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Abstract

We study the problem of explainability-first clustering where
explainability becomes a first-class citizen for clustering. Pre-
vious clustering approaches use decision trees for explana-
tion, but only after the clustering is completed. In contrast,
our approach is to perform clustering and decision tree train-
ing holistically where the decision tree’s performance and
size also influence the clustering results. We assume the at-
tributes for clustering and explaining are distinct, although
this is not necessary. We observe that our problem is a mono-
tonic optimization where the objective function is a difference
of monotonic functions. We then propose an efficient branch-
and-bound algorithm for finding the best parameters that lead
to a balance of cluster distortion and decision tree explain-
ability. Our experiments show that our method can improve
the explainability of any clustering that fits in our framework.

Introduction
Explainable AI is becoming critical as AI is widely used in
our everyday lives. A fundamental issue is that models are
usually optimized for accuracy before being explained. As
a result, significant effort is needed to make sense out of
trained models, especially for complex ones. Even so, the
explainability may not be sufficient to fully trust.

Instead, we contend that explainability must be a first-
class citizen instead and focus on unsupervised learning.
In particular, we propose the new problem explainable-first
clustering where clustering is performed while balancing ac-
curacy and explainability. As a motivating example, con-
sider a temporal relational database that shows credit card
spending trends for customers. In order to identify the key
trends, a straightforward approach is to cluster the trends
by Euclidean or Dynamic Time Warping (DTW) (Berndt
and Clifford 1994) distances. However, when explaining the
clusters, each cluster may be a collection of a wide range of
customer demographics, which makes it difficult to explain
concisely. Instead, we would also like the clusters to be easy
to describe as well.

More formally, we assume that the clustering is explained
using decision trees, a problem that has attracted signif-
icant interest lately under the name of explainable clus-
tering (Moshkovitz et al. 2020; Laber and Murtinho 2021;
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Makarychev and Shan 2021; Gamlath et al. 2021; Bandya-
padhyay et al. 2022). We consider smaller decision trees
(i.e., they have fewer nodes) to be more explainable as they
are easier to read (Lipton 2018). The features that are used
for clustering are not necessarily the same as the ones for
training the decision tree as in our motivating example. Our
goal is to perform any clustering while ensuring that the de-
cision tree trained on the clusters is as small as possible.
There is a natural tradeoff between the cluster distortion and
explainability, which we attempt to balance by solving an
optimization problem. We call our method XClusters as it
explicitly optimizes for explainable clusters.

We note that most explainable clustering approaches as-
sume a fixed reference clustering where the clustering is
performed before being explained (Moshkovitz et al. 2020;
Laber and Murtinho 2021; Makarychev and Shan 2021;
Gamlath et al. 2021). Hence, the goal is to minimize the er-
ror of the decision tree that classifies examples to clusters.
Even for a recent work that removes outliers from clusters
for better explainability (Bandyapadhyay et al. 2022), the
clustering is still done prior to outlier removal. In addition,
if the data does not have many outliers, then removing data
for the sake of explainability may result in incorrect cluster-
ing. While these approaches have the advantage of requiring
little work on the clustering side, we contend that explain-
ability must be incorporated in the clustering itself rather
than using a single reference clustering for a truly explain-
able clustering. XClusters is thus an orthogonal approach to
existing explainable clustering techniques where it can plug
in any decision tree training within the novel holistic opti-
mization of clustering and decision tree training.

Figure 1 illustrates how XClusters can trade off the clus-
ter distortion for better explainability. Suppose that there
are time-series trends that need to be clustered, but also
explained using separate demographic features A, B, and
C. Suppose that clustering by trend and then training a de-
cision tree on top of the clusters results in the top figure.
While most explainable clustering works take this approach,
XClusters can further explore scenarios where the clustering
also reflects demographic similarity and results in a smaller
decision tree (bottom left) or the number of clusters is in-
creased to reduce their distortion (bottom right). Notice that
these two objectives affect each other and thus cannot be
achieved separately. For example, reducing the cluster dis-
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Figure 1: XClusters’ strategy for training a decision tree dur-
ing clustering. There are two objectives: reduce the cluster
distortion for better clustering and reduce the decision tree
nodes for better explainability. XClusters adjusts the num-
ber of clusters and ratio between accuracy and explainability
features (explained later) to balance the objectives.

tortion results in a larger decision tree. The end goal is to
minimize the decision tree’s size and the distortion together.

Our problem is a global optimization that is not convex.
However, we make the interesting observation that the ob-
jective function is a difference-of-monotonic functions. We
exploit this information and utilize existing monotonic opti-
mization techniques (Matthiesen et al. 2020; Hellings et al.
2012), but tailor them to our problem setup. In particular, we
propose an efficient branch-and-bound algorithm that tunes
the parameters.

In our experiments, we evaluate XClusters on various real
time series relational datasets and show how it outperforms
baselines that explain only after clustering or perform global
optimization without exploiting monotonicity.

Preliminaries
Explainability has been studied extensively (Ribeiro, Singh,
and Guestrin 2016), but is fundamentally a subjective no-
tion that depends on whether it is useful to users. Even for
decision trees, the common view is that it is explainable, but
others disagree as decision trees can be arbitrarily complex
and large. In addition, even if there is some explainability,
there are few proposals on how to quantify it.

Explainability Measure We thus propose a concrete ex-
plainability measure for understanding clustering results.
Suppose that there is a decision tree that is trained to classify
examples to clusters. We measure the explainability of the
decision tree using the classification accuracy and the size
of the decision tree. A decision tree can only be explainable
if it is accurate in the first place. In addition, the smaller the
decision tree, the easier it is to read (Lipton 2018). If we as-
sume an acceptable minimal accuracy of an explainable de-
cision tree, then explainability can be measured as the size
of the tree that has at least that accuracy. We measure the

Accuracy Features Explainability Features

Time Amount Age range Zip code Online

0:50 50 10–20 456 Yes
2:00 300 30–40 123 No
2:30 200 50–60 999 No

Table 1: A sample credit card transaction table where each
row contains a timestamp, transaction amount, and demo-
graphic features of the user. If we would like to analyze com-
mon spending trends and explain with demographics, then
the time and amount columns become the accuracy features,
and the others the explainability features.

size of a decision tree by counting its nodes. Although other
approaches count the number of levels, a tree that is shallow,
but very bushy, may be difficult to understand.

Accuracy and Explainability Features We assume there
are two groups of features: accuracy features and explain-
ability features. The accuracy features are meant to maxi-
mize the clustering accuracy and thus lower cluster distor-
tion. For example, if we are clustering time-series data, then
the trends over time become the accuracy features. On the
other hand, the explainability features are used to train a de-
cision tree to classify examples to clusters for explanation.
For example, if the time-series data is also relational with
person attributes, then we can train a decision tree using
the person attributes as the explainability features as illus-
trated in Table 1. This type of data is common in finance
(e.g., credit card companies or investment banks) or shop-
ping (e.g., Amazon) industries where credit card transac-
tions, stock values, and item purchases for certain demo-
graphics need to be analyzed over time. We assume that the
two groups of features are not identical where clustering on
the accuracy features leads to clusters with less distortion
than when clustering on the explainability features for ex-
plaining purposes. It is still possible to use the same set of
features for both accuracy and explainability, but then the
distance functions applied on the features must be different
in order to adjust the explainability during clustering. Our
setup is not limited to time-series relational data and can be
applied to various types of data including image data with
metadata or any relational data.

Clustering We assume any clustering algorithm (Jain,
Murty, and Flynn 1999) that uses a distance function for
clustering. We are thus not limited to a specific algorithm,
although we do assume the clustering uses a distance func-
tion. As a default, we use DTW as the distance function as
it is widely used and effective in identifying similar trends.
We also use k-medoids clustering (Kaufman and Rousseeuw
2008) as a default as it works naturally with DTW distances.
When measuring distortion, we take the sum of squares of
DTW distances from the examples to their closest center
points. The center point of a cluster is its clustroid, which
is the example with the lowest mean squared distances to
the rest of the points in the cluster. Note that we cannot use
centroids because we do not assume a Euclidean space.
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For the distance function, there are two distances using the
accuracy features (a-distance) and explainability features (e-
distance). For example, one can use DTW for the trend dis-
tance and Jaccard distance for the explainability distance. A
straightforward combination of the two measures is to nor-
malize them and then take a weighted sum where α is a pa-
rameter used for the balancing:

(1− α)× a-distance
max{All a-distances}

+
α× e-distance

max{All e-distances}

Decision Tree Training We use decision trees to explain
the clustering as they are widely considered more inter-
pretable than other models. An alternative way to explain
clusters is to use rule-based approaches. For example, a gen-
eral boolean formula (GBF) (Singh et al. 2017) is an if-then-
else rule that can succinctly describe a cluster. XClusters can
possibly be extended to GBFs because they can also be ex-
pressed as decision trees.

Our framework is agnostic to the decision tree training
algorithm. Although one can use recent techniques that at-
tempt to optimize the decision tree to the clustering, it is also
fine to use any other algorithm. What matters is the relative
size of the decision trees, which we would like to minimize.

Problem Definition
We formulate our problem as minimizing two values: (1) D,
which we define as the cluster distortion where a lower value
is better as we would like the clusters to be coherent and (2)
N , which we define as the number of decision tree nodes.
Given that the decision tree’s accuracy is sufficiently high,
a smaller number of nodes is better as it means the decision
tree is easy to read and thus explainable (Lipton 2018).

min
k,α

D(k, α) + λN(k, α) (1)

where we omit the normalization of D and N for brevity.
We use two parameters to adjust D and N : k is the num-

ber of clusters, and α is used to balance the accuracy and ex-
plainability distances as explained above. k is suitable when
using clustering algorithms like k-medoids, k-means, or hi-
erarchical clustering, but one can use a different parameter
depending on the clustering algorithm.

Without any assumptions, this global optimization prob-
lem is non-convex. In addition, the D and N objectives are
not independent. For example, if we increase k in order to
decrease D, that also means N is likely to increase due to
more clusters. While one can use black-box optimization
techniques like Bayesian Optimization (Mockus 1974), we
instead utilize monotonicity properties between the parame-
ters and objectives for faster optimization as we explain from
the next section.

Monotonic Optimization
We propose two practical monotonicity properties of the D
and N objectives, which enable fast optimization.

• As k increases,D is decreasing whileN is increasing. As
k increases, there are more clusters, which means they

tend to be smaller on average, causing the distortion to
decrease. However, it becomes more difficult for a deci-
sion tree to precisely classify examples into the clusters.

• As α increases, D is increasing while N is decreasing.
As α increases, the distance function is more about the
explainability feature distance, so the clusters become
less compact, causing the distortion to increase. On the
other hand, the decision tree can be trained easier and
thus requires fewer nodes to be sufficiently accurate.

In general, the monotonocity properties are not guaran-
teed to hold due to incomplete and imperfect data. For exam-
ple, an increase in k could suddenly cause one of the clusters
to increase in size and thus increase the overall distortion. Or
an increase in α may actually make the clusters more com-
pact because the explainability features happen to be more
effective than the accuracy features in reducing distortion.

However, our approach is inspired by learning lattice net-
works using partial monotonic functions (Gupta et al. 2016;
You et al. 2017) where models are trained with monotonic-
ity assumptions on model predictions against certain input
features using domain knowledge. For example, if users
are searching for restaurants on a website, it is reasonable
to assume that they will more likely click on restaurants
with higher ratings although there are exceptions where a
user may want to explore new restaurants with lower rat-
ings. Using this property is said to result in more accurate
and flexible model training. Another analogy can be found
in k-means clustering where an elbow method uses binary
searching to find a k value assuming that a larger k results in
a lower cluster distortion, even though there is no absolute
guarantee of this trend. Likewise, our monotonicity proper-
ties can be thought as domain knowledge where given com-
plete data, they should hold. In the worst case, XClusters
will return a sub-optimal result while still being efficient. In
our experiments on real datasets, we empirically show that
the monotonicity properties mostly hold.

Using the monotonicity properties, we can re-formulate
our problem into a monotonic optimization. Notice that in-
creasing or decreasing k and α have opposite affects on
D and N . We can thus rewrite the objective function of
minimizing D(k, α) + λN(k, α) as minimizing F (k, α) −
G(k, α) where F captures the decreasing D and λN values
when α and k increase, respectively, and G captures the de-
creasing D and λN values when α and k decrease, respec-
tively. We cannot directly compute F and G as they are em-
bedded inD andN , but we only require their existence. The
new formulation is then a difference of two monotonically
increasing functions, which is a well-known optimization
problem (Alizamir 2009). Hence, our optimization problem
can also be written as:

min
k,α

F (k, α)−G(k, α) (2)

where F and G are decreasing functions of k and α.

Methodology: XClusters
We now solve the monotonic optimization problem effi-
ciently. There are largely two known methods for solv-
ing a difference-of-monotonic (DM) function problem: the
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Algorithm 1: XClusters algorithm
Input: training data S, maximum k value kmax

Parameters: k, α
Output: clusters and decision tree

1: B ← [(1, 0), (kmax, 1)]
2: Compute upper and lower bounds of B
3: B∗ ← B
4: Q.push(B)
5: while ¬Q.empty() do
6: B ← Q.pop() // Block with lowest lower bound
7: if B’s normalized k width is longer than the normal-

ized α width then
8: {B1, B2} ← Split B by k into two blocks
9: else

10: {B1, B2} ← Split B by α into two blocks
11: Compute upper and lower bounds of B1 and B2

12: Q.push({B1, B2})
13: if minB∈QB.upper() < B∗.upper() then
14: B∗ ← argminB∈QB.upper()
15: Q← Q \ {B′ ∈ Q|B′.lower() + εb ≥ B∗.upper()}
16: return Clusters and decision tree of B∗.upper()

Polyblock algorithm (Alizamir 2009; Tuy 2000; Tuy, Al-
Khayyal, and Ahmed 2001) and branch-and-bound algo-
rithm (Tuy, Minoux, and Hoai-Phuong 2006; Tuy 2005). The
Polyblock algorithm is originally used to solve problems
with monotonic objective functions and normal set con-
straints, which satisfies the condition that for any x, y ∈ Rn,
x ∈ S and y ≤ x implies that y ∈ S where S is a normal
set (Cheon, Al-Khayyal, and Ahmed 2005). A DM problem
can be converted to a monotonic optimization problem by
introducing an auxiliary dimension. However, the Polyblock
algorithm is known to be slow in practice (Hellings et al.
2012). Another popular method is the branch-reduce-and-
bound (BRB) algorithm, which uses a branch-and-bound
strategy to search parameters, but also has a reduce stage
to improve convergence. The BRB algorithm is known to be
faster than Polyblock and is thus more widely used.

We propose an efficient algorithm based on the branch-
and-bound algorithm that is suitable for our problem (see
Algorithm 1). Our algorithm extends a branch-and-bound al-
gorithm (Hellings et al. 2012) that does not assume normal
set constraints. The goal is to minimize the objective score
D + λN by iteratively searching blocks of k and α ranges.

For each block, we compute a lower and upper bound of
the objective score. The conventional way to find a lower
bound of a block is to subtract the F value at the bottom-
left point by the G value at the top-right point exploiting the
monotonicity properties. However, in our setting, we do not
know the exact F and G functions and need to compute the
lower bound using D and N only. Suppose that the bottom-
left point is (k1, α1), the top-right point (k2, α2), and k ∈
[k1, k2] and α ∈ [α1, α2]. We know that

F (k, α)−G(k, α) = D(k, α) + λN(k, α)

≥ D(k2, α) + λN(k1, α)

≥ D(k2, α1) + λN(k1, α2).

B2

B4
B2

B5

B3B1

8

α

k

1

0
1

Figure 2: The XClusters algorithm iteratively splits blocks
while pruning blocks that are not worth exploring based on
their lower and upper bounds.

We thus use D(k2, α1) + λN(k1, α2) as the lower bound.
Notice that we need to perform clustering and decision tree
training to compute each of theD andN values, so minimiz-
ing the number of these trainings is important for efficiency.
The upper bound can be computed by computing D(k, α)+
λN(k, α) on an arbitrary point in the block. To save com-
putation, we use the minimum of D(k2, α1) + λN(k2, α1)
andD(k1, α2)+λN(k1, α2), whose components are already
computed at this point to derive the lower bound. We avoid
redundant clustering and decision tree training by keeping
track of all (k, α) results.

We iteratively split the block with the lowest lower bound
score by its longer normalized width until there is no block
to split. When splitting by α, we simply divide the α
range in half. When splitting by k, we split [k1, . . . , kn]
into [k1, . . . , kbn2 c] and [kbn2 c, . . . , kn]. Starting the second
range with kbn2 c instead of kbn2 c+1 is intentional to save
computation when computing lower and upper bounds of
the split blocks. After generating two blocks B1 and B2,
we check if they can be pruned. Notice that a block’s upper
bound is an actual objective score for some parameter val-
ues while the lower bound is potentially lower than the ac-
tual lowest objective score. We thus discard any block whose
lower bound plus some tolerance εb is larger than or equal to
any upper bound of another block. Using a higher εb results
in more pruning at the cost of a sub-optimal result.

As a running example, suppose the algorithm starts with
k ∈ [1, 2, . . . , 8] where kmax = 8, α ∈ [0, 0.1, 0.2, . . . , 1],
and εb = 0.1 (see Figure 2). The entire block is denoted as
B1 = [(k = 1, α = 0), (8, 1)]. Suppose we split B1 into
B2 = [(1, 0), (4, 1)] and B3 = [(4, 0), (8, 1)], and they have
lower and upper bound ranges of [0.3, 0.4] and [0.2, 0.5], re-
spectively. Then, B∗ = B2 because B2 has a smaller upper
bound. We next split B3 as it has a smaller lower bound. If
the resulting blocks B4 and B5 have lower bounds at least
B∗.lower() + εb = 0.4 + 0.1 = 0.5, we can prune them as
we know B∗ is a better block. We continue until Q is empty
and then return the clustering and decision tree of B∗’s up-
per bound result.

The complexity of Algorithm 1 to obtain an εb-optimal
solution can be derived using Theorem 4 in (Vavasis 1995)

and is O
((

p
εb

) 2
q

)
assuming that D + λN is q-times dif-

ferentiable, and the qth derivative is bounded by p. Here q
and p can be viewed as constants that depend on the proper-
ties ofD+λN (Hellings et al. 2012). This result shows how
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fast XClusters optimizes when monotonicity holds perfectly.
The less monotonicity holds, the worse XClusters performs.

Experiments
Datasets We use three real time series relational datasets.

• Credit Card: a proprietary dataset used in a major pay-
ment processing company. This dataset contains transac-
tions of the credit card users before and after the COVID-
19 outbreak (Dec. 2019 – Jan. 2021) containing 5.7 bil-
lion transactions amounting to $120B USD. The trans-
actions include online or offline purchases made by each
age group and gender for different business categories.
We consider 2,551 demographics. We take a 90-day mov-
ing average of the time-series data.

• DS4C (Kim 2020): a public COVID-19 dataset contain-
ing patient data, policy data, and provincial data released
by the Korea Centers for Disease Control & Prevention
(KCDC). We use floating population data of the city of
Seoul for each age and gender group (Jan. 2020 – May
2020). We take a 7-day moving average as the floating
population data shows a cyclic pattern on a weekly basis.

• Contracts (Linville 2022): a public contract dataset main-
tained by the State of Washington. There are 170K con-
tracts where each one contains customer, contract, ven-
dor, and sales information.

For the three datasets, the accuracy features are the time-
series trends – transaction amounts, population, and sales,
respectively – while the explainability features are the de-
mographics information.

Measures To evaluate a decision tree, we compute a
weighted F1 score on how it classifies examples to clus-
ters. We weight each example in the Credit Card, DS4C, and
Contracts dataset by its transaction amount, population, and
sales amount, respectively. In our technical report (2022), we
also use the Accuracy measure and obtain similar results.

Methods Compared We compare XClusters with base-
lines that represent the state-of-the-art approaches.

• 2-Step: Performs clustering and then trains a decision tree
on the clusters. This approach represents previous works
that assume fixed reference clusters where a decision tree
can only be trained afterwards. We use the same cluster-
ing and decision tree training algorithms used for XClus-
ters and set α = 0. We also fix k using an elbow method.

• Grid Search (GS): Performs clustering and decision tree
training using all the possible k values considered by
XClusters and a fixed set of α values in the range
[0, 0.05, 0.1, . . . , 1].

• Bayesian Optimization (BO) (Mockus 1974): Performs
clustering and decision tree training using Bayesian Op-
timization for tuning k and α. BO is widely used for hy-
perparameter tuning and has an O(n3) complexity where
n is the number of observations. We set the initial num-
ber of examples to explore and the number of iterations
to be within the range [10, 30] and tune it to ensure a fair
comparison with XClusters.

(a) k versus D (b) k versus N

(c) α versus D (d) α versus N

Figure 3: Monotonic relationships between k and α, and the
normalized objectives D and N for the three datasets.

Other settings We use Scikit-learn (Pedregosa et al. 2011)
for the decision tree training (we also evaluate with
(Moshkovitz et al. 2020) in our technical report (2022)).
For simplicity, we always make the decision tree overfit
on the clusters and thus obtain perfect accuracy in classi-
fying examples into clusters. We use the k-medoids algo-
rithm (Kaufman and Rousseeuw 2008) for clustering. Be-
fore performing any clustering, we compute the pairwise
DTW distances between all example pairs. We search k
within the range [3, 4, . . . , 11] for all datasets. For XClus-
ters, we set λ = 1, and εb = 0.05 as default values. We
repeat each experiment 10 times. All experiments are per-
formed on a server with Intel Xeon Gold 5115 CPUs.

Monotonicity Properties
We empirically verify the monotonocity assumptions, which
form the basis of our algorithm. Figure 3 shows the trends
between either k or α and D or N for all the three datasets.
For each k (α), we average the D or N values for all α (k)
values considered by the GS baseline. As a result, all the
trends are monotonic overall. However, some plots do have
occasional violations due to incompleteness in the data. In
our technical report (2022), we show similar monotonicity
results using other distance measures.

Explainability and Distortion Results
Table 2 compares XClusters with the other baselines in
terms of D + λN and runtime. Recall that when running
2-Step, we need to fix k using an elbow method by finding
the smallest k where the cluster distortion starts to converge.
For the three datasets, the elbow point turns out to be k = 5
or k = 6. Since 2-Step cannot adjust the clustering for bet-
ter explainability, it returns the worst results although it runs
the fastest. GS usually finds the lowest D + λN with its
brute-force searching, but does not outperform XClusters on
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Dataset Method D + λN D N Runtime (sec)

2-Step 1.005±0.000 0.166±0.000 0.840±0.000 0.426±0.034
Credit GS 0.625±0.000 0.391±0.000 0.234±0.000 64.455±0.506
Card BO 0.657±0.018 0.364±0.039 0.293±0.049 16.596±0.377

XClusters 0.656±0.000 0.385±0.000 0.271±0.000 6.336±0.104

DS4C

2-Step 0.803±0.000 0.101±0.000 0.703±0.000 0.009±0.004
GS 0.494±0.000 0.193±0.000 0.301±0.000 1.359±0.026
BO 0.537±0.078 0.126±0.005 0.152±0.034 1.554±0.140

XClusters 0.547±0.000 0.216±0.000 0.331±0.000 0.122±0.001

Contracts

2-Step 0.916±0.000 0.103±0.000 0.814±0.000 0.012±0.001
GS 0.644±0.000 0.268±0.000 0.375±0.000 1.906±0.044
BO 0.650±0.002 0.270±0.004 0.381±0.016 7.265±0.562

XClusters 0.644±0.000 0.268±0.000 0.375±0.000 0.197±0.015

Table 2: Detailed comparison of XClusters and the three baselines – 2-Step, GS, and BO – using the default parameters. For
each result, we show D + λN , D, N , and runtime in seconds. We repeat all experiments 10 times and take average values.

(a) Varying k and α (b) Varying λ

Figure 4: D and N tradeoffs on the datasets by varying the
k, α, and λ parameters.

the Contracts dataset because it only considers a fixed num-
ber of α values whereas XClusters explores an infinite space
of values and can thus find better α values. When evalu-
ating BO, we adjust its initial number of examples so that
BO’sD+λN becomes similar to that of XClusters. As a re-
sult, BO obtains a slightly lowerD+λN than XClusters for
the DS4C dataset, but is 12x slower. In comparison, XClus-
ters exploits the monotonicity properties for fast searching.
Moreover, BO is strictly worse than XClusters for the other
datasets in terms of D + λN and runtime. While BO’s run-
time varies significantly depending on its number of initial
examples, XClusters does not need such tuning to find near-
optimal solutions.

Varying Parameters We study the effect of varying k, α,
and λ on the datasets. Figure 4a shows howD andN change
for different k and α values on the Credit Card dataset
where the two objectives tradeoff as expected according to
the monotonicity properties. Figure 4b shows how D and
N change against λ when taking the results of GS with the
lowest D+λN on the three datasets. A higher λ means that
there is more emphasis on explainability, and the decision
trees tend to be smaller (lower N ) with the risk of increas-
ing the cluster distortions (higher D).

Visualization We visualize clusterings and their deci-
sion trees generated from the Credit Card dataset using

Graphviz (Ellson et al. 2001) in Figure 5 (see technical re-
port (2022) for larger images). We show two results with low
D + λN scores: (a) k = 5, α = 0.45 and (b) k = 6, α =
0.75. The trees and clusters show how D and N can trade
off. We note that some clusters of trends look quite noisy,
but that is because the trends are clustered using DTW where
they do not have to perfectly align visually to be clustered.
Figure 5b’s tree is smaller than Figure 5a’s and is thus eas-
ier to understand. However, the clusters are relatively noisier
where similar trends end up in different clusters, for the sake
of a simpler decision tree. Which result is more desirable de-
pends on the application and can be configured with λ.

Runtime Varying εb
We compare XClusters’ runtime with the BO baseline while
varying εb, which determines how aggressively XClusters
prunes blocks. Table 3 shows that XClusters can be signifi-
cantly faster than BO on the three datasets while still having
a lower or comparable D + λN .

Related Work
Explainable AI is a broad field that attempts to explain
trained models (see many surveys (Doshi-Velez and Kim
2017; Lipton 2018; Tjoa and Guan 2020; Arrieta et al. 2020;
Molnar 2019)). There are many explaining techniques for
classifiers in general (Ribeiro, Singh, and Guestrin 2016,
2018; Wang et al. 2017; Lou, Caruana, and Gehrke 2012;
Adebayo et al. 2018). Most of these techniques attempt to
explain a model after the training is finished. In comparison,
our focus is to make a model explainable during its training.

A recent line of work focuses on training decision trees
on top of clustering for explanation. Explainable clus-
tering (Moshkovitz et al. 2020; Frost, Moshkovitz, and
Rashtchian 2020; Laber and Murtinho 2021; Makarychev
and Shan 2021; Gamlath et al. 2021) makes the k-means
and k-medians algorithm results interpretable by showing a
small decision tree that partitions the input data into clusters.
ExCut (Gad-Elrab et al. 2020) explains embedding-based
clustering results over knowledge graphs by also performing
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(a) k = 5, α = 0.45

(b) k = 6, α = 0.75

Figure 5: XClusters results on the Credit Card dataset for
two (k, α) configurations that have similar low D+λN val-
ues. (a) and (b) have 1,703 and 1,477 nodes, respectively,
and the visualizations demonstrate how D and N trade off.

rule mining. More recently, there is an emphasis in making
the explaining decision tree shallow (Laber, Murtinho, and
Oliveira 2021). However, these methods assume a fixed ref-
erence clustering (e.g., a k-means clustering result) and fit
a decision tree to that clustering. In comparison, XClusters
varies the reference clustering to possibly find more explain-
able decision trees. Another key difference is that XClusters
uses accuracy features for clustering and explainability fea-
tures for decision tree training although the two types of fea-
tures may overlap.

The most relevant work to XClusters is an outlier removal
method that removes outliers from clusters to make a de-
cision tree train accurately on them (Bandyapadhyay et al.
2022). Given a set of clusters, the objective is to find outlier
examples to remove and a decision tree that exactly explains
the clusters without the outliers. Here the explainability is
measured as how many examples need to be removed for a
perfectly-accurate decision tree. In contrast, we do not as-
sume that some data is incorrect and can be removed. In ad-
dition, we do not assume the clusters are given as an input,
but optimize the clustering itself for better explainability. An
interesting future work is to remove outliers and optimize
clustering for explainability together.

Monotonic optimization has been studied exten-
sively (Tuy 2000; Alizamir 2009; Cheon, Al-Khayyal,

Dataset Method εb D + λN Runtime (sec)

XClusters

0.01 0.625±0.000 9.330±0.019
0.05 0.656±0.000 6.336±0.104

Credit 0.10 0.656±0.000 3.278±0.017
Card 0.2 0.656±0.000 2.119±0.016

BO n/a 0.657±0.018 16.596±0.377

DS4C XClusters

0.01 0.547±0.000 0.166±0.023
0.05 0.547±0.000 0.122±0.001
0.10 0.547±0.000 0.081±0.003
0.2 0.547±0.000 0.045±0.002

BO n/a 0.537±0.078 1.554±0.140

Contracts XClusters

0.01 0.644±0.000 0.207±0.033
0.05 0.644±0.000 0.197±0.015
0.10 0.644±0.000 0.150±0.013
0.2 0.710±0.000 0.065±0.002

BO n/a 0.650±0.002 7.265±0.562

Table 3: Runtime comparison between XClusters and the
BO baseline while varying εb on the three datasets.

and Ahmed 2005; Tuy, Al-Khayyal, and Ahmed 2001;
Tuy, Minoux, and Hoai-Phuong 2006; Tuy 2005) where
its techniques have impacted signal processing applica-
tions (Hellings et al. 2012; Matthiesen et al. 2020). The
popular algorithm are the Polyblock and branch-reduce-
and-bound (BRB) algorithm where the latter is known to
be faster in practice. Our problem also falls into monotonic
optimization, and we specialize the BRB algorithm to our
setting. We note that our key contribution is identifying the
monotonicity properties in our problem setup, and utilizing
them for faster tuning.

Conclusion
To our knowledge, we are the first to propose an explainable-
first clustering technique where explainability is also a pri-
mary objective of clustering. Given features for clustering
and explaining, our XClusters framework minimizes the
cluster distortion and the size of the decision tree trained
to explain the clusters. We observed that our optimization is
a difference of monotonic functions and proposed a branch-
and-bound algorithm that efficiently finds the optimal num-
ber of clusters and distance function balancing ratio. We
empirically showed on real datasets how XClusters outper-
forms baselines that explain after clustering or use black-box
optimization without exploiting the monotonicity properties.
A future work is to apply our techniques on various other
types of data including images.
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