar-
rows the domain gap via style transfer (Hoffman et al. 2018)
or learning indistinguishable representations (Tsai et al.
2018; Vu et al. 2019; Kim and Byun 2020). Recently, self-
training methods turn to pseudo labels to acquire extra su-
pervision, reaching better performance. Advanced practices
are to improve the quality of pseudo labels (Zou et al. 2018,
2019), stabilize the training process (Tranheden et al. 2021;
Hoyer, Dai, and Gool 2022), or utilize auxiliary task (Wang
et al. 2021a; Xie et al. 2022).

Despite the rising interest in developing domain adapta-
tion models, existing works mostly concentrate on handling
domain shifts introduced by the limitations of scene synthe-
sis or by visual differences due to the variation in shoot-
ing locations. Considerably fewer attempts have been made
to mitigate the shifts posed by adverse conditions, which is
especially critical in reality (Sakaridis, Dai, and Van Gool
2021; Liu et al. 2022). Equipped with abundant data from
various domains, several methods resort to curriculum-based
schemes to realize a progressive adaptation towards a dis-
tant target domain (Wulfmeier, Bewley, and Posner 2018;
Sakaridis et al. 2018). The dilemma of this scheme is that
manually assigned intermediate domains may be suboptimal
or arduous to design. Another promising direction is to make
the best of the corresponding image pairs in dataset. Ma et al.
(2022) decouple style factor, fog factor and dual factor to
cumulatively adapt these three factors. Alternatively, pixel-
level warping is employed to benefit the prediction of static
classes (Wu et al. 2021), enable multi-view prediction fu-
sion (Sakaridis, Dai, and Gool 2022), or guide the subse-
quent label correction (Bruggemann et al. 2022).

In general, the above methods require corresponding clear
images, while the setting excluding image correspondences
has rarely been explored. In this work, we are capable of
addressing arbitrary adverse conditions without leveraging
such weak supervision for adaptation.

Multi-Target Domain Adaptation/Generalization. The
goal is to extend domain adaptation to multiple target do-
mains, which is relevant to our work. Works in this field
usually employ domain transfer (Lee et al. 2022), knowledge
distillation (Isobe et al. 2021), curriculum learning (Liu et al.
2020) or meta-learning (Gong et al. 2021) to bootstrap gen-
eralization across domains. To name a few, Park et al. (2020)
decompose a hard problem into multiple easy single-target
adaptation problems. Lee et al. (2022) perform style trans-
fer in the input space and utilize a direct adaptation strategy
towards multiple domains. Our approach differs from these
methods in the way we treat the target samples, where im-
ages under widely varied adverse scenarios are viewed as a
mixture of multiple domains, and domain labels in the test
set are unavailable.

Poor Visibility Image Enhancement. There is a signif-
icant body of works whose goal is increasing image visi-
bility. Research interest in the mechanism of haze forma-
tion (McCartney 1976) has emerged long before the neural
nets prevail. Since then, numerous conditions featuring poor
visibility are described including low-light (Land 1977),
fog (Narasimhan and Nayar 2003), rain (Li, Cheong, and
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Figure 2: Overview of VBLC. Our framework enhances the capability of self-training schemes at both ends of the pipeline. In
the input space, the visibility boost module is incorporated to ameliorate target images and generate more reliable pseudo labels.
In the output space, the specialized logit-constraint learning is devised to conquer the erroneous prediction brought about by
tremendous domain gap. Together with slight modifications to the training scheme, a simple, competitive approach is proposed.

Tan 2019), and snow (Chen et al. 2020). Subsequent deep
learning-based works either alleviate the burden of hyperpa-
rameter tuning via a neural net (Liu et al. 2022), or leave pri-
ori factors completely behind and rely on neural nets to au-
tomatically adapt to different physical models (Valanarasu,
Yasarla, and Patel 2022). Despite these efforts, they always
need paired images that are hard or even impossible to ac-
quire due to the dynamic scenes in reality, to cater to network
optimization. By contrast, we only utilize the single image
with poor visibility and manage to design a dynamic module
as a substitute for the manual tuning process.

Method

Given source images with pixel-level annotations from a
normal-condition source domain S (e.g., good weather, fa-
vorable illumination), and unlabeled target images from an
adverse-condition target domain 7 (e.g., nighttime, fog,
rain, snow, etc.), the goal is to predict high-quality segmenta-
tion maps for the target domain. Note that the target domain
described above could turn out to be a combination of sev-
eral domains, but we blur their boundaries and regard them
as featuring diversity in a single target domain.

The full pipeline of our method is illustrated in Fig. 2.
Overall, it contains two major parts: (i) a basic framework
that is composed of a teacher model for pseudo-labeling and
a student model for online learning; (ii) two dedicated mod-
ules which encourage reducing domain differences in imag-
ing conditions and output configurations. In the following,
we provide a detailed description of visibility boost mod-
ule as well as logit-constraint learning. After that, the over-
all optimization and algorithm are introduced.

Visibility Boost Module (VBM)

Previous methods generally utilize the normal-adverse im-
age correspondences, which may put stress on data collec-
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tion and annotation. Here, we merely exploit the images
under adverse conditions in the target domain. At first, an
appropriate prior should come in place to break out of the
dilemma, and the atmosphere scatter model (ASM) (Nayar
and Narasimhan 1999; Narasimhan and Nayar 2003) is a
powerful candidate to describe haze formation:

I(z) = J(x)t(z) + A1 = t(z)), 1

where I(x) is the observed hazy image, J(x) is the scene
radiance, namely restored image, and A is the atmospheric
light estimated globally. ¢(x) represents the transmission
map describing the portion of light that survives scattering
and reaches the camera. It is represented as: t(z) = e~ #4(®),
where £ is the scattering coefficient and d(z) denotes pixel-
wise scene depth. As depicted in (Li, Cheong, and Tan
2019), the vanilla ASM can already model the veiling effect
usually observed in fog, heavy rain, or even snowy scenes.

We consider such effect as the major obstacle lying in the
way to a clear vision, and intend to alleviate the problem in
an adaptive way. Motivated by (He, Sun, and Tang 2009; Liu
et al. 2022), we propose the visibility boost module (VBM)
to ameliorate images in various adverse conditions. We esti-
mate the atmospheric light A from the 1,000 brightest pixels
in the image, and the transmission map can be given as:

Ic(y)) 7

Ac
where ¢ € {r, g,b} is the color channel and Q(z) is the lo-
cal patch surrounding position x. To make the restored im-
age more natural in appearance, we further devise a non-
parametric coefficient wy to control the dehaze extent. Here-
after, the ¢(x) is reformulated as

where w; is an adaptive coefficient for transmission modu-
lation. Through observation, it can be summarized that the

(@)

t(z) =1 — min ( min
c yeQ(x)

I°(y)
Ac

3

t(z) =1 — ws min ( min
c yeQ(x)



images with veiling effect tend to be gray and dull, which
can be approximately described as low saturation. On the
contrary, the images with clear vision can be more vivid
and colorful, resulting in greater saturation. By introducing
this coefficient, the restored appearance can be constrained
to some extent. To be precise, wy is dynamically calculated
from the mean value of saturation mean, within an image:

“

where +y is a scaling factor that is experimentally fixed to 4.0.
And meang is calculated by:

—meangs Xy

Wg = € s

C
1 mcax Ih,w -

HwW
h,w

: (&
min If,

means =

; &)

c
max I,

where H, W are height and width of the image I, and I}, ,,

is the ¢! color channel of the pixel indexed (h,w) in 1.
However, one exception is the nighttime condition. Luck-
ily, as claimed by Zhang et al. (2012), the reverted low-light
images can be viewed as hazy images. Thus, we addition-
ally add a pair of Inverse Switch to extend VBM to low-light
condition, by which only night images are inverted and other
types of images remain unchanged. We formulate this as:

1—I(z) = (1 — J(2)t(z) + A1 — t(x)). ©)

With conditional inversion, one can handle all cases with-
out modifying the core procedure of visibility enhancement.
Note that Eq. (3) may seem close to the ones proposed
in (He, Sun, and Tang 2009) and (Liu et al. 2022), but is
different as it is neither manually tuned for each image nor
reliant on paired image to learn a parameter. Actually, the
scale factor +y is globally assigned, and then the coefficient
ws can dynamically adapt to different images.

The complete pipeline of VBM is illustrated in the left of
Fig. 2. For an arbitrary adverse-condition image, we first de-
cide the application of Inverse Switch according to its light-
ing condition, and the mean saturation value mean; is ex-
tracted form the original/inverted image. After that, the co-
efficient w; is yielded by Eq. (4), which is then used to per-
form transmission modulation in Eq. (3). The image is then
enhanced by ASM. Another Inverse Switch is applied in par-
allel with the aforementioned one. Through the above pro-
cess, visibility enhanced target images can be obtained.

Logit-Constraint Learning (LCL)

In the literature, it is almost common practice to combine the
self-training strategy with cross-entropy (CE) loss for both
source and target samples (Zou et al. 2019, 2018; Tranheden
et al. 2021; Xie et al. 2022). For simplicity, we take a pixel
as an example, whose CE loss is formulated as follows:

K

- Zyk log(px), where p; =
k=1

e
7
5—1 €%k

»Cce =

where K represents the number of classes, y is a one-hot
ground-truth (pseudo) label, p; is the probability for the i*"
class, and z; is the i*" element of the logit output.

As we all known, the CE loss forces predictions to re-
semble the corresponding one-hot labels, which makes it ef-
fective for supervised training paradigms. However, when
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it comes to unlabeled target samples, this characteristic can
be a mixed blessing: reliable pseudo labels can compensate
the deficiency of ground-truth labels, but erroneous pseudo
labels can be catastrophic as a strong supervision. Exist-
ing self-training methods are well aware of such risk, and
have attempted to address the issue through loss reweight-
ing (Olsson et al. 2021; Tranheden et al. 2021), confidence
thresholding (He, Yang, and Qi 2021), or pseudo label re-
finement (Zhang et al. 2021a). Nevertheless, these methods
either generate pseudo labels regardless of their confidence,
or just ignore the pixels under the threshold of confidence
policy, failing to make the most of precious predictions. Fur-
thermore, in the task of normal-to-adverse adaptation, trust-
worthy predictions can be rather scarce, thus blindly ignor-
ing the unconfident pixels will result in low data efficiency.

To address this issue, we seek to push the utilization of
model prediction to a new height through the enhancement
of loss term, for its close relation with predictions. As the
unconfident samples are promising providers of extra infor-
mation, we contend that inter-class relationship within the
prediction of a pixel should be emphasized. When taking the
derivability into consideration, £2-norm is an ideal candidate
as it does link all elements in an equal manner. Therefore, we
integrate the ¢s-norm into the original CE loss as an expan-
sion, forming a new logit-constraint learning loss:

K =i/l
Lo = — log(p}), where pf = — (8
! ;yk 2(pr) P S ol ®
where || - || means ¢5-norm. The name logit-constraint learn-

ing comes from the fact that every logit element is rescaled
by dividing the norm term, whose optimization is thus con-
strained by the other elements constituting the logit. We will
theoretically reveal the inter-class constraint through gradi-
ent analysis in the following part.

Gradient Analysis. It’s worth mentioning that this new
loss function is not confined to the confident portion of pre-
dictions, but can be applied to unconfident predictions with
a unified form. To justify our claim, let’s take a closer look
at the gradient during back-propagation. For the vanilla CE

loss, the gradient of loss to the j** logit element is:

0L _
9z =D

Just as discussed above, this gradient merely narrows the gap
between the prediction and the corresponding label, mak-
ing it inevitable to ruin the prediction if a wrong label is
given. On the contrary, the gradient of our proposed logit-
constraint learning loss to the j*" logit element is:

0L 1

= . 10
9z |||< > 1o

In this formula, the gradient is made up of two parts. The
former part is essentially identical to the gradient of vanilla
CE loss, while the latter part undoubtedly reflect the con-
nection built across different classes. More derivations can
be found in the Appendix.

Let us analysis the gradient from both confident and un-
confident conditions. Assuming the prediction is confident,

then the coefficient of the second term, namely HZTJH * ﬁ,

— Y- (C)]

K

A

k=1




should be relative small except for £k = j, and the gradient
can be approximate to

1 * Zj N2y *
(6= - (Zrei-w) . ay
If there is space left for optimization, i.e., z; < ||z|, this
term is still capable of providing gradient; otherwise, the
gradient degrades to zero and the optimization stops. When
confronted with unconfident predictions, the coefficient of
the second term would be relatively larger for all classes
whose prediction py, is close to that of p;, given that z is
directly related to p, thus reducing the gradient and slowing
down the optimization towards the assigned pseudo label.

In a nutshell, the above gradient analysis not only reflects
the ability of logit-constraint learning to follow the guid-
ance of confident pseudo label, but highlights its potential
to explore the knowledge hidden in unconfident predictions
without fear of overconfidence.

Overall Optimization

During the training stage, images from both source and
target domains are first randomly sampled, i.e., I5,I; €
RH*W>3 respectively. The target image is then passed into
visibility boost module to obtain boosted target image I,

with better visibility. Subsequently, the pseudo label Y; of
I, is predicted from the teacher model ®’. Next, both orig-
inal target image and boosted one are separately mixed up
with the source image using Classmix (Olsson et al. 2021)
for online learning. The blended images are noted as I
and Ipgs, which are then passed through the student model
P to get logit outputs Z;q,5 and Zyg s, respectively. And they

share the same mixed label Y;q, that is mixed up between

source ground-truth label Y and target pseudo label Y},. Be-
fore participating in the final loss calculation, logits are pro-
cessed through channel-wise norm and softmax function to
get the final prediction maps Py, Pjo o, Pyo .. Eventually, for
any image, the logit-constraint learning loss is given by:

1

K
_ﬁ Z}/h,w,k 10g Pf:w.,k7

h,w k=1

Lie(Y,P") = 12)

where H, W are height and width of an input image, Y},
is the k' element in a one-hot label of pixel indexed (h, w),
and Py, is the corresponding pixel-level prediction.

For the source data, we have L7, = L;.(Ys, P}). For
the target data, a quality estimation is produced for the
pseudo labels following Tranheden et al. (2021). Here an
adaptive weight A\s is calculated from the proportion of
confident pixel-level predictions (maxy Py, , > 0) and

weighted on losses involving target images. Subsequently,
the losses for blended images Iigs, [pgs can be respec-

tively computed as £}7° = \sLi(Yoaws, Pi,) and L50
Agﬁlc(ffb@s, Pj,)- Overall, the training objective can be
formulated as:

min L+ L% + b (13)

By default, loss weighting coefficients are set to 1.0. For a
detailed schedule, please refer to Alg. 1 in the Appendix.
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Experiments

In this section, we assess the effectiveness of VBLC under
several adverse conditions. For each task, we first give a
brief introduction to the datasets and architectures involved.
Following up are experimental results and insight analyses.
Limited by space, more details are left for the Appendix'.

Normal-to-Adverse Domain Adaptation

Datasets and Architectures. We first take out the experi-
ments on two challenging semantic segmentation tasks, i.e.,
Cityscapes (Cordts et al. 2016) — ACDC (Sakaridis, Dai,
and Van Gool 2021) and Cityscapes (Cordts et al. 2016)
— FoggyCityscapes (Sakaridis, Dai, and Van Gool 2018) +
RainCityscapes (Hu et al. 2019). We further testify the gen-
erality of VBLC by performing object detection on the lat-
ter. Among these tasks, Cityscapes (source domain) serves
as a collection of clear images, while images from other
datasets (target domain) all feature degraded visibility to
some extent. For this part, we experiment on both CNN-
based DeepLab-v2 (Chen et al. 2017) and Transformer-
based SegFormer (Xie et al. 2021) to give a whole picture
of the segmentation quality of our method. As to object
detection task, following Wang et al. (2021b), Deformable
DETR (Zhu et al. 2021) is adopted as the basic architecture.

For semantic segmentation task, we utilize per class
Intersection-over-Union (IoU) (Everingham et al. 2015) and
mean IoU (mloU) over all classes as an evaluation. For ob-
ject detection task, we report the standard average precision
(AP) result under different IoU thresholds and object scales.

Experimental Results. The comparison of our VBLC to
relative methods on Cityscapes — ACDC segmentation task
is listed in Table 1. Generally, the SegFormer-based methods
substantially outperform the DeepLab-based ones. The pre-
vious state-of-the-art method built on DeepLab-v2 is FDA
with a mloU of 45.7%, but our VBLC takes a step fur-
ther and achieves 47.8% mloU, gaining a large boost of
+2.1% and could even rank among the SegFormer-based
counterparts. When integrated with the stronger backbone,
VBLC still yields a leading result of 64.2% mloU, outper-
forming DAFormer by a huge margin of +8.9%. We also
provide qualitative semantic segmentation results in Fig. 3.
We can observe clear improvement against both Source-only
and state-of-the-art adaptation (DAFormer) models, espe-
cially in the prediction of sky, light, and sign.

Table 2 shows the segmentation results on Cityscapes
— FoggyCityscapes + RainCityscapes. Due to slight do-
main shift, outcomes of the Source-only models are already
high, however, our VBLC is still capable of providing con-
sistent performance gain, surpassing DeepLab-v2 and Seg-
Former by +13.0% mloU and +8.8% mloU, respectively.
This complementary experiment explores the robustness of
our VBLC on tasks containing synthetic datasets, and proves
the scalability of the proposed modules.

To showcase the flexibility of VBLC, we further com-
bine it with state-of-the-art UDA detection methods (Wang

! Appendix can be found at https:/arxiv.org/abs/2211.12256



Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mloU
DeepLab-v2 71.9 26.2 51.1 18.8 225 19.7 33.0 27.7 67.9 28.6 44.2 43.1 22.1 71.2 29.8 33.3 484 262 35.8 38.0
AdaptSegNet 69.4 34.0 52.8 13.5 18.0 43 149 9.7 64.0 23.1 38.2 38.6 20.1 59.3 35.6 30.6 53.9 19.8 339 334
ADVENT 729 143 405 16.6 212 93 174 21.2 63.8 23.8 183 32.6 19.5 69.5 36.2 345 46.2 269 36.1 32.7
BDL 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 384 377
CLAN 79.1 295 459 18.1 21.3 22.1 353 40.7 67.4 29.4 32.8 42.7 185 73.6 42.0 31.6 55.7 254 30.7 39.0
CRST 51.7 244 67.8 133 9.7 30.2 38.2 34.1 58.0 25.2 768 399 17.1 654 37 6.6 396 11.8 86 328
FDA 73.2 34.7 59.0 24.8 29.5 28.6 43.3 449 70.1 28.2 54.7 47.0 285 74.6 44.8 523 63.3 283 395 457
DACS 58.5 34.7 76.4 209 22.6 31.7 32.7 46.8 58.7 39.0 36.3 43.7 20.5 72.3 39.6 34.8 51.1 24.6 382 412
VBLC 49.6 39.3 79.4 358 29.5 42.6 57.2 57.5 69.1 42.7 39.8 54.5 29.3 77.8 43.0 36.2 32.7 38.7 534 47.8
SegFormer 669 25.8 71.3 20.9 222 41.1 47.2 46.6 742 449 75.6 50.4 23.5 73.1 30.3 36.8 55.8 294 37.1 459
DAFormer  56.9 45.4 84.7 44.7 35.1 48.6 44.8 574 69.5 52.9 458 57.1 282 82.8 572 639 84.0 40.2 50.5 553
VBLC 89.2 59.8 859 44.0 37.2 53.5 64.5 63.2 72.4 56.3 84.1 65.5 37.7 85.1 60.1 71.8 85.2 47.7 56.3 64.2

Table 1: Comparison with the state-of-the-arts on Cityscapes — ACDC semantic segmentation task.

IoU score of each class

and the mloU score are reported on ACDC testing set. The bests results are highlighted in bold.

Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mloU
DeepLab-v2 96.7 72.4 74.1 28.6 414 422 49.8 67.6 72.6 62.5 80.6 70.4 544 88.4 56.1 72.4 3377 427 70.1 619
FDA 87.0 569 82.1 43 11.6 36.3 41.8 604 80.6 51.6 70.6 66.7 50.3 86.0 46.4 63.7 262 414 663 542
DACS 97.9 823 88.7 40.8 42.4 41.0 53.5 67.3 89.2 58.2 90.8 70.8 54.4 91.3 629 825 564 47.0 724 679
VBLC 98.6 86.9 87.2 62.1 55.3 54.2 65.1 77.8 869 66.8 90.1 77.5 63.2 93.7 77.3 86.6 550 594 79.5 74.9
SegFormer 97.8 81.6 86.9 54.3 483 49.2 57.3 71.6 86.9 655 834 719 57.1 91.8 679 80.1 73.1 499 74.6 71.0
DAFormer 98.5 87.0 90.8 55.1 53.7 56.3 62.8 73.6 91.5 70.7 90.0 75.6 56.8 92.7 659 883 799 569 77.6 749
VBLC 98.7 88.4 91.9 66.3 65.2 62.7 69.1 79.6 92.2 72.4 92.3 80.0 66.0 94.6 79.9 90.9 81.8 64.0 80.6 79.8

Table 2: Comparison with the state-of-the-arts on Cityscapes — FoggyCityscapes + RainCityscapes semantic segmentation
task. IoU score of each class and the mloU score are reported. The bests results are highlighted in bold.

Method AP APso AP75 APs APy APL
Deformable DETR 13.4 22.7 134 34 17.0 26.8
SFA 143 246 146 42 174 282
SFA + VBLC 15.6 26.0 164 5.2 17.8 30.9

Table 3: Comparison with the state-of-the-arts on Cityscapes
— FoggyCityscapes + RainCityscapes object detection task
with Deformable DETR (Zhu et al. 2021).

et al. 2021b) on Cityscapes — FoggyCityscapes + RainCi-
tyscapes object detection task. To be specific, images from
the target domain is first boosted with the designed visibil-
ity boost module, which performs coarse alignment between
normal and adverse conditions. Then, the logit-constraint
learning is integrated with class prediction. And the results
are reported in Table 3. We can observe that VBLC boosts the
performance of SFA by a substantial 1.3 AP, validating that
our method can indeed generalize well under the variation
of weather conditions, both for segmentation and detection.

Multi-Target Domain Adaptation

Datasets and Architectures. Now we turn to multi-target
domain adaptation (MTDA), adapting from Cityscapes to
IDD (Varma et al. 2019) and Mapillary (Neuhold et al.
2017). All datasets are captured in reality without specific
inclusion of images under adverse conditions. We investi-
gate this as a special case and compare our VBLC with other
well-established MTDA methods. All methods mentioned in
this part are built on DeepLab-v2 for a fair comparison.
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# Class Method IDD(mloU) Mapillary(mloU) Avg. mloU

MTKT 68.3 69.3 68.8
7  ADAS 70.4 75.1 72.7
VBLC 73.9 71.7 72.8
CCL 53.6 51.4 52.5
19 ADAS 48.3 53.6 50.5
VBLC 52.9 57.8 55.3

Table 4: Comparison with the state-of-the-arts on Cityscapes
— IDD + Mapillary semantic segmentation task. mloU
score of each domain and their average are reported.

Experimental Results. In accordance with previous at-
tempts, we report the segmentation results on Cityscapes —
IDD + Mapillary with both 19 classes and 7 super classes
settings in Table 4. On either of both, VBLC takes the lead
regarding the average mloU over two target domains, attain-
ing 55.3%/72.8% mloU for 19/7 classes, respectively. Note
that VBLC neither intends to deal with MTDA directly nor
to enforce the explicit dispersion of multiple target domains,
yet is still comparable to specially designed counterparts.

Ablation Studies

The Effect of Each Component on Cityscapes — ACDC.
We report the contribution of each component in Table 5.
The first line presents the Source-only (SegFormer) model
trained only on Cityscapes, which serves as the baseline
with 45.9% mloU. When combined with conventional self-

training on source-target blended image (L!?*), the perfor-



DAFormer

Image

SegFormer

Rain Night Fog

Snow

Figure 3: Visualization of segmentation results on ACDC
validation set. From left to right: target images under dis-
tinct adverse conditions, results of SegFormer, results of
DAFormer, results of our VBLC, and ground-truth labels.

Method |[VBM| LS, £E2° £08°|c5, £19° £7%%]  mloU

Src-only| | v | | 459
v v 52.6 (6.71)
Ours v | v Y v 57.0 (4.41)
v |V v v 163.2(6.21)
v v v v 164.2 (1.01)

Table 5: Ablation study on Cityscapes — ACDC semantic
segmentation task.

mance is significantly boosted with a gain of +6.7% mloU,
validating the huge potential of self-training scheme.

Next, the visibility boost module (VBM) is integrated to
ease the generation of pseudo labels. Concretely, we utilize
the prediction of boosted target image from teacher model to
guide both original and boosted target images. A moderate
improve of performance can be witnessed in this process,
and we attribute this to the fact that prediction of boosted
target images are appropriately constrained (VBM + L29%).

The penultimate line highlights the power of our logit-
constraint learning, which further brings a substantial in-
crease of +6.2% mloU, leading to a competitive perfor-
mance of 63.2% mloU (Lféﬁs + E;’?S). Finally, we also
apply the logit-constraint learning to the source domain,
and obtain a bonus of +1.0% mloU (£;,), yielding the ul-
timate score of 64.2% mloU. In summary, we can learn that
VBLC mainly enhances the performance from two critical
aspects, i.e., visibility boost and logit-constraint learning.

Analysis on £;.. In Fig. 4, we visualize confidence dis-
tributions from models trained by vanilla CE loss (L..) or
logit-constraint learning loss (L;.), on ACDC validation set.
We opt to adopt max softmax as the confidence, without test-
time logit constraint for a fair comparison. The left chart
shows confidence distribution on the whole validation set.
We can observe that, the model trained with L., tends to
be confident with a majority of predictions, while the one
trained with £;. remains skeptical to a handful of them. In-
deed, the £, allows the coexistence of especially confident
predictions and rather unconfident ones, which is in line with
our analysis. The right chart, on the other hand, illustrates
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Figure 4: Confidence distribution over all (left chart) or er-
roneous (right chart) predictions on ACDC validation set.
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Figure 5: The loss surfaces of models trained with £.. and
Lic. Our L. is more advanced for parameter optimization.

the confidence distribution on erroneous predictions only.
This chart further reflects whether the predictions are over-
confident. Obviously, predictions from the model trained
with L., is much unreliable, as higher confidence could in-
dicate greater error rate. By contrast, the model trained with
L. seldom predicts wrong with a high confidence, showing
its strong capacity to mitigate overconfidence.

Loss Landscape Visualization. To delve into the opti-
mization potential of logit-constraint learning, we plot the
loss landscape (Li et al. 2018) of models train with L., or
L in Fig. 5. The figures are drawn from loss variation with
model parameter perturbation, and the statistics is collected
on the whole target train set with ground-truth labels. It is
clear that the model trained by L;. is able to achieve much
lower loss in regions where that trained by L., remains con-
fused. Furthermore, our £;. expands the model’s potential
to pursue superior prediction quality on the target domain,
as is illustrated by the blue region featuring minor error.

Influence of Hyperparameters. We traverse hyperparam-
eters (pseudo threshold 4, scaling factor y, and momentum-
update ratio «v) around their optimal values [6*, v*, a*]. Re-
sults are provided in the Appendix, in which we observe that
VBLC is much less sensitive to its hyperparameters.

Conclusion

In this paper, we propose VBLC, an new framework espe-
cially designed for better normal-to-adverse adaptation, to
explore the possibility of getting rid of reference images.
This method contributes in both input and output space to
enable an improved prediction quality even in poor visibil-
ity scenarios. This simple yet effective approach provides
the best of both worlds: visibility boost module dynamically
ameliorates incoming images via certain priors, while logit-
constraint learning relieves the pain of overconfidence in the
self-training paradigm. Our method can be trained end-to-
end in one stage, leading to considerable performance gains
on many challenging adverse conditions.
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