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Abstract

Traffic forecasting as a canonical task of multivariate time
series forecasting has been a significant research topic in
AI community. To address the spatio-temporal heterogene-
ity and non-stationarity implied in the traffic stream, in this
study, we propose Spatio-Temporal Meta-Graph Learning
as a novel Graph Structure Learning mechanism on spatio-
temporal data. Specifically, we implement this idea into
Meta-Graph Convolutional Recurrent Network (MegaCRN)
by plugging the Meta-Graph Learner powered by a Meta-
Node Bank into GCRN encoder-decoder. We conduct a
comprehensive evaluation on two benchmark datasets (i.e.,
METR-LA and PEMS-BAY) and a new large-scale traffic
speed dataset called EXPY-TKY that covers 1843 express-
way road links in Tokyo. Our model outperformed the state-
of-the-arts on all three datasets. Besides, through a series of
qualitative evaluations, we demonstrate that our model can
explicitly disentangle the road links and time slots with dif-
ferent patterns and be robustly adaptive to any anomalous
traffic situations. Codes and datasets are available at https:
//github.com/deepkashiwa20/MegaCRN.

Introduction
Spatio-temporal data, streamed by sensor networks, are
widely studied in both academia and industry given vari-
ous real-world applications. Traffic forecasting (Yu, Yin, and
Zhu 2018; Li et al. 2018; Zheng et al. 2020; Bai et al. 2020;
Lee et al. 2022), as one canonical task, has been receiving
increasing attention with rapid developing Graph Convo-
lutional Networks (GCNs) (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2016; Veličković et al.
2017). This spatio-temporal modeling task can be formu-
lated similarly to multivariate time series (MTS) forecasting
(Wu et al. 2020; Cao et al. 2020; Shang, Chen, and Bi 2021),
but with extra prior knowledge from the geographic space
(e.g. sensor locations, road networks) to imply the depen-
dency among sensor signals. Compared with ordinary MTS,
traffic data (e.g. traffic speed and flow) potentially contain
spatio-temporal heterogeneity, as traffic condition differs
over roads (e.g. local road, highway, interchange) and time
(e.g. off-peak and rush hours). Moreover, non-stationarity
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Figure 1: Progression of Graph Structure Learning for
Spatio-Temporal Modeling

makes the task even more challenging when X factors, in-
cluding accident and congestion, present.

For more effective traffic forecasting, the existing works
have made tremendous progress by modeling latent spa-
tial correlation among sensors and temporal autocorrelation
within time series. Since these two relationships can be nat-
urally represented by graph and sequence respectively, the
mainstream models handle them by leveraging GCN-based
modules (Diao et al. 2019; Guo et al. 2019; Geng et al. 2019;
Zhang et al. 2021) and sequence models, such as Recurrent
Neural Networks (RNNs) (Li et al. 2018; Bai et al. 2020; Ye
et al. 2021), WaveNet (Wu et al. 2019), Transformer (Zheng
et al. 2020; Wang et al. 2020; Xu et al. 2020). Particularly,
to perform convolution-like operations on graphs, GCNs re-
quire an auxiliary input that characterizes the topology of the
underlying spatial dependency. This essential part is defined
based on certain metrics in early works, such as inverse-
distance Gaussian kernel (Yu, Yin, and Zhu 2018; Li et al.
2018), cosine similarity (Geng et al. 2019).

However, this pre-defined graph not only relies on empir-
ical laws (e.g. Tobler’s first law of geography) which does
not necessarily indicate an optimal solution, but ignores the
dynamic nature of traffic networks. This twofold limitation
has stimulated explorations in two lines of research. The
first one aims to find the optimal graph structure that fa-
cilitates the forecasting task. GW-Net (Wu et al. 2019) pi-
oneers along this direction by treating the adjacency matrix
as free variables (i.e. parameterized node embedding E) to
train, which generates a so-called adaptive graph (in Figure
1). Models including MTGNN (Wu et al. 2020), AGCRN
(Bai et al. 2020), GTS (Shang, Chen, and Bi 2021) fall into
this category, integrating MTS and traffic forecasting with
Graph Structure Learning (GSL) (Zhu et al. 2021). In the
other line of research, attempts have been made to tackle net-
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work dynamics using matrix or tensor decomposition (Diao
et al. 2019; Ye et al. 2021) and attention mechanisms (Guo
et al. 2019; Zheng et al. 2020). Motivated by GSL, recent
models like SLCNN (Zhang et al. 2020), StemGNN (Cao
et al. 2020) further try to learn a time-variant graph structure
from observational data. The spatio-temporal graph (STG)
derived in this way is essentially input-conditioned, in which
parameters denoted by W project observations into node
embeddings (termed as momentary graph in Figure 1).

Thus far, while spatio-temporal regularities have been
studied systematically, spatio-temporal heterogeneity and
non-stationarity have not been tackled properly. Although
the heterogeneity issue can be alleviated to some extent by
applying attentions over the space and time (Guo et al. 2019;
Zheng et al. 2020), sensor signals of different natures are
still left entangled, not to mention that incidents are simply
untreated. Therefore, we are motivated to propose a novel
spatio-temporal meta-graph learning framework. The term
meta-graph is coined to describe the generation of node
embeddings (similar in adaptive and momentary) for GSL.
Specifically, our STG learning consists of two steps: (1)
querying node-level prototypes from a Meta-Node Bank; (2)
reconstructing node embeddings with Hyper-Network (Ha,
Dai, and Le 2016). This localized memorizing capability
empowers our modularized Meta-Graph Learner to essen-
tially distinguish traffic patterns on different roads over time,
which is even generalizable to incident situations. Our con-
tributions are highlighted as follows:

• We propose a novel Meta-Graph Learner for spatio-
temporal graph (STG) learning, to explicitly disentangles
the heterogeneity in space and time.

• We present a generic Meta-Graph Convolutional Recur-
rent Network (MegaCRN), which simply relies on ob-
servational data to be robust and adaptive to any traffic
situation, from normal to non-stationary.

• We validate MegaCRN quantitatively and qualitatively
over a group of state-of-the-art models on two bench-
marks (METR-LA and PEMS-BAY) and our newly pub-
lished dataset (EXPY-TKY) that has larger scale and
more complex incident situations.

Related Work
Traffic Forecasting. Traffic forecasting has been taken as
a significant research problem in transportation engineer-
ing (Huang et al. 2014; Lv et al. 2014; Ma et al. 2015b). As
a canonical case of multivariate time series forecasting (Lai
et al. 2018), it also has drawn a lot of attention from ma-
chine learning researchers. At the very beginning, statis-
tical models including autoregressive model (AR) (Hamil-
ton and Susmel 1994), vector autoregression (VAR) (Stock
and Watson 2001), autoregressive integrated moving aver-
age (ARIMA) (Pan, Demiryurek, and Shahabi 2012) were
applied. Then deep learning methods come to dominate the
time series prediction by automatically extracting the non-
linear complex features from the data. First, LSTM (Hochre-
iter and Schmidhuber 1997) and GRU (Chung et al. 2014)
demonstrated superior performance in traffic modeling (Ma
et al. 2015a; Lv et al. 2018; Li et al. 2018; Zhao et al. 2019;

Wang et al. 2020; Bai et al. 2020; Ye et al. 2021; Shang,
Chen, and Bi 2021; Lee et al. 2022) as well as multivari-
ate time series forecasting (Lai et al. 2018; Shih, Sun, and
Lee 2019). Second, instead of the RNNs, Temporal Convo-
lution (Yu and Koltun 2016) and WaveNet (Oord et al. 2016)
with long receptive field were also utilized as the core com-
ponent in (Yu, Yin, and Zhu 2018; Wu et al. 2019, 2020; Lu
et al. 2020; Deng et al. 2021) for temporal modeling. Third,
motivated by (Vaswani et al. 2017), a series of traffic trans-
formers (Zheng et al. 2020; Xu et al. 2020) and time series
transformers (Li et al. 2019; Zhou et al. 2021; Xu et al. 2021)
were proposed to do the long sequence time series modeling.
Due to the space limitation, we refer you to the recent sur-
veys (Jiang et al. 2021; Jiang and Luo 2021; Li et al. 2021)
on traffic forecasting with deep learning.
Graph Structure Learning. Besides the sequence model-
ing, research efforts have been made to capture the cor-
relations among variables (road links in traffic data) via
generic graph structures (Kipf et al. 2018). Early meth-
ods either rely on the natural topology of the road network
(i.e., binary adjacency graph) or pre-defined graphs in cer-
tain metrics (e.g., Euclidean distance) (Li et al. 2018; Yu,
Yin, and Zhu 2018). Then, GW-Net (Wu et al. 2019) first
proposed to use two learnable embedding matrices to auto-
matically build an adaptive graph based on the input traffic
data. Following GW-Net (Wu et al. 2019), MTGNN (Wu
et al. 2020) and GTS (Shang, Chen, and Bi 2021) further
proposed to learn a parameterized k-degree discrete graph,
while AGCRN (Bai et al. 2020) introduced node-specific
convolution filters according to the node embedding and
CCRNN (Ye et al. 2021) learned multiple adaptive graphs
for multi-layer graph convolution. StemGNN (Cao et al.
2020) took the self-attention (Vaswani et al. 2017) learned
from the input as the latent graph. Our work distinguishes it-
self from these methods by augmenting the spatio-temporal
graph learning with memory network (Meta-Node Bank) to
discover latent node-level prototypes and construct memory-
tailored node embedding.

Problem Definition
Without loss of generality, we formulate our problem as a
multi-step-to-multi-step forecasting task as follows:

[Xt−(α−1), ..., Xt]
F(·)−−−−−−→
θ

[Xt+1, ..., Xt+β ] (1)

where Xi ∈ RN×C , N is the number of spatial units (i.e.,
nodes, grids, regions, road links, etc.), and C is the number
of the information channel. In our case, C is equal to 1 as we
only forecast the traffic speed; the spatial unit is road link. To
be simple, we omit C in the rest of our paper. Given previous
α steps of observations [Xt−(α−1),...,Xt−1,Xt], we aim to
infer the next β horizons [Xt+1,Xt+2,...,Xt+β] by training
a forecasting model F with parameter θ.

Methodology
In this section, we present a generic framework for spatio-
temporal meta-graph learning, namely Meta-Graph Convo-
lutional Recurrent Network (MegaCRN), built upon Graph
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Convolutional Recurrent Unit (GCRU) Encoder-Decoder
and plugin Meta-Graph Learner, as illustrated in Figure 2.

Preliminaries
Graph Convolutional Recurrent Unit. Motivated by the
success of Graph Convolutional Networks (GCNs) as a class
in representation learning on graph-structured data (e.g. so-
cial and road networks), a recent line of research (Li et al.
2018; Bai et al. 2020; Shang, Chen, and Bi 2021; Ye et al.
2021) has explored the possibility of injecting graph convo-
lution operation into recurrent cell (e.g. LSTM). The derived
Graph Convolutional Recurrent Unit (GCRU) can thereby
simultaneously capture spatial dependency, represented by
an input graph topology, and temporal dependency in a se-
quential manner. Without loss of generality, we take the
widely adopted definitions of graph convolution operation
and Gated Recurrent Unit (GRU) to denote GCRU, as the
basic unit for spatio-temporal modeling:

H = σ(X ⋆G Θ) = σ(
K∑

k=0

P̃kX Wk) (2)


ut = sigmoid([Xt, Ht−1] ⋆G Θu + bu)

rt = sigmoid([Xt, Ht−1] ⋆G Θr + br)

Ct = tanh([Xt, (rt ⊙Ht−1)] ⋆G ΘC + bC)

Ht = ut ⊙Ht−1 + (1− ut)⊙ Ct

(3)

In Equation (2), X ∈ RN×C and H ∈ RN×h denote
the input and output of graph convolution operation (⋆G),
in which Θ or WK ∈ RK×C×h are the kernel parameters
approximated with the Chebyshev polynomials to the order
of K (Defferrard, Bresson, and Vandergheynst 2016) and σ
is an activation function. In Equation (3), subscripts u, r, and
C denote update gate, reset gate, and candidate state in a
GCRU cell, in which Θ{u,r,C} ∈ RK×(C+h)×h denote the
gate parameters. Besides observation Xt, GCRU requires an
auxiliary input P ∈ RN×N for the topology of graph G.
Graph Structure Learning. Matrix P is conventionally de-
fined based on certain metrics (e.g. inverse distance, cosine
similarity) and empirical laws (Yu, Yin, and Zhu 2018; Li
et al. 2018; Geng et al. 2019). However, choice of metric can
be arbitrary and suboptimal, which motivates a line of re-
search (Wu et al. 2020; Zhang et al. 2020; Shang, Chen, and
Bi 2021; Bai et al. 2020; Ye et al. 2021) to integrate Graph
Structure Learning (GSL) into spatio-temporal modeling for
simultaneous optimization. Here we adopt the canonical for-
mulation (Wu et al. 2019; Bai et al. 2020; Wang et al. 2022)
for spatio-temporal graph learning, namely adaptive graph
(in Figure 1), denoted by:

P̃ = softmax(relu(E E⊤)) (4)

where P̃ is derived by random walk normalizing the non-
negative part of matrix product of trainable node embedding
E ∈ RN×e to its transpose. The other GSL strategy, momen-
tary graph (Zhang et al. 2020) (in Figure 1), can be defined
in a similar fashion with input signal Xt or hidden state Ht.
Taking the latter as an example:

P̃t = softmax(relu((Ht ∗W ) (Ht ∗W )⊤)) (5)

where parameter matrix W ∈ Rh×e essentially projects Ht

to another embedding space. Notably, momentary graph has
other variants, such as replacing the projection with self-
attention operation (Cao et al. 2020), but they still follow
Equation (5) as a general form.

Spatio-Temporal Meta-Graph Learner
Here we formally describe a new spatio-temporal graph
(STG) learning module. The term meta-graph is coined to
represent the generation of node embedding for graph struc-
ture learning, which is different from its definition in het-
erogeneous information networks (HIN) (Zhao et al. 2017;
Ding et al. 2021). According to the definition in Equation (4)
and (5), adaptive graph relies on parameterized node em-
bedding E alone, while momentary graph is in fact input-
conditioned (either projecting Xt or Ht with parameter W ).
Apparently, this generation process determines the proper-
ties of the derived graphs, as the former is time-invariant but
the latter is sensitive to input signals. This motivates us to
further enhance the node embeddings for STG generation,
as the real-world networks are more complex, manifesting
spatio-temporal heterogeneity and non-stationarity.

We are inspired by a line of research in memory networks,
which aims to memorize typical features in seen samples
for further pattern matching. This technique has been largely
employed on computer vision tasks, such as few-shot learn-
ing (Vinyals et al. 2016; Santoro et al. 2016) and anomaly
detection (Gong et al. 2019; Park, Noh, and Ham 2020).
In our case, we would like inject the memorizing and dis-
tinguishing capabilities into spatio-temporal graph learning.
We thereby leverage the idea of memory networks and build
a Meta-Node Bank Φ ∈ Rϕ×d. Here ϕ and d denote the
number of memory items and the dimension of each item,
respectively. We further define the main functions of this
memory bank as follows:

Q
(i)
t = H

(i)
t ∗WQ + bQ (6)

a
(i)
j =

exp (Q
(i)
t ∗ Φ⊤[j])∑ϕ

j=1 exp (Q
(i)
t ∗ Φ⊤[j])

M
(i)
t =

ϕ∑
j=1

a
(i)
j ∗ Φ[j]

(7)

where we use superscript (i) as row index. For instance,
H

(i)
t ∈ Rh represents i-th node vector in Ht ∈ RN×h.

Equation (6) denotes a fully connected (FC parameter WQ ∈
Rh×d) layer to project hidden state H(i)

t to a localized query
Q

(i)
t ∈ Rd. Equation (7) denotes the memory reading op-

eration by matching Q
(i)
t with each memory Φ[j] to calcu-

late a scalar aj , which physically represents the similarity
between vector Q

(i)
t and memory item Φ[j]. A meta-node

vector M (i)
t ∈ Rd can be further recovered as a combina-

tion of memory items. Here a common practice is to uti-
lize the reconstructed representation Mt ∈ RN×d to aug-
ment the encoded hidden representation Ht, denoted by
H ′

t = [Ht,Mt] ∈ RN×(h+d) ([·] denotes a concatenation
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Figure 2: Framework of Meta-Graph Convolutional Recurrent Network (MegaCRN)

operation) (Yao et al. 2019; Lee et al. 2022). We further
leverage a Hyper-Network (Ha, Dai, and Le 2016) that es-
sentially puts generation of GSL node embeddings condi-
tioned on Meta-Node Bank. This memory-augmented node
embedding generation can be formulated as:{

E′ = NNH(Φ)

P̃ ′ = softmax(relu(E
′
E

′⊤))
(8)

where NNH denotes a Hyper-Network. Without loss of gen-
erality, we implement it with one FC layer (parameter WE ∈
Rd×e). Then, meta-graph P̃ ′ can be constructed, as an alter-
native to adaptive and momentary graphs (defined in Equa-
tion (4) an (5)) to feed back to GCRU encoder-decoder.

Meta-Graph Convolutional Recurrent Network
With Meta-Graph Learner as described, we present the
proposed Meta-Graph Convolutional Recurrent Network
(MegaCRN) as a generic framework for spatial-temporal
modeling. MegaCRN learns node-level prototypes of traf-
fic patterns in Meta-Node Bank for updating the auxiliary
graph adaptively based on the observed situation. To fur-
ther enhance its distinguishing power for diverse scenarios
on different roads over time, we regulate the memory pa-
rameters with two constraints (Gong et al. 2019; Park, Noh,
and Ham 2020), including a contrastive loss L1 and a con-
sistency loss L1, denoted by:

L1 =

T,N∑
t,i

max{||Q(i)
t − Φ[p]||2 − ||Q(i)

t − Φ[n]||2 + λ, 0}

L2 =

T,N∑
t,i

||Q(i)
t − Φ[p]||2

(9)
where T denotes the total number of sequences (i.e. sam-
ples) in the training set and p, n denote the top two indices

of memory items by ranking a
(i)
j in Equation 7 given lo-

calized query Q
(i)
t . By implementing these two constraints,

we treat Q(i)
t as anchor, its most similar prototype Φ[p] as

positive sample, and the second similar prototype Φ[n] as
negative sample (λ denotes the margin between the positive
and negative pairs). Here the idea is to keep memory items
as compact as possible, at the same time as dissimilar as pos-
sible. These two constraints guide memory Φ to distinguish
different spatio-temporal patterns on node-level. In practice,
we find adding them into the objective criterion (i.e. MAE)
facilitates the convergence of training with factors κ1, κ2:

Ltask =

T,β∑
t,ρ

|X̂t+ρ −Xt+ρ|+ κ1L1 + κ2L2 (10)

Experiment

Dataset METR-LA PEMS-BAY EXPY-TKY
Start Time 2012/3/1 2017/1/1 2021/10/1
End Time 2012/6/30 2017/5/31 2021/12/31
Time Interval 5 minutes 5 minutes 10 minutes
#Timesteps 34,272 52,116 13,248
#Spatial Units 207 sensors 325 sensors 1,843 road links

Table 1: Summary of Datasets

Datasets and Settings
Datasets. We first evaluate our model by using two standard
benchmark datasets from (Li et al. 2018): METR-LA and
PEMS-BAY. They contain the traffic speed data from 207
sensors in Los Angeles and 325 sensors in Bay Area respec-
tively. For the two benchmarks, we follow the tradition (Li
et al. 2018; Wu et al. 2019; Shang, Chen, and Bi 2021; Lee
et al. 2022) by splitting the datasets in chronological order
with 70% for training, 10% for validation, and 20% for test-
ing (namely 7:1:2). Besides, in this study, we publish a new
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METR-LA 15min / horizon 3 30min / horizon 6 60min / horizon 12
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA(Li et al. 2018) 4.16 7.80 13.00% 4.16 7.80 13.00% 4.16 7.80 13.00%
STGCN(Yu, Yin, and Zhu 2018) 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

DCRNN(Li et al. 2018) 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.59 10.50%
GW-Net(Wu et al. 2019) 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%

STTN(Xu et al. 2020) 2.79 5.48 7.19% 3.16 6.50 8.53% 3.60 7.60 10.16%
GMAN(Zheng et al. 2020)⋆ 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%

MTGNN(Wu et al. 2020) 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
StemGNN(Cao et al. 2020)† 2.56 5.06 6.46% 3.01 6.03 8.23% 3.43 7.23 9.85%

AGCRN(Bai et al. 2020) 2.86 5.55 7.55% 3.25 6.57 8.99% 3.68 7.56 10.46%
CCRNN(Ye et al. 2021) 2.85 5.54 7.50% 3.24 6.54 8.90% 3.73 7.65 10.59%

GTS(Shang, Chen, and Bi 2021)⋆ 2.65 5.20 6.80% 3.05 6.22 8.28% 3.47 7.29 9.83%
PM-MemNet(Lee et al. 2022) 2.65 5.29 7.01% 3.03 6.29 8.42% 3.46 7.29 9.97%

MegaCRN (Ours) 2.52 4.94 6.44% 2.93 6.06 7.96% 3.38 7.23 9.72%
PEMS-BAY 15min / horizon 3 30min / horizon 6 60min / horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA(Li et al. 2018) 2.88 5.59 6.80% 2.88 5.59 6.80% 2.88 5.59 6.80%

STGCN(Yu, Yin, and Zhu 2018) 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
DCRNN(Li et al. 2018) 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
GW-Net(Wu et al. 2019) 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%

STTN(Xu et al. 2020) 1.36 2.87 2.89% 1.67 3.79 3.78% 1.95 4.50 4.58%
GMAN(Zheng et al. 2020)⋆ 1.35 2.90 2.87% 1.65 3.82 3.74% 1.92 4.49 4.52%

MTGNN(Wu et al. 2020) 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
StemGNN(Cao et al. 2020)† 1.23 2.48 2.63% N/A from (Cao et al. 2020) N/A from (Cao et al. 2020)

AGCRN(Bai et al. 2020) 1.36 2.88 2.93% 1.69 3.87 3.86% 1.98 4.59 4.63%
CCRNN(Ye et al. 2021) 1.38 2.90 2.90% 1.74 3.87 3.90% 2.07 4.65 4.87%

GTS(Shang, Chen, and Bi 2021)⋆ 1.34 2.84 2.83% 1.67 3.83 3.79% 1.98 4.56 4.59%
PM-MemNet(Lee et al. 2022)⋆ 1.34 2.82 2.81% 1.65 3.76 3.71% 1.95 4.49 4.54%

MegaCRN (Ours) 1.28 2.72 2.67% 1.60 3.68 3.57% 1.88 4.42 4.41%
EXPY-TKY 10min / horizon 1 30min / horizon 3 60min / horizon 6

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA(Li et al. 2018) 7.63 11.96 31.26% 7.63 11.96 31.25% 7.63 11.96 31.24%

STGCN(Yu, Yin, and Zhu 2018) 6.09 9.60 24.84% 6.91 10.99 30.24% 8.41 12.70 32.90%
DCRNN(Li et al. 2018) 6.04 9.44 25.54% 6.85 10.87 31.02% 7.45 11.86 34.61%
GW-Net(Wu et al. 2019) 5.91 9.30 25.22% 6.59 10.54 29.78% 6.89 11.07 31.71%

STTN(Xu et al. 2020) 5.90 9.27 25.67% 6.53 10.40 29.82% 6.99 11.23 32.52%
GMAN(Zheng et al. 2020) 6.09 9.49 26.52% 6.64 10.55 30.19% 7.05 11.28 32.91%
MTGNN(Wu et al. 2020) 5.86 9.26 24.80% 6.49 10.44 29.23% 6.81 11.01 31.39%

StemGNN(Cao et al. 2020)† 6.08 9.46 25.87% 6.85 10.80 31.25% 7.46 11.88 35.31%
AGCRN(Bai et al. 2020) 5.99 9.38 25.71% 6.64 10.63 29.81% 6.99 11.29 32.13%
CCRNN(Ye et al. 2021) 5.90 9.29 24.53% 6.68 10.77 29.93% 7.11 11.56 32.56%

GTS(Shang, Chen, and Bi 2021) - - - - - - - - -
PM-MemNet(Lee et al. 2022) 5.94 9.25 25.10% 6.52 10.42 29.00% 6.87 11.14 31.22%

MegaCRN (Ours) 5.81 9.20 24.49% 6.44 10.33 28.92% 6.83 11.04 31.02%

Table 2: Forecasting Performance

traffic dataset called EXPY-TKY, that contains the traffic
speed information and the corresponding traffic incident in-
formation in 10-minute interval for 1843 expressway road
links in Tokyo over three months (2021/10∼2021/12). We
use the first two months (Oct. 2021 and Nov. 2021) as the
training and validation dataset, and the last one month (Dec.
2021) as the testing dataset. The specific spatio-temporal in-
formation of our datasets are summarized in Table 1.

Settings. For EXPY-TKY, the Encoder and Decoder of our
model consist of 1 RNN-layer respectively, where the num-
ber of hidden states is 32. We reserve 10 prototypes (i.e.,
meta-nodes) in the memory, each of which is a 32-dimension
learnable vector. For METR-LA and PEMSBAY, each RNN
layer in Encoder and Decoder has 64 units and the mem-
ory bank has 20 meta-nodes with 64-dimension. The ob-
servation step α and prediction horizon β are both set to
12 on METR-LA and PEMS-BAY, while α/β are both set

to 6 on EXPY-TKY. Such settings can give us 1-hour lead
time forecasting, which follow the tradition in previous lit-
eratures (Yu, Yin, and Zhu 2018; Li et al. 2018; Wu et al.
2019; Bai et al. 2020; Shang, Chen, and Bi 2021). Adam
was used as the optimizer, where the learning rate was set to
0.01 and the batch size was set to 64. The optimizer would
either be early-stopped if the validation error was converged
within 20 epochs or be stopped after 200 epochs. L1 Loss is
used as the loss function. Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percent-
age Error (MAPE) are used as metrics. All experiments were
performed with four GeForce RTX 3090 GPUs.

Quantitative Evaluation
We compare our model with the following baselines: 1) His-
torical Average (HA) averaged values of the same time slot
from historical days (Li et al. 2018); 2) STGCN (Yu, Yin,
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and Zhu 2018), 3) DCRNN (Li et al. 2018), and 4) GW-
Net (Wu et al. 2019), the most representative deep mod-
els for traffic forecasting, respectively embed spectral (Yu,
Yin, and Zhu 2018) or diffusion graph convolution (Li et al.
2018; Wu et al. 2019) into temporal convolution (i.e., TCN
or WaveNet)(Yu, Yin, and Zhu 2018; Wu et al. 2019) or
recurrent unit (e.g., GRU)(Li et al. 2018); 5) STTN (Xu
et al. 2020) and 6) GMAN (Zheng et al. 2020) are two
Transformer-based SOTAs; 7) MTGNN (Wu et al. 2020) is
an extended version of GW-Net that extends the adaptive
graph leaning part; 8) StemGNN (Cao et al. 2020) first learns
a latent graph via self-attention and performs the spatiotem-
poral modeling in spectral domain; 9) AGCRN (Bai et al.
2020) adaptively learns node-specific parameters for graph
convolution; 10) CCRNN (Ye et al. 2021) learns multiple
parameterized matrices for multiple layers of graph convolu-
tion; 11) GTS (Shang, Chen, and Bi 2021) learns each link’s
(edge’s) probability based on each variable’s (node’s) long
historical data; 12) PM-MemNet (Lee et al. 2022) also uti-
lizes memory networks for traffic pattern matching. 9)∼12)
are built based upon GCRN (Seo et al. 2018; Li et al. 2018).
Overall Comparison. Most of the baselines’ results on the
benchmarks are reported from their original papers. How-
ever, due to the reproducibility problem (⋆ in Table 2), we
report the results of GMAN, GTS, and PM-MemNet either
from our own experiments or other literature (e.g., GMAN
on METR-LA (Shao et al. 2022)). Through Table 2, we can
find our model outperformed the state-of-the-arts in almost
all cases (dataset/horizon/metric). Among the SOTAs, GW-
Net(Wu et al. 2019) and MTGNN (Wu et al. 2020) marked
relatively good performances thanks to the WaveNet back-
bone. CCRNN (Ye et al. 2021) delivered better performance
on our dataset than the benchmarks. Because it requires the
0-1 adjacency matrix of the road network to get a good
initialization for the learnable graphs, which is not avail-
able in the benchmark datasets. GMAN (Zheng et al. 2020)
and StemGNN (Cao et al. 2020) gave a worse performance
on our dataset, because the number of nodes N in ours is
around 6∼9 times larger than the benchmarks and the self-
attention in them struggled to work on such a large scale.
GTS (Shang, Chen, and Bi 2021) could not even be appli-
cable on our dataset, because it requires to parameterize an
RN2×N matrix (N2 edges and N nodes) for edge generation
based on each node’s features. StemGNN† is considered to
have a data leakage problem as it averages all the graphs in
minibatch for both training and testing (sample interaction).

Ablation METR-LA PEMS-BAY EXPY-TKY
MAE / RMSE MAE / RMSE MAE / RMSE

Adaptive 3.01 / 6.25 1.61 / 3.73 6.79 / 10.76
Momentary 2.96 / 6.16 1.62 / 3.75 6.68 / 10.59
Memory 2.97 / 6.21 1.60 / 3.70 6.55 / 10.48
MegaCRN 2.89 / 6.02 1.54 / 3.59 6.44 / 10.35

Table 3: Ablation Test across All Horizons

Ablation Study. To evaluate the actual performance of each
component of our model, we create a series of variants as
follows: (1) Adaptive GCRN. It only keeps the GCRN

encoder-decoder of MegaCRN and lets the encoder and de-
coder share a same adaptive graph, similar graph struc-
ture learning mechanism to GW-Net (Wu et al. 2019), MT-
GCNN (Wu et al. 2020), and AGCRN (Bai et al. 2020);
(2) Memory GCRN. It excludes the Hyper-Network from
MegaCRN and just uses a Memory Network (i.e., same as
the Meta-Node Bank) to get an augmented hidden states Mt

(from the encoder) for the decoder, which shares the same
adaptive graph G with the encoder. (3) Momentary GCRN.
It excludes the Meta-Node Bank from MegaCRN and di-
rectly uses a Hyper-Network (i.e., FC layer) to take the en-
coder’s hidden states Ht to generate a momentary graph for
the decoder. Through Table 3, we can see that compared to
Momentary GCRN, Memory GCRN brings a higher perfor-
mance gain to Adaptive GCRN. Because Momentary GCRN
is obtained from Ht, it has to learn a separate graph for each
sample in minibatch, which is non-trivial. All these demon-
strate that MegaCRN is a complete and indivisible set.

Figure 3: Efficiency Evaluation

Efficiency Study. We also evaluate the efficiency of our
model by comparing with the-state-of-the-arts. Here we just
report the results on EXPY-TKY, because the spatial domain
of our data is 5∼9 times larger than the benchmarks. A scat-
ter plot is shown as Figure 3, where the x-axis of is the total
number of parameters and the y-axis is the overall MAE.
We can see that our model has the second-fewest param-
eters (merely 133,597) but the smallest overall MAE. For
a large-scale dataset like EXPY-TKY, our model could be
very memory-efficient. In contrast, some models, especially
Transformer-based models including GMAN (Zheng et al.
2020) and STTN (Xu et al. 2020), are very memory/time-
consuming due to the dot-product operation on big tensor.
Although our model tends to need more epochs to converge,
each round of training could be finished in very little time.
To sum up, our model can achieve the state-of-the-art preci-
sion while keeping comparatively efficient.

Qualitative Evaluation
Spatio-Temporal Disentanglement. We qualitatively eval-
uate the quality of node embeddings by visualizing them in
a low-dimensional space with t-SNE. Compared with adap-
tive GSL illustrated as Figure 4(a), meta-graph can automat-
ically learn to cluster nodes (i.e., road links) as shown in
Figure 4(b)(c). Interestingly, as time evolves from t to t+1,
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Figure 4: Spatio-Temporal Disentangling Effect of Meta-Graph Learning

Figure 5: Incident Awareness of MegaCRN

this clustering effect persists but the cluster shape changes,
which confirms the spatio-temporal disentangling capability
as well as the time-adaptability of our approach. In addi-
tion, we map out the physical locations of the road links in
discovered clusters with different colors (cluster 1 in blue,
cluster 2 in red) in Figure 4(d). We observe a strong corre-
lation between the spatial distribution of cluster 2 (in red)
and interchanges/toll gates. From the daily averaged time
series plot in the bottom of Figure 4(d), we can clearly
tell the inter-cluster difference. While road links in clus-
ter 1 (in blue) share a strong rush hour pattern, the other
cluster (in red) has a lower speed on average but higher
variations, which is characterized by large amount of speed
change near interchanges/toll gates. These observations val-
idate the power of Meta-Graph Learner to explicitly distin-
guish spatio-temporal heterogeneity.

Incident-Awareness. We qualitatively study the robustness
of MegaCRN to various traffic situations in Figure 5. Here
we select an incident case that occurred at 21:50 at road link
1, marked in red in Figure 5(a), on December 13th, 2021.
In terms of the prediction results (in 60-minute lead time),
compared with two baselines, GW-Net (Wu et al. 2019) and
CCRNN (Ye et al. 2021), our model can not only better cap-
ture normal fluctuations, but adapt to more complex situ-
ations including rush hour and traffic accident (in shaded
red). Such sudden disturbance inevitably results in delay or
failure of detection for other models. From the visualiza-
tion of memory query weight in Figure 5(b), we can tell
that the pattern querying to the Meta-Node Bank is different
between normal situations and rush hour or incident case.
This observation confirms the distinguishing power and gen-

eralizability to diverse traffic scenarios. We further visual-
ize the learned local meta-graph as Figure 5(d), in which
thicker line represents higher edge weight and bigger node
size means larger weighted outdegree. Intuitively, we can
find the meta-graph is changing with time. At 21:40 before
the accident happened, node 1 (road link 1) held the biggest
impact in the local meta-graph as road link 1 lies right at
the center of the large road intersection. Then at 21:50 after
the accident happened, the impact of node 1 dropped signif-
icantly and the graph became dominated by road link 7, 8, 9,
and 10 that formed a separated subgraph at 21:40. This case
study verifies the superior adaptability of our approach.

Conclusion
In this study, we propose Meta-Graph Convolutional Re-
current Network (MegaCRN) along with a novel spatio-
temporal graph structure learning mechanism for traf-
fic forecasting. Besides two benchmarks, METR-LA and
PEMS-BAY, we further generate a brand-new traffic dataset
called EXPY-TKY from large-scale car GPS records and
collect the corresponding traffic incident information. Our
model outperformed the state-of-the-arts to a large degree
on all three datasets. Through a series of visualizations, it
also demonstrated the capability to disentangle the time and
nodes with different patterns as well as the adaptability to
incident situations. We will further generalize our model for
Multivariate Time Series forecasting tasks in the future.
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