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Abstract

We study model-based reinforcement learning (RL) for
episodic Markov decision processes (MDP) whose transi-
tion probability is parametrized by an unknown transition
core with features of state and action. Despite much recent
progress in analyzing algorithms in the linear MDP setting,
the understanding of more general transition models is very
restrictive. In this paper, we propose a provably efficient RL
algorithm for the MDP whose state transition is given by
a multinomial logistic model. We show that our proposed
algorithm based on the upper confidence bounds achieves
rOpd

?
H3T q regret bound where d is the dimension of the

transition core, H is the horizon, and T is the total number
of steps. To the best of our knowledge, this is the first model-
based RL algorithm with multinomial logistic function ap-
proximation with provable guarantees. We also comprehen-
sively evaluate our proposed algorithm numerically and show
that it consistently outperforms the existing methods, hence
achieving both provable efficiency and practical superior per-
formance.

Introduction
Reinforcement learning (RL) with function approximation
has made significant advances in empirical studies (Mnih
et al. 2015; Silver et al. 2017, 2018). However, the theo-
retical understanding of these methods is still limited. Re-
cently, function approximation with provable efficiency has
been gaining significant attention in the research commu-
nity, trying to close the gap between theory and empirical
findings. Most of the existing theoretical works in RL with
function approximation consider linear function approxima-
tion (Jiang et al. 2017; Yang and Wang 2019, 2020; Jin
et al. 2020; Zanette et al. 2020; Modi et al. 2020; Du et al.
2020; Cai et al. 2020; Ayoub et al. 2020; Wang, Salakhutdi-
nov, and Yang 2020; Weisz, Amortila, and Szepesvári 2021;
He, Zhou, and Gu 2021; Zhou, Gu, and Szepesvari 2021;
Zhou, He, and Gu 2021; Ishfaq et al. 2021). Many of these
linear model-based methods and their analyses rely on the
classical upper confidence bound (UCB) or randomized ex-
ploration methods such as Thompson sampling extending
the analysis of linear contextual bandits (Chu et al. 2011;
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Abbasi-Yadkori, Pál, and Szepesvári 2011; Agrawal and
Goyal 2013; Abeille and Lazaric 2017; Kveton et al. 2020a).

While new methods are still being proposed under the lin-
earity assumption and performance guarantees have been
improved, the linear model assumption on the transition
model of Markov decision processes (MDPs) faces a simple
yet fundamental challenge. A transition model in MDPs is
a probability distribution over states. A linear function ap-
proximating the transition model needs to satisfy that the
function output is within r0, 1s and, furthermore, the prob-
abilities over all possible next states sum to 1 exactly. Note
that such requirements are not just imposed approximately,
but rather exactly, since almost all existing works in linear
function approximation assume realizability, i.e., the true
transition model is assumed to be linear (Yang and Wang
2020; Jin et al. 2020; Zanette et al. 2020; Zhou, Gu, and
Szepesvari 2021; Ishfaq et al. 2021).

The linear model assumption also limits the set of fea-
ture representations of states or state-action pairs that are ad-
missible for the transition model. In function approximation
settings, the transition models are typically functions of fea-
ture representations. However, for a given linear transition
model, an arbitrary feature may not induce a proper proba-
bility distribution. Put differently, nature can reveal a set of
feature representations such that no linear model can prop-
erly construct a probability distribution over states. Hence,
the fundamental condition required for the true transition
model can easily be violated for the linear model. This is-
sue becomes even more challenging for a estimated model.1
Furthermore, when there is model misspecification, sublin-
ear guarantees on the regret performances that the existing
methods enjoy become not valid, hence potentially leading
to serious deterioration of the performances.

In supervised learning paradigm, a distribution over mul-
tiple possible outcomes is rarely learned using a separate lin-
ear model for each outcome. For example, consider a learn-
ing problem with a binary outcome. One of the most obvious
choices of a model to use in such a learning problem is a lo-
gistic model. Acknowledging that the state transition model
of MDPs with a finite number of next states (the total num-

1That is, even if the true model is truly linear and satisfies the
basic conditions for a probability distribution, the estimated model
can still violate them.
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ber of states can be infinite) is essentially a categorical dis-
tribution, the multinomial logistic (MNL) model is certainly
one of the first choices to consider. In statistics and machine
learning research, the generalization of the linear model to
a function class suitable for particular problem settings has
been an important milestone both in terms of applicability
and theoretical perspectives. In parametric bandit research,
a closely related field of RL, the extension of linear bandits
to generalized linear bandits, including logistic bandits for
binary feedback and multinomial logistic bandits for multi-
class feedback, has been an active area of research (Filippi
et al. 2010; Li, Lu, and Zhou 2017; Jun et al. 2017; Kve-
ton et al. 2020b; Oh and Iyengar 2019, 2021). Surprisingly,
there has been no prior work on RL with multinomial lo-
gistic function approximation (or even logistic function ap-
proximation), in spite of a vast amount of literature on linear
function approximation and despite the fact that the multino-
mial logistic model can naturally capture the state transition
probabilities.

To the best of our knowledge, our work is the first to
study a provably efficient RL under the multinomial logis-
tic function approximation. The generalization of the tran-
sition probability model beyond the simple linear model to
the multinomial logistic model allows for broader applica-
bility, overcoming the crucial limitations of the linear tran-
sition model. On theoretical perspectives, going beyond the
linear model to the MNL model requires more involved anal-
ysis without closed-form solutions for the estimation and
accounting for non-linearity. Note that the linear model as-
sumption for the transition model induces a linear value
function which enables the utilization of the least-square es-
timation and the linear bandit techniques for regret analy-
sis (Jin et al. 2020; Zanette et al. 2020; Ishfaq et al. 2021).
However, in the MNL function approximation, we no longer
have a linearly parametrized value function nor do we have
any closed form expression for the value function. It appears
that these aspects pose greater technical challenges in RL
with MNL function approximation. Therefore, the follow-
ing research question arises:

Can we design a provably efficient RL algorithm for the
multinomial logistic transition model?

In this paper, we address the above question affirma-
tively. We study a finite-horizon RL problem where the
transition probability is assumed to be a MNL model
parametrized by a transition core. We propose a prov-
ably efficient model-based RL algorithm that balances the
exploration-exploitation trade-off, establishing the first re-
sults for the MNL transition model approximation of MDPs.
Our main contributions are summarized as follows:

• We formally discuss the shortcomings of the linear func-
tion approximation (e.g., Proposition 1). To the best of
our knowledge, the rigorous discussion on the limitation
of the linear transition model provides meaningful in-
sights and may be of independent interest. Our finding
is that the linear transition model is restricted not just in
the functional form, but also the set of features that sat-
isfy the requirement imposed by the linear MDP is very
limited.

• The MNL function approximation that we study in this
paper is a more flexible and practical function approxi-
mation than the linear function approximation which had
been studied extensively in the recent literature. To our
best knowledge, our paper is the first work to consider
multinomial logistic function approximation (that pro-
vides provable guarantees) and hence, we believe, serves
as an important milestone. We believe such a modeling
assumption not only naturally captures the essence of the
state transition probabilities, overcoming the drawbacks
of the linear function approximation, but also induces an
efficient algorithm that utilizes the structure.

• We propose a provably efficient algorithm for model-
based RL in feature space, Upper Confidence RL with
MNL transition model (UCRL-MNL). To the best of our
knowledge, this is the first model-based RL algorithm
with multinomial logistic function approximation.

• We establish that UCRL-MNL is statistically efficient
achieving rOpd

?
H3T q regret, where d is the dimen-

sion of the transition core, H is the planning horizon,
and T is the total number of steps. Noting that d is the
total dimension of the unknown parameter, the depen-
dence on dimensionality as well as dependence on total
steps matches the corresponding dependence of the re-
gret bound in linear MDPs (Zhou, Gu, and Szepesvari
2021).

• We evaluate our algorithm on numerical experiments
and show that it consistently outperforms the existing
provably efficient RL methods by significant margins.
We performed experiments on tabular MDPs. Hence, no
modeling assumption on the true functional form is im-
posed for the transition model, which does not favor any
particular model of approximation. The experiments pro-
vide the evidences that our proposed algorithm is both
provably and practically efficient.

The MNL function approximation that we study in this pa-
per is a much more flexible and practical generalization of
the tabular RL than linearly parametrized MDPs, which have
been widely studied in the recent literature. As the first work
to study RL with MNL transition model, we believe that
both our proposed transition model and the proposed algo-
rithm provide sound contributions in terms of theory and
practicality.

Related Work
For tabular MDPs with a finite H-horizon, there are a large
number of works both on model-based methods (Jaksch, Or-
tner, and Auer 2010; Osband and Roy 2014; Azar, Osband,
and Munos 2017; Dann, Lattimore, and Brunskill 2017;
Agrawal and Jia 2017; Ouyang et al. 2017) and on model-
free methods (Jin et al. 2018; Osband et al. 2019; Russo
2019; Zhang, Zhou, and Ji 2020, 2021). Both model-based
and model-free methods are known to achieve rOpH

?
SAT q

regret, where S is the number of states, and A is the number
of actions. This bound is proven to be optimal up to loga-
rithmic factors (Jin et al. 2018; Zhang, Zhou, and Ji 2020).

Extending beyond tabular MDPs, there have been an in-
creasing number of works on function approximation with
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provable guarantees (Jiang et al. 2017; Yang and Wang
2019, 2020; Jin et al. 2020; Zanette et al. 2020; Modi et al.
2020; Du et al. 2020; Cai et al. 2020; Ayoub et al. 2020;
Wang, Salakhutdinov, and Yang 2020; Weisz, Amortila, and
Szepesvári 2021; He, Zhou, and Gu 2021; Zhou, Gu, and
Szepesvari 2021; Zhou, He, and Gu 2021; Ishfaq et al.
2021). For regret minimization in RL with linear function
approximation, (Jin et al. 2020) assume that the transition
model and the reward function of the MDPs are linear func-
tions of a d-dimensional feature mapping and propose an op-
timistic variant of the Least-squares Value Iteration (LSVI)
algorithm (Bradtke and Barto 1996; Osband, Van Roy, and
Wen 2016) with rOpd3{2H3{2

?
T q regret. (Zanette et al.

2020) propose a randomized LSVI algorithm where explo-
ration is induced by perturbing the least-squares approxima-
tion of the action-value function and provide rOpd2H2

?
T q

regret. For model-based methods with function approxima-
tion, (Yang and Wang 2020) assume the transition probabil-
ity kernel to be a bilinear model parametrized by a matrix
and propose a model-based algorithm with rOpd3{2H2

?
T q

regret. (Jia et al. 2020) consider a special class of MDPs
called linear mixture MDPs where the transition probabil-
ity kernel is a linear mixture of a number of basis kernels,
which covers various classes of MDPs studied in previous
works (Modi et al. 2020; Yang and Wang 2020). For this
model, (Jia et al. 2020) propose a UCB-based RL algo-
rithm with value-targeted model parameter estimation with
rOpdH3{2

?
T q regret. The same linear mixture MDPs has

been also used by (Ayoub et al. 2020; Zhou, Gu, and Szepes-
vari 2021; Zhou, He, and Gu 2021). In particular, (Zhou,
Gu, and Szepesvari 2021) propose a variant of the method
proposed by (Jia et al. 2020) and prove rOpdH

?
T q regret

with a matching lower bound ΩpdH
?
T q for linear mix-

ture MDPs. Extending function approximation beyond lin-
ear models, (Ayoub et al. 2020; Wang, Salakhutdinov, and
Yang 2020; Ishfaq et al. 2021) also prove regret bounds de-
pending on Eluder dimension (Russo and Van Roy 2013).
There has been also some literature that aim to propose
sample-efficient methods with more “general” function ap-
proximation. Yet, such claims may have been hindered by
computational intractability (Krishnamurthy, Agarwal, and
Langford 2016; Jiang et al. 2017; Dann et al. 2018) or hav-
ing to rely on other stronger assumptions (Du et al. 2019),
such that the resulting methods may turn out to be not as
general or practical.

Despite the fact that there are a vast number of the exist-
ing works on RL with linear function approximation, there
is very little work that extend beyond the linear model to
other parametric models. To our best knowledge, (Wang
et al. 2021) is the only existing work with generalized linear
function approximation where the Bellman backup of any
value function is assumed to be generalized linear function
of feature mapping. (Wang et al. 2021) proposes a model-
free algorithm under this assumption with rOpd3{2H

?
T q re-

gret. In addition to the fact that their proposed method is
model-free, the significant difference between the problem
setting of our work and that of (Wang et al. 2021) is that the
transition probability in (Wang et al. 2021) is not a general-

ized linear model, but rather generalized linear approxima-
tion is imposed directly on the value function update. Thus,
the question of whether it is possible to design a provably
efficient RL algorithm for an MDP with transition probabil-
ity approximated by any generalized linear model including
multinomial logistic model has still remained open.

Preliminaries
Notations
We denote by rns the set t1, 2, . . . , nu for a positive inte-
ger n. For a d-dimensional vector x P Rd, we use }x}2
to denote the Euclidean norm of x. The weighted ℓ2-norm
associated with a positive definite matrix A is denoted by
}x}A :“

?
xJAx. The minimum and maximum eigenval-

ues of a symmetric matrix A are written as λminpAq and
λmaxpAq respectively. The trace of a matrix A is trpAq. For
two symmetric matrices A and B of the same dimensions,
A ě B means that A´B is positive semi-definite.

Problem Formulation
We consider episodic Markov decision processes (MDPs)
denoted by MpS,A, H, P, rq, where S is the state space,
A is the action space, H is the length of horizon, P is the
collection of transition probability distributions, and r is a
reward function. Every episode starts at some initial state
s1 and ends after H steps. Then for every step h P rHs in
an episode, the learning agent interacts with an environment
defined by M, where the agent observes state sh P S , se-
lects an action ah P A, and receives an immediate reward
rpsh, ahq P r0, 1s. And then, the next state sh`1 is drawn
from the transition probability distribution P p¨ | sh, ahq and
repeats its interactions until the end of the episode, followed
by a newly started episode. A policy π : S ˆ rHs Ñ A
is a function that determines which action the agent takes
in state sh at each step h P rHs, ah „ πpsh, hq. Then, we
define the value function of policy π, V π

h : S Ñ R as the
expected sum of rewards under the policy π until the end of
the episode when starting from sh “ s, i.e.,

V π
h psq :“ Eπ

«

H
ÿ

h1“h

r
`

sh1 , πpsh1 , h1q
˘

| sh “ s

ff

.

We define the action-value function of policy π, Qπ
h : S ˆ

A Ñ R as the expected sum of rewards when following π
starting from step h until the end of the episode after taking
action a in state s,

Qπ
hps, aq :“ Eπ

«

H
ÿ

h1“h

r
`

sh1 , πpsh1 , h1q
˘

| sh “ s, ah “ a

ff

.

We define an optimal policy π˚ to be a policy that achieves
the highest possible value at every state-step pair ps, hq P

S ˆ rHs. We denote by V ˚
h psq “ V π˚

h psq and Q˚
hps, aq “

Qπ˚

h ps, aq as the the optimal value function and the optimal
action-value function, respectively. To make notation sim-
pler, we denote PhVh`1ps, aq :“ Es1„Php¨|s,aqrVh`1ps1qs.
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Recall that both Qπ and Q˚ can be written as the result of
the Bellman equations as

Qπ
hps, aq “ pr ` PhV

π
h`1qps, aq ,

Q˚
hps, aq “ pr ` PhV

˚
h`1qps, aq

where V π
H`1psq “ V ˚

H`1psq “ 0 and V ˚
h psq “

maxaPAQ
˚
hps, aq for all s P S .

The goal of the agent is to maximize the sum of future
rewards, i.e., to find an optimal policy, through the repeated
interactions with the environment forK episodes. Let policy
π “ tπkuKk“1 be a collection of policies over K episodes,
where πk is the policy of the agent at k-th episode. Then,
the cumulative regret of π over K episodes is defined as

RegretπpKq :“
K
ÿ

k“1

pV ˚
1 ´ V πk

1 qpsk,1q

where sk,1 is the initial state in the k-th episode. There-
fore, maximizing the cumulative rewards of policy π over
K episodes is equivalent to minimizing the cumulative re-
gret RegretπpKq.

In this paper, we make a structural assumption for the
MDP MpS,A, H, P, rq where the transition probability
kernel is given by an MNL model. Before we formally in-
troduce the MNL function approximation, we first introduce
the following definition.

Definition 1 (Reachable States). For each ps, aq P S ˆ A,
we define the “reachable states” of ps, aq to be the set of
all states which can be reached by taking action a in state s
within a single transition, Ss,a :“ ts1 P S : P ps1 | s, aq ‰

0u. Also, we denote U :“ maxps,aqPSˆA |Ss,a| to be the
maximum size of reachable states.

It is possible that even when the size of the state space
|S| is very large, U is still small. For example, consider the
RiverSwim problem (shown in Figure 2) with exponentially
large state space. However, U would be still 3, regardless of
the state space size.

Assumption 1 (MNL Transition Models). For each ps, aq P

S ˆ A, s1 P S , let feature vector φps, a, s1q P Rd be given.
Then we assume that the probability of state transition to
s1 P Ss,a when an action a is taken at a state s is given by,

P ps1 | s, aq “
exppφps, a, s1qJθ˚q

ř

rsPSs,a
exppφps, a, rsqJθ˚q

(1)

where θ˚ P Rd is an unknown transition core parameter.

In order to focus on the main challenge of model-based
RL, we assume, without loss of generality, that the reward
function r is known for the sake of simplicity.2 This assump-
tion on r is standard in the model-based RL literature (Yang
and Wang 2019, 2020; Zhou, Gu, and Szepesvari 2021).

2Note that this is assumed without loss of generality since learn-
ing r is much easier than learning P .

Linear Transition Model vs. Multinomial Logistic
Transition Model
In this section, we show how the linear model assumption is
restrictive for the transition model of MDPs. To our knowl-
edge, this is the first rigorous discussion on the limitation
of the linear transition model. We first show that for an ar-
bitrary set of features, a linear transition model (including
bilinear, linear MDPs, and linear mixture MDPs) cannot in-
duce a proper probability distribution over next states.

Proposition 1. For an arbitrary set of features of state and
actions of an MDP, there exist no linear transition model
that can induce a proper probability distribution over next
states.

Therefore, the linear model cannot be a proper choice of
transition model in general. The restrictive linearity assump-
tion on the transition model also affects the regret analy-
sis of algorithms that are proposed under that assumption.
As an example, we show that one of the recently proposed
model-based algorithms using the linear function approx-
imation cannot avoid the dependence on the size of the
state space |S|. (Yang and Wang 2020) assumes the tran-
sition probability kernel is given by the bilinear interaction
of the state-action feature ϕ, the next state feature ψ, and
the unknown transition core matrix M˚, i.e., P ps1|s, aq “

ϕps, aqJM˚ψps1q. Before we show the suboptimal depen-
dence, one can see that it is difficult to ensure that the esti-
mated transition probability satisfies one of the fundamental
probability properties,

ř

s1 P̂ ps1 | s, aq “ 1 based on Propo-
sition 1. In the following proposition, we show that the regret
of the proposed algorithm in (Yang and Wang 2020) actually
depends linearly on the size of the state space despite the use
of function approximation.

Proposition 2. The MatrixRL algorithm proposed in (Yang
and Wang 2020) based on the linear model has the regret of
rOp|S|H2d3{2

?
T q where d is the dimension of the underly-

ing parameter.

Hence, the bilinear model-based method cannot scale
well with the large state space. On the other hand, the
MNL model defined in (1) can naturally capture the cate-
gorical distribution for any feature representation of states
and actions and for any parameter choice. This is because,
due to the normalization term of the MNL model, i.e.,
ř

rs exppφps, a, rsqJθq — even if any estimated parameter
for θ˚ is used to estimate the transition probability, the sum
of the transition probabilities is always 1. This holds not
only for the true transition model but also for the estimated
model. Hence, the MNL function approximation offers a
more sensible model of the transition probability.

Algorithms and Main Results
Algorithm: UCRL-MNL
Estimation of Transition Core. Each transition sampled
from the transition model provides information to the agent
that updates the estimate for the transition core based on ob-
served samples. For the sake of simple exposition, we as-
sume discrete state space so that for all k P rKs, h P rHs, we
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Algorithm 1: Upper Confidence Model-based RL for MNL
Transition Model (UCRL-MNL)

1: Inputs: An episodic MDP M, Feature map φ : SˆAˆ

S Ñ Rd, Total number of episodes K, Regularization
parameter λ, Confidence radius βk.

2: Initialize: A1 “ λId, θ̂1 “ 0 P Rd

3: for episode k “ 1, 2, ¨ ¨ ¨ ,K do
4: Set tQ̂k,huHh“1 as described in (5) using θ̂k, βk
5: for horizon h “ 1, 2, ¨ ¨ ¨ , H do
6: Select an action ak,h “ argmaxaPA Q̂k,hpsk,h, aq

and observe sk,h`1, yk,h
7: end for
8: Update Ak`1 “ Ak `

ř

hďH

ř

s1PSk,h
φk,h,s1φJ

k,h,s1

9: Compute θ̂k`1 “ argmaxθ ℓk`1pθq ´ λ
2 }θ}22

10: end for

define the transition response variable yk,h “ pys
1

k,hqs1PSk,h

as ys
1

k,h “ 1Ipsk,h`1 “ s1q for s1 P Ssk,h,ak,h
“: Sk,h. Then

the transition response variable yk,h is a sample from the
following multinomial distribution:

yk,h „ multinomial
`

1, rpk,hpsi1 , θ
˚q, . . . , pk,hpsi|Sk,h|

, θ˚qs
˘

where the parameter 1 indicates that yk,h is a single-trial
sample, and each probability is defined as

pk,hps1, θ˚q :“
exppφpsk,h, ak,h, s

1qJθ˚q
ř

rsPSk,h
exppφpsk,h, ak,h, rsqJθ˚q

.

Also, we define noise ϵs
1

k,h :“ ys
1

k,h ´pk,hps1, θ˚q. Since ϵs
1

k,h

is bounded in r´1, 1s, ϵs
1

k,h is σ2-sub-Gaussian with σ2 “ 1.
We estimate the unknown transition core θ˚ using the

regularized maximum likelihood estimation (MLE) for the
MNL model. Based on the transition response variable yk,h,
the log-likelihood function under the parameter θ is then
given by

ℓkpθq “
ÿ

k1
ăk

hďH

ÿ

s1PSk1,h

ys
1

k1,h log pk1,hps1, θq

Then, the ridge penalized maximum likelihood estimation
for the MNL model is given by the following optimization
problem with the regularization parameter λ ě 0:

θ̂k “ argmax
θ

„

ℓkpθq ´
λ

2
}θ}22

ȷ

. (2)

Model-Based Upper Confidence. To balance the
exploration-exploitation trade-off, we construct an upper
confidence action-value function which is greater than the
optimal action-value function with high probability. The up-
per confidence bounds (UCB) approaches are widely used
due to their effectiveness in balancing the exploration and
exploitation trade-off not only in bandit problems (Auer
2002; Auer, Cesa-Bianchi, and Fischer 2002; Dani, Hayes,
and Kakade 2008; Filippi et al. 2010; Abbasi-Yadkori, Pál,
and Szepesvári 2011; Chu et al. 2011; Li, Lu, and Zhou

2017; Zhou, Li, and Gu 2020) but also in RL with func-
tion approximation (Wang et al. 2021; Jin et al. 2020; Ayoub
et al. 2020; Jia et al. 2020).

At the k-th episode, the confidence set Ck for θ˚ is con-
structed based on the feature vectors that have been col-
lected so far. For previous episode k1 ă k and the hori-
zon step h ď H , we denote the associated features by
φpsk1,h, ak1,h, s

1q “: φk1,h,s1 for s1 P Ssk1,h,ak1,h
p“: Sk1,hq.

Then from all previous episodes, we have tφk1,h,s1 : s1 P

Sk1,h, k
1 ă k, h ď Hu and the observed transition responses

of tyk1,huk1ăk,hďH . Let θ̂k be the estimate of the unknown
transition core θ˚ at the beginning of k-th episode, and sup-
pose that we are guaranteed that θ˚ lies within the confi-
dence set Ck centered at θ̂k with radius βk ą 0 with high
probability. Then for ps, aq P S ˆ A and for all h P rHs, we
construct the optimistic value function as follows:

Q̂k,H`1ps, aq :“ 0 ,

Q̂k,hps, aq :“ rps, aq ` max
θPCk

ÿ

s1PSs,a

ps,aps1, θqV̂k,h`1ps1q ,

(3)

where ps,aps1, θq “
exppφps,a,s1

q
Jθq

ř

rsPSk,h
exppφps,a,rsqJθq

and V̂k,hpsq :“

min
␣

maxa Q̂k,hps, aq, H
(

. Also, the confidence set Ck for
θ˚ is constructed as

Ck :“ tθ P Rd : }θ ´ θ̂k}Ak
ď βku

where radius βk is specified later, and the gram matrix Ak is
given for some λ ą 0 by

Ak “ λId `
ÿ

k1
ăk

hďH

ÿ

s1PSk1,h

φk1,h,s1φJ
k1,h,s1 . (4)

As long as the true transition core θ˚ P Ck with high
probability, the action-value estimates defined as (3) are op-
timistic estimates of the actual Q values. Based on these
action-values tQ̂k,huHh“1, in each h P rHs time step of
the k-th episode, the agent selects the optimistic action
ak,h “ argmaxaPA Q̂k,hpsk,h, aq. The full algorithm is
summarized in Algorithm 1.

Closed-Form UCB. When we construct the optimistic
value function as described in Eq.(3), it is required to solve
a maximization problem over a confidence set. However, an
explicit solution of this maximization problem is not neces-
sary. The algorithm only requires the estimated action-value
function to be optimistic. We can use a closed-form confi-
dence bound instead of computing the maximal θ over the
confidence set. Also, we can verify that the regret bound in
Theorem 1 still holds even when we replace Eq.(3) with the
following equation: for all h P rHs,

Q̂k,hps, aq “ rps, aq `
ÿ

s1PSs,a

ps,aps1, θ̂qV̂k,h`1ps1q

` 2Hβk max
s1PSs,a

}φps,a,s1q}A´1
k
.

(5)
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Regret Bound for UCRL-MNL Algorithm
In this section, we present the regret upper-bound of
UCRL-MNL. We first start by introducing the standard reg-
ularity assumptions.
Assumption 2 (Feature and Parameter). For some positive
constants Lφ, Lθ ą 0, we assume that for all ps, aq P S ˆA
and s1 P Ss,a, }φps, a, s1q}2 ď Lφ. Also, }θ˚}2 ď Lθ.

Note that this assumption is used to make the regret
bounds scale-free for convenience and is in fact standard in
the literature of RL with function approximation (Jin et al.
2020; Yang and Wang 2020; Zanette et al. 2020).
Assumption 3. There exists 0 ă κ ă 1 such that for all
ps, aq P S ˆ A and s1, s2 P Ss,a and for all k P rKs, h P

rHs, infθPRd pk,hps1, θqpk,hps2, θq ě κ.

Assumption 3 is equivalent to a standard assumption in
generalized linear contextual bandit literature (Filippi et al.
2010; Désir, Goyal, and Zhang 2014; Li, Lu, and Zhou 2017;
Oh and Iyengar 2019; Kveton et al. 2020b; Russac, Cappé,
and Garivier 2020; Oh and Iyengar 2021) to guarantee the
Fisher information matrix is non-singular and is modified to
suit our setting.

Under these regularity conditions, we state the regret
bound for Algorithm 1.
Theorem 1 (Regret bound of UCRL-MNL). Suppose that As-
sumptions 1-3 hold. For δ P p0, 1q, if λ ě L2

φ and βkpδq “

1
κ

b

d log
`

1 ` kHU
dλ

˘

` 2 log 1
δ ` 1

κ

?
λLθ, then with proba-

bility at least 1 ´ δ, the cumulative regret of the UCRL-MNL
policy π is upper-bounded by

RegretπpKq “ rO
´

κ´1d
?
H3T

¯

.

Discussion of Theorem 1. In terms of the key prob-
lem primitives, Theorem 1 states that UCRL-MNL achieves
rOpd

?
H3T q regret. To our best knowledge, this is the first

result to guarantee a regret bound for the MNL model of
the transition probability kernel. Among the existing model-
based methods with function approximation, the most re-
lated method to ours is a bilinear matrix-based algorithm
in (Yang and Wang 2020). (Yang and Wang 2020) shows
rOpd3{2H2

?
T q regret under the assumption that the tran-

sition probability can be a linear model parametrized with
an unknown transition core matrix. Hence, the regret bound
in Theorem 1 is sharper in terms of dimensionality and the
episode length. Furthermore, as mentioned in Proposition 1,
the regret bound in (Yang and Wang 2020) contains addi-
tional |S| dependence. Therefore, our regret bound shows
an improved scalability over the method developed under a
similar model. On the other hand, for linear mixture MDPs
(Jia et al. 2020; Ayoub et al. 2020; Zhou, Gu, and Szepes-
vari 2021), the lower bound of ΩpdH

?
T q has been proven

in (Zhou, Gu, and Szepesvari 2021). Hence, noting the to-
tal dimension of the unknown parameter, the dependence on
dimensionality as well as dependence on total steps matches
the corresponding dependence in the regret bound for lin-
ear MDP (Zhou, Gu, and Szepesvari 2021). This provides a
conjecture that the dependence on d and T in Theorem 1 is

best possible although a precise lower bound in our problem
setting has not yet been shown.

Proof Sketch and Key Lemmas
In this section, we provide the proof sketch of the regret
bound in Theorem 1 and the key lemmas for the regret anal-
ysis. In the following lemma, we show that the estimated
transition core θ̂k concentrates around the unknown transi-
tion core θ˚ with high probability.
Lemma 1 (Concentration of the transition core). Suppose
that Assumptions 1-3 hold. For given δ P p0, 1q, let radius

βkpδq “ 1
κ

b

d log
`

1 ` kHU
dλ

˘

` 2 log 1
δ ` 1

κ

?
λLθ. Suppose

θ̂k is the solution to the regularized MLE in Eq.(2) at the k-
th episode. Then with probability at least 1 ´ δ, the true
transition core θ˚ lies in the confidence set

Ck “

!

θ P Rd : }θ ´ θ̂k}Ak
ď βkpδq

)

.

Then, we show that when our estimated parameter θ̂k is
concentrated around the transition core θ˚, the estimated
upper confidence action-value function is deterministically
greater than the true optimal action-value function. That is,
the estimated Q̂k,hps, aq is optimistic.
Lemma 2 (Optimism). Suppose that Lemma 1 holds for all
k P rKs. Then for all ps, aq P S ˆ A and h P rHs, we have

Q˚
hps, aq ď Q̂k,hps, aq .

This optimism guarantee is crucial because it allows us to
work with the estimated value function which is under our
control rather than working with the unknown optimal value
function. Next, we show that the value iteration per step is
bounded.
Lemma 3 (Concentration of the value function). Suppose
that Lemma 1 holds for all k P rKs. For δ P p0, 1q and for
any h P rHs, we have

Q̂k,hpsk,h, ak,hq ´

”

rpsk,h, ak,hq ` PhV̂k,h`1psk,h, ak,hq

ı

ď 2Hβk max
s1PSk,h

}φk,h,s1 }A´1
k
.

With these lemmas at hand, by summing per-episode re-
grets over all episodes and by the optimism of the estimated
value function, the regret can be bounded by the sum of
confidence bounds on the sample paths. All of the detailed
proofs are included in the appendix.

Numerical Experiments

In this section, we evaluate the performances of our pro-
posed algorithm, UCRL-MNL in numerical experiments.

s1 s2 ... sn´1 sn
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Figure 2: The “RiverSwim” environment with n states
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Figure 1: Episodic returns over 10 independent runs under the different RiverSwim environments

The RiverSwim environment (Osband, Russo, and
Van Roy 2013) is considered to be a challenging problem
setting where naı̈ve dithering approaches, such as the ϵ-
greedy policy, are known to have poor performance and
require efficient exploration. The RiverSwim environment
consists of n states (i.e., |S| “ n) lined up in a chain, with
the number on each of the edges representing the transition
probability. Starting in the leftmost state s1, the agent can
choose to swim to the left — whose outcomes are repre-
sented by the dashed lines — and collect a small reward.
i.e., rps1, leftq “ 0.05. Or, the agent can choose to swim
to the right — whose outcomes are represented by the solid
lines — in each succeeding state. The agent’s goal is to max-
imize its return by attempting to reach the rightmost state sn
where a large reward rpsn, rightq “ 1 can be obtained by
swimming right.

Since the objective of this experiment is to see how effi-
ciently our algorithm explores compared to other provably
efficient RL algorithms with function approximation, we
choose both model-based algorithms, UC-MatrixRL (Yang
and Wang 2020) and UCRL-VTR (Ayoub et al. 2020) and
model-free algorithms, LSVI-UCB (Jin et al. 2020) and
LSVI-PHE (Ishfaq et al. 2021) for comparisons.

We perform a total of four experiments while increas-
ing the number of states for RiverSwim. To set the hyper-
parameters for each algorithm, we performed a grid search
over certain ranges. In each experiment, we evaluated the al-
gorithms on 10 independent instances to report the average
performance. First, Figure 1 shows the episodic return of
each algorithm over 10 independent runs. When the number
of states is small (e.g., |S| “ 6), it can be seen that not only

our algorithm but also other model-based algorithms learn
the optimal policy relatively well. However, our algorithm
UCRL-MNL clearly outperforms the existing algorithms. As
the number of states increases (e.g., |S| “ 20), we observe
that our algorithm reaches the optimal values remarkably
quickly compared to the other algorithms, outperforming the
existing algorithms by significant margins.

Methods |S| “ 6, H “ 24 |S| “ 20, H “ 80

Optimal Policy 513.70 ˘ 39.67 1816.50 ˘ 79.89

UCRL-MNL 492.64 ˘ 32.23 1777.11 ˘ 99.23
UC-MatrixRL 372.47 ˘ 18.04 682.15 ˘ 64.41
UCRL-VTR 191.72 ˘ 68.47 15.76 ˘ 0.848
LSVI-UCB 7.52 ˘ 5.284 10.97 ˘ 1.813
LSVI-PHE 5.15 ˘ 1.506 10.17 ˘ 0.139

Table 1: Average returns over 10 independent runs in River-
Swim environments

Table 1 shows the average cumulative reward over the
episodes of each algorithm for 10 independent runs. The
proposed algorithm has an average cumulative reward simi-
lar to that of the optimal policy across all problem settings.
The results of these experiments provide evidence for the
practicality of our proposed model and proposed algorithm.
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