
NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension
Xin He1,4, Jiangchao Yao2,3, Yuxin Wang1, Zhenheng Tang1, Ka Chun Cheung1,4, Simon See2,4,6,7,

Bo Han1, Xiaowen Chu 5,1*
1 Hong Kong Baptist University
2 Shanghai Jiao Tong University

3 Shanghai AI Laboratory
4 NVIDIA AI Tech Center

5 The Hong Kong University of Science and Technology (Guangzhou)
6 Mahindra University
7 Coventry University

Abstract

One-shot neural architecture search (NAS) substantially im-
proves the search efficiency by training one supernet to
estimate the performance of every possible child architec-
ture (i.e., subnet). However, the inconsistency of character-
istics among subnets incurs serious interference in the op-
timization, resulting in poor performance ranking correla-
tion of subnets. Subsequent explorations decompose super-
net weights via a particular criterion, e.g., gradient matching,
to reduce the interference; yet they suffer from huge com-
putational cost and low space separability. In this work, we
propose a lightweight and effective local intrinsic dimension
(LID)-based method NAS-LID. NAS-LID evaluates the ge-
ometrical properties of architectures by calculating the low-
cost LID features layer-by-layer, and the similarity character-
ized by LID enjoys better separability compared with gradi-
ents, which thus effectively reduces the interference among
subnets. Extensive experiments on NASBench-201 indicate
that NAS-LID achieves superior performance with better effi-
ciency. Specifically, compared to the gradient-driven method,
NAS-LID can save up to 86% of GPU memory overhead
when searching on NASBench-201. We also demonstrate the
effectiveness of NAS-LID on ProxylessNAS and OFA spaces.
Source code: https://github.com/marsggbo/NAS-LID.

Introduction
Neural architecture search (NAS) (Elsken, Metzen, and Hut-
ter 2019; He, Zhao, and Chu 2021) has been widely used
to discover models automatically in various tasks (He et al.
2021; Liu et al. 2019; Ying et al. 2022; He et al. 2022).
Vanilla NAS (Zoph and Le 2017; Real et al. 2019) trains
and evaluates each architecture separately, which obtains the
true performance of all searched architectures at the cost of
substantial computations. One-shot NAS (Pham et al. 2018;
Liu, Simonyan, and Yang 2019) drastically reduces the cost
by training only one supernet as an estimator of the per-
formance of all subnets in the search space. However, the
subnets with inconsistent characteristics interfere with each
other during training in the shared supernet, resulting in in-
accurate estimation (Bender et al. 2018).

*Corresponding author: xwchu@ust.hk
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Layer Depth

5

10

15

20

25

30

35

40

45
High-acc Models Low-acc Models

LI
D

Figure 1: Layer-wise LID of sampled architectures in
NASBench-201. Each curve indicates a model. The LID
profiles of high-accuracy (>92%) models are arch-shaped
(i.e., first increasing and then decreasing), while those
of low-accuracy (<86%) models show an approximately
monotonically decreasing trend.

Recent works to reduce the interference among subnets
can be categorized into two groups. One is to treat all subnets
as student networks and use a well-designed teacher net-
work to force the similarity of their layer-wise outputs (Peng
et al. 2021; Xu et al. 2022b; Bashivan, Tensen, and Di-
Carlo 2019). However, Liu et al. (2020) empirically showed
that the optimal student would be different under different
teachers even trained on the same task and dataset. In other
words, choosing a different teacher will lead to quite differ-
ent results for the performance ranking of subnets. Instead,
few-shot NAS (Zhao et al. 2021; Hu et al. 2022) aggregates
the subnets with aligned inputs and outputs into the same
sub-supernet by splitting the supernet into multiple sub-
supernets. For example, GM-NAS (Hu et al. 2022) splits the
supernet via the gradient similarity between sub-supernets,
which achieves state-of-the-art (SOTA) performance. How-
ever, the gradients are high-dimensional and sparse data that
inevitably encounter the curse of dimensionality on space
separability. Our experiments in Sec. show that the gradi-
ent similarities among sub-supernets are very close, leading

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7839

to low separability. Besides, GM-NAS requires the forward
and backward processes for each sub-supernet before simi-
larity calculation, incurring huge GPU memory occupation
and high computational complexity.

To address the issue, we explore a different criterion,
namely local intrinsic dimension (LID) (Houle 2017), which
measures the minimal number of parameters to describe the
data representation learned from the model. We randomly
sample multiple models from NASBench-201 (Dong and
Yang 2020) and train them from scratch to obtain accurate
LID estimations of all layers. Fig. 1 presents LIDs against
relative depth, where the LID is orders of magnitude smaller
than the number of parameters per layer. Notably, the mod-
els with higher accuracy have arch-shaped LID profiles, i.e.,
LID first increases and then decreases, which has been sim-
ilarly observed in (Ansuini et al. 2019). On the other hand,
we show that the LID profiles of the models with lower
accuracy are monotonically decreasing, except for a slight
increase at relative depths of 0.3 and 0.7. If the LIDs of
two data are close, it means that they are close in the low-
dimensional manifold, as well as in high-dimensional space.
Models with similar LID profiles tend to have similar layer-
wise outputs. The observation implies that LID profiles can
capture the geometrical properties of architectures and de-
termine the intrinsic training dynamics.

Thus, we propose a new method NAS-LID, which lever-
ages LID to characterize the similarity among architectures
for NAS. Each time we compare all unpartitioned layers to
select the one with the highest partition score based on LID
(see Sec.). Then, we partition the candidate operations on
the selected layer into two sub-supernets. Iterating this par-
tition allows us to get smaller sub-supernets. Thanks to the
advantages of LID, we both effectively avoid the curse of di-
mensionality and reduce the computational cost in this pro-
cedure. In a nutshell, the contribution of this work can be
summarized as follows.

1. We are the first to provide a proof-of-concept for the po-
tential application of LID in splitting one-shot supernet,
and discover that the LID-based characterization exhibits
better space separability and higher performance ranking
scores than the gradient counterpart.

2. Compared to the gradient-based split scheme, we pro-
pose a novel method NAS-LID, which can significantly
reduce the GPU memory overhead (saving up to 86% of
GPU memory overhead on NASBench-201) and guaran-
tee the superior performance.

3. We demonstrate the effectiveness of NAS-LID by con-
ducting extensive experiments on multiple search spaces
(NASBench-201, ProxylessNAS, and OFA) and datasets
(CIFAR10, CIFAR100, and ImageNet).

Related Work
Neural Architecture Search
Vanilla NAS (Zoph and Le 2017; Zoph et al. 2018; Real et al.
2019) requires vast computational resources to find the best
architecture by training all sampled architectures and com-
paring their performance. One-shot NAS (Pham et al. 2018;

Liu, Simonyan, and Yang 2019; Cai, Zhu, and Han 2019)
uses a supernet to represent the search space, where each
possible architecture is a subnet, reducing the need to train
all subnets. However, subnets’ weights are coupled, causing
interference during training and resulting in inaccurate per-
formance predictions.

To reduce interference, one approach aligns the subnets’
outputs with those of a teacher network (Bashivan, Tensen,
and DiCarlo 2019; Peng et al. 2021; Xu et al. 2022b) us-
ing knowledge distillation (Hinton et al. 2015). For exam-
ple, Xu et al. (2022b) selected a top-performing subnet as
the teacher network to align other subnets, but this approach
may introduce innate biases, leading to unfair assessments
of model performance. Another approach is to split the su-
pernet into sub-supernets based on similar architecture char-
acteristics (Zhao et al. 2021; Hu et al. 2022; Su et al. 2021).
However, exhaustively dividing the supernet into hundreds
of sub-supernets can lead to high resource consumption.
GM-NAS (Hu et al. 2022) used gradient information at the
shared part of sub-supernets to partition the supernet, but
it suffers from the curse of dimensionality due to the high-
dimensional and sparse gradients.

Intrinsic Dimension
Intrinsic dimension (ID) represents the necessary degrees
of freedom of a high-dimensional data space with mini-
mal information loss. Researchers have designed ID esti-
mators (Campadelli et al. 2015; Houle 2017) for different
tasks to analyze complex and sparse high-dimensional data
in deep neural networks. For example, Xu et al. (2022a) use
ID for adversarial detection to tackle heterogeneous label
noise, while Li et al. (2018) leverage ID to estimate objec-
tive landscapes and approximate the model’s training in a
random subspace. Recently, Aghajanyan, Gupta, and Zettle-
moyer (2021) reduce parameter sizes for fine-tuning large
language models using ID. In this work, we use LID (Houle
2017) to estimate ID, as it avoids expensive matrix opera-
tions by requiring only an ordered list of neighbor distances.
We are the first to introduce LID for NAS as a promising
criterion to achieve efficient NAS.

Methods
In this work, we propose a lightweight and effective LID-
based method, NAS-LID, to show that LID can facilitate the
separability of search space and thus improve the perfor-
mance ranking correlation of subnets. In this section, we first
introduce the LID and its estimation method. Then, we de-
scribe our proposed NAS-LID in two parts: 1) why and how
we use LID for architecture characterization, and 2) how we
split the supernet by LID similarity.

Preliminary of Local Intrinsic Dimension
LID (Houle 2017) measures the ID of data representations
in deep networks, without accessing the underlying global
data distribution, which can be defined as follows.

Definition 1 (Local Intrinsic Dimension (Houle 2017)).
Given a random variable R, denoting the distance from a

7840

Supernet

...

...

sub-Supernet-2 Partition

...

sub-Supernet-1 Partition

... ...

sub-Supernet-1 sub-Supernet-2

LID Similarity Matrix
of sub-Supernets

1.0

1.0

0.1 0.8 0.2

0.90.10.1

0.1 0.31.00.8

0.9 1.00.30.2 partition score: 1.7
LI

D

Supernet Partition

LID LID LID LID

... ...

Layer1

Layer2

LayerL

0.8

0.9

op1

op2

op3

op4

Figure 2: An illustration of the supernet partition method via local intrinsic dimension (LID). We compare all unpartitioned
layers and only select the layer with the highest partition score to split the supernet. Taking the first layer as an example, we
can split the operations into four different sub-supernets, each characterized by layer-wise LID. We calculate the similarity
between LIDs of these sub-supernets and divide the operations into two groups by maximizing the sum of intra-similarity of
two groups (i.e., partition score). Finally, we merge the operations of the same group to form two sub-supernets. We can obtain
more sub-supernets by iterating the above steps on generated sub-supernets.

reference sample to other samples. For any distance thresh-
old r such that the cumulative distance function FR(r) is
positive and continuously differentiable at r, then the LID of
the reference sample at distance r is given by

LIDR(r) ≜ lim
ϵ→0+

ln(FR((1 + ϵ) · r)/FR(r))

ln((1 + ϵ) · r/r)

=
r · F ′

R(r)

FR(r)

(1)

The last line of Eq. (1) gives a low-dimensional computa-
tion of the sub-manifold in the limit. A popular empirical
estimation from (Amsaleg et al. 2015) is maximum likeli-
hood estimator (MLE). Specifically, given a reference data
sample x ∼ X, where X represents the data distribution, the
MLE estimator of the LID at x is defined as follows:

L̂ID(x) = −

(
1

k

k∑
i=1

ln
ri(x)

rk(x)

)−1

(2)

where ri(x) indicates the distance between x and its i-th
nearest neighbor within samples drawn from X, i.e., rk(x)
is the maximum distance from x among its k nearest neigh-
bors. In our work, we use Euclidean distance and set k = 20.

The LID-Based Characterization
Why Do We Use the LID-Based Characterization? In
terms of space separability, model gradients used in previ-
ous SOTA GM-NAS are in a high-dimensional and sparse
space. This is difficult to distinguish the difference between
different gradients based on the Euclidean or cosine dis-
tance measure, making the partition inaccurate. In contrast,

LID measures the dimensionality of the lower dimensional
sub-manifold in which the high-dimensional data resides. As
Fig. 1 shows, the high-dimensional outputs from each layer
of the models in NASBench-201 fall in sub-manifolds with
dimensions less than 50. Our experiments in Sec. show that
our characterization can achieve much higher space separa-
bility than the gradient counterpart.

In terms of information bottleneck (Tishby, Pereira, and
Bialek 2000; Shwartz-Ziv and Tishby 2017), layer-wise LID
profiles capture models’ geometrical properties (Lei et al.
2020) and describe how information changes layer by layer.
For arch-shaped LID profiles (red lines in Fig. 1), the initial
increase of LID indicates that models are learning data by
continuously mapping the input data to higher-dimensional
manifolds, and the decreasing part is to prune features irrel-
evant for prediction. On the other hand, the monotonically
decreasing LID profiles (blue lines in Fig. 1) indicate that
these models fail to extract informative features at the initial
layers, resulting in worse performance.

Architecture LID Characterization Consider an archi-
tecture with L layers, and let X = [x1, x2, ..., xL] be the
set of the feature representations of all layers, where xi ∈
Rb×mi , b is the number of data (i.e., batch size), and mi is
the size of the output representations in i-th layer. The LID
of i-th layer representations (i.e., xi) is calculated as follows

LID(xi) =
1

b

b−1∑
j=0

L̂ID(xi[j, :]) (3)

where xi[j, :] is the j-th data sample of xi. The architecture
LID characterization is computed by stacking LIDs of all
layers, namely [LID1, ...,LIDL]

T , where LIDi = LID(xi).

7841

forward+backward

concat[,..., , , ,]

forward only

[LID1, LID2, ... , LIDL]

...

...

Figure 3: Overview of the L-layer sub-supernet character-
ization in our NAS-LID (left) and GM-NAS (right). NAS-
LID is more efficient as it requires only the forward process
and L parameters for characterization, while GM-NAS in-
volves forward and backward processes and characterizes
the sub-supernet by gradients of all selected operations.

Sub-supernet LID Characterization Although we can
directly separate the supernet by merging architectures (i.e.,
subnets) with high LID similarity, a standard NAS search
space usually contains millions or even more subnets; thus,
it is too expensive to compute LIDs of all subnets. For exam-
ple, suppose a supernetA has L searchable layers, each with
n candidate operations; it contains 1,048,576 subnets even
when n = 4, L = 10. To improve efficiency, we split the
supernet into a collection of sub-supernets. As Fig. 2 shows,
we can split the supernet by dividing the operations of one
layer into different sub-supernets. In this way, the number
of sub-supernets can be much less than the number of ar-
chitectures, reducing the computational overhead. The LID
characterization of the sub-supernet is similar to that of a
single architecture. Without loss of generality, let’s consider
the LID of the i-th layer and denote by {xO1

i , xO2
i , ...xOn

i }
the output features of n candidate operations in i-th layer,
by Ii = {IO1

i , IO2
i , ..., IOn

i }, I
Oj

i ∈ {0, 1} the binary vector
of candidate operations. Similar to Inception (Szegedy et al.
2015), the output of i-th layer in the sub-supernet is the sum
of all selected operations’ outputs, i.e., zi =

∑n
j=1 x

Oj

i ·I
Oj

i ;
thus, the LIDs L of the sub-supernet A is defined as

LA = [LID(z1),LID(z2), ...,LID(zL)]
T (4)

Complexity: Gradient vs. LID Fig. 3 presents the dif-
ference in sub-supernet characterization between LID-based
and gradient-based methods. Suppose we split a L-layer su-
pernet into n sub-supernets. NAS-LID only requires n × L
parameters to characterize these sub-supernets, while GM-
NAS requires approximately n ×M parameters, where M
is the size of the supernet and M ≫ L. In terms of GPU
memory cost, NAS-LID involves only the forward process
to compute layer-wise LID, while GM-NAS requires both
forward and backward processes, and the overhead of back-
ward is empirically twice that of the forward. Table 1 com-
pares the GPU memory overhead consumed by GM-NAS
and NAS-LID on a single V100 GPU (32GB). We can
see that NAS-LID is more efficient as it can save up to
86% GPU memory on NASBench-201 with input size of
32 × 3 × 224 × 224. Thus, NAS-LID enables larger batch

Input size Method NASBench-201 ProxylessNAS
128× 3
×32× 32

GM-NAS 3,303 2,247
NAS-LID 1,539 (↓ 53%) 1,571 (↓ 30%)

32× 3×
224× 224

GM-NAS 24,073 6,707
NAS-LID 3,413 (↓ 86%) 2,015 (↓ 70%)

Table 1: Comparison of the GPU memory (MB) costs be-
tween GM-NAS and our proposed NAS-LID across differ-
ent search spaces and input sizes.

size for special needs of different computing tasks and sce-
narios (Yao et al. 2022).

LID-Based Supernet Partition
In this sub-section, we introduce how to split the supernet
via LID. For simplicity, we use an example of a one-round
supernet partition in Fig. 2 to describe this procedure. Ac-
tually, NAS-LID consists of T ≥ 1 rounds of partition,
where the first round splits only the supernet, and the subse-
quent rounds split the sub-supernets generated in the previ-
ous rounds. After T rounds of partition, we will get 2T sub-
supernets, each covering a different and non-overlapping re-
gion of the original search space. Alg. 1 details our LID-
based supernet partition scheme. Without loss of general-
ity, we introduce the partition on a sub-supernet in the t-th
round. We denote byA = {O1,O2, ...,OL} a sub-supernet,
by LA the LID characterizations, where Ol = {O1, ..., On}
is the set of n candidate operations of the l-th layer and as-
sociated with a binary vector Il recording which operations
have been deactivated (encoded by 0).

Sub-supernet Similarity As Fig. 2 shows, the super-
net can be divided into n sub-supernets {AO1 , ...,AOn}
by splitting the operations (Ol) on the l-th layer; thus,
the supernet partition is equivalent to operations partition.
We use Eq. 4 to get LIDs of these sub-supernets, i.e.,
{LAO1

, ...,LAOn
}, based on which we can obtain the n×n

symmetric similarity matrix. via Eq. 5. The similarity be-
tween two sub-supernets is defined as the reciprocal of the
Euclidean distance of their LIDs.

S(AOi ,AOj) =
1

∥LAOi
,LAOj

∥2 + ϵ
(5)

where ϵ = 10−6 avoids the denominator being 0. We have
also explored Pearson distance, but our results in Sec. show
that Pearson distance is not suited for LID because the scale
of LIDs is vital for characterization.

Sub-Supernet Merging Based on the similarity matrix,
we can merge sub-supernets with high similarity by merg-
ing operations via the graph min-cut algorithm (Boykov and
Jolly 2001), which aims to maximize the partition score γ,
i.e., the sum of intra-similarity of each group, as below:

γ = max
Γ⊆O

[
∑

O,O′∈Γ

S(AO,AO′) +
∑

O,O′∈O\Γ

S(AO,AO′)]

s.t. ⌊n/2⌋ ≤ |Γ| ≤ ⌈n/2⌉ (6)

7842

Algorithm 1: NAS-LID: LID-based Supernet Partition

Require: A0: supernet, T : rounds of partition
Ensure: Ω: the set of partitioned sub-supernets

1: procedure MAIN(A0, T)
2: Ω = {A0}
3: for t ∈ [1, T] do
4: Ωt = {}
5: for A ∈ Ω do
6: Warmup: training A as a one-shot supernet
7: Ωt.insert(SPLIT-SUPERNET(A))
8: Ω = Ωt

9: Ω← Finetuning all sub-supernets in Ω
10: return Ω
11: procedure SPLIT-SUPERNET(A)
12: I = {I1, ..., IL} ▷ binary vector of each layer in A
13: for unsplitted l-th layer do ▷ sum(Il) == |Il|
14: Ol = {O1, ..., On} ▷ candidate operations
15: {AO1

, ...,AOn
} ← split A on the l-th layer

16: {LAO1
, ...,LAOn

} ← get LIDs via Eq. 4
17: γ ← partition score via Eq. 5∼6
18: split A on the layer with the best γ∗

19: Γ∗ ← best partitioned operation group
20: return {AΓ∗ ,AO\Γ∗}

As a result, the candidate operations are divided into two
groups {Γ,O\Γ}. In other words, the supernetA is split into
two sub-supernets, i.e., A = {AΓ,AO\Γ}. After merging,
we will update the binary vector I of the partitioned layer for
each generated sub-supernet. Next time, we will only split
the unpartitioned layers (i.e., I is an all-one vector) with the
highest partition score. In this way, we can prevent the sub-
supernets from being too fragmented and limit the number
of sub-supernets, thus reducing the computational overhead.

Experiments
In this section, we empirically verify the effectiveness of
our proposed NAS-LID. We first conduct extensive exper-
iments on NASBench-201 to compare the LID-driven and
gradients-driven split schemes. We then evaluate the perfor-
mance of NAS-LID on other open domain search spaces.

NASBench-201
NASBench-201 is a public tabular architecture dataset,
which builds a DARTS-like (Liu, Simonyan, and Yang
2019) search space and provides the performance of 15,625
neural architectures on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky and Hinton 2009). Each architecture is
stacked with multiple cells, each sharing the same structure.
As shown in Fig. 4, a cell is represented as a directed acyclic
graph (DAG) containing four nodes, and each edge has 5
predefined operations, i.e., None, Skip-connection, Conv-
1×1, Conv-3×3, and Avgpool-3×3. Thus, we can obtain
five sub-supernets by splitting the operations on one edge.
For example, if we split the edge (0-3), the five operations
on this edge will be divided into five different sub-supernets
that still retain five candidate operations on the remaining

0.206
10 3

2

10 3

2

0.184

0.3190.179
0.306 0.28

4 0.003
0.022

0.0010.063
0.028

0.00
9

Figure 4: Comparison of separability score (the higher, the
better) of each edge in NASBench-201 space between our
NAS-LID (left) and GM-NAS (right).

edges. We compare with GM-NAS (Hu et al. 2022) in three
aspects: separability, ranking correlation, and performance
of derived architectures.

Separability GM-NAS and our NAS-LID respectively
split the supernet based on gradient and LID similarity.
Here, we study how different these two criteria are to distin-
guish the sub-supernets, i.e., separability. For the quantita-
tive comparison, we first train the supernet for 50 epochs via
Random Sampling with Parameter Sharing (RSPS) (Li and
Talwalkar 2020) and use the pretrained weights to calculate
the separability score for each edge, formalized as follows.

D =

√√√√ 1

2n

n∑
i=1

n∑
j=1

(si,j − s̄)2

s.t., s̄ =
1

2n

n∑
i=1

n∑
j=1

si,j and i ̸= j (7)

where n is the number of candidate operations (i.e., 5 in
NASBench-201), si,j denotes the LID or gradient similar-
ity between the two sub-supernets that only include oper-
ation i and j, respectively. s̄ is the average similarity of
all pairs of sub-supernets. Intuitively, the lower the separa-
bility score, the higher the inter-similarity between differ-
ent sub-supernets, and the harder it is to split them. Fig. 4
compares the separability score of each edge of NAS-LID
and GM-NAS. We can see that the separability scores of all
edges obtained by NAS-LID are two orders of magnitude
higher than those obtained by GM-NAS, showing NAS-LID
is more confident and certain in the partition.

Ranking Correlation Reliable ranking performance is
crucial to NAS algorithms. We compare the ranking perfor-
mance with RSPS (Li and Talwalkar 2020), GM-NAS (Hu
et al. 2022) among the top 50/100/150 architectures in
NASBench-201 space. RSPS does not involve splitting but
trains only one supernet for 300 epochs. Following GM-
NAS, we split four edges based on LID similarity, leading
to 42 = 16 sub-supernets. We finetune each sub-supernet
for several epochs after partition. We run each method three
times and report the mean and standard deviation of correla-
tion results in Table 2. GM-NAS and NAS-LID outperform
RSPS, showing that splitting the supernet does help increase
the ranking correlation among top models. We can also see
that NAS-LID achieves 0.466 Kendall and 0.637 Spearman
correlation, much higher than GM-NAS (0.335 Kendall and
0.484 Spearman). The lower standard deviation also indi-
cates the stability of LID-driven characterization.

7843

Method Top50 Top100 Top150
Kendall Spearman Kendall Spearman Kendall Spearman

SPOS (Guo et al. 2020) 0.14±0.02 0.16±0.01 0.19±0.03 0.27±0.04 0.12±0.03 0.17±0.05
GM-NAS (Hu et al. 2022) 0.34±0.09 0.48±0.11 0.21±0.04 0.29±0.07 0.23±0.03 0.31±0.06
NAS-LID (Ours) 0.47±0.01 0.64±0.03 0.35±0.03 0.49±0.04 0.34±0.02 0.48±0.03

Table 2: Ranking correlation (the higher, the better) among top50/100/150 architectures of NASBench-201. Our LID-driven
splitting scheme achieves a much higher ranking correlation with lower variance.

Method Type CIFAR-10 CIFAR-100
validation test validation test

ResNet (He et al. 2016) Manual 90.83 93.97 70.42 70.86
NASNet (Zoph et al. 2018) Vanilla 91.09± 0.37 93.85± 0.37 70.05± 1.67 70.17± 1.61
ENAS (Pham et al. 2018)

One-shot

37.51± 3.19 53.89± 0.58 13.37± 2.35 13.96± 2.33
DARTS (Liu, Simonyan, and Yang 2019) 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00
GDAS (Dong and Yang 2019b) 90.00± 0.21 93.51± 0.13 71.14± 0.27 70.61± 0.26
DSNAS (Hu et al. 2020) 89.66± 0.29 93.08± 0.13 30.87± 16.40 31.01± 16.38
SETN (Dong and Yang 2019a) 82.25± 5.17 86.19± 4.63 58.86± 7.59 56.87± 7.77
PC-DARTS (Xu et al. 2020) 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89
RSPS (Li and Talwalkar 2020) 84.16± 1.69 87.66± 1.69 59.00± 4.60 58.33± 4.34
FSNAS+RSPS (Zhao et al. 2021)

Few-shot
85.40± 1.28 89.11± 1.37 58.59± 3.45 58.69± 3.75

GM-NAS+RSPS (Li and Talwalkar 2020) 89.09± 0.40 92.70± 0.53 68.36± 0.91 68.81± 1.28
NAS-LID+RSPS (ours) 89.74 ± 0.37 92.90 ± 0.27 69.38 ± 0.36 69.39 ± 0.77
optimal 91.61 94.37 73.49 73.51

Table 3: Comparison with state-of-the-art NAS methods on NASBench-201.

0 10 20 30 40 50
Evolution epochs

30
35
40
45
50
55
60
65
70

Va
lid

at
io

n
ac

cu
ra

cy
(%

)

Gradient LID

Figure 5: Validation accuracy of GM-NAS and our NAS-
LID on NASBench-201 during the evolutionary search.

Performance of Derived Architectures For GM-NAS
and our NAS-LID, we fine-tune the 16 sub-supernets for 50
epochs and then apply the evolutionary algorithm to search
for superior architectures based on these sub-supernets.
Prior to validation, each architecture inherits the weights
from its corresponding sub-supernet. We conduct the evo-
lutionary search for 50 epochs. We produce 50 promising
architectures for each search epoch via the crossover, mu-
tation, and selection steps. Fig. 5 compares the mean and
standard deviation of validation accuracy of the searched ar-
chitectures in each evolution epoch. Compared to the dra-
matic fluctuations in the validation accuracy of GM-NAS,

we achieve higher and more stable validation performance,
which further justifies that NAS-LID can better reduce the
interference among architectures and thus help the train-
ing of sub-supernets. Table 3 compares the performance of
the best architectures found by different algorithms on the
CIFAR-10 and CIFAR-100 datasets. Note that the valida-
tion and test accuracy are queried from NASBench-201. The
three Few-shot NAS methods adopt the same training strat-
egy (i.e., RSPS) to train the sub-supernets and outperform
RSPS by a large margin. Besides, NAS-LID can still achieve
better performance and smaller variance than GM-NAS on
both datasets, which confirms the advantages of LID.

Generalizing to Other Spaces
To evaluate the generalizability of NAS-LID, we further
evaluate NAS-LID on other open domain search spaces, in-
cluding OFA (Cai et al. 2020) and ProxylessNAS (Cai, Zhu,
and Han 2019). We select two layers and split the supernet
into four sub-supernets. We fine-tune each sub-supernet for
50 epochs and apply the evolutionary algorithm to search for
promising architectures. We conduct the supernet partition
and evolutionary search on the CIFAR-10 dataset for Proxy-
lessNAS space. We then transfer the searched architectures
to the ImageNet (Deng et al. 2009) dataset and present the
results in Table 4. We took 2.3 GPU days to split the su-
pernet and search promising architectures on ProxylessNAS.
We achieve a top-1 test error rate of 23.0%, surpassing the
one-shot and previous two few-shot methods. Our searched
model also achieves competitive results in the OFA space,
validating the effectiveness of NAS-LID.

7844

Architecture Test Error(%) Params (M) Flops (M) Search Cost
(GPU Days) Search Methodtop-1 top-5

Inception-v1 (Szegedy et al. 2015) 30.1 10.1 6.6 1448 - manualMobileNet (Howard et al. 2017) 29.4 10.5 4.2 569 -
NASNet-A (Zoph et al. 2018) 26.0 8.4 5.3 564 2000

Vanilla NAS
PNAS (Liu et al. 2018) 25.8 8.1 5.1 588 225
AmoebaNet-C (Real et al. 2019) 24.3 7.6 6.4 570 3150
EfficientNet-B1 (Tan and Le 2019) 20.9 5.6 7.8 700 -
MnasNet-92 (Tan et al. 2019) 25.2 8.0 4.4 388 -
DARTS (Liu, Simonyan, and Yang 2019) 26.7 - 4.9 595 4

One-shot NAS

GDAS (Dong and Yang 2019b) 26.0 8.5 5.3 581 0.3
BayesNAS (Zhou et al. 2019) 26.5 8.9 3.9 - 0.2
P-DARTS (Chen et al. 2021b) 24.4 7.4 4.9 557 0.3
DSNAS (Hu et al. 2020) 25.7 8.1 - 324 -
ISTA-NAS (Yang et al. 2020) 24.0 7.1 5.7 638 -
PC-DARTS (Xu et al. 2020) 24.2 7.3 5.3 597 3.8
BigNAS-L (Yu et al. 2020) 20.5 - 6.4 586 -
DrNAS (Chen et al. 2021a) 23.7 7.1 5.7 604 4.6
SPOS (Guo et al. 2020) 25.3 - 3.4 328 8.3
CLOSE (Zhou et al. 2022) 24.7 - 4.8 - -
ProxylessNAS (Cai, Zhu, and Han 2019) 24.9 7.5 7.1 465 8.3
OFA (Cai et al. 2020) 20.0 5.1 9.1 595 1.7‡
K-Shot-NAS-A (Su et al. 2021) 22.4 6.4 6.5 422 1

Few-shot NAS

FSNAS (ProxylessNAS) (Zhao et al. 2021) 24.1 - 4.9 521 20.8
GM-NAS (ProxylessNAS) (Hu et al. 2022) 23.4 7.0 4.9 530 24.9
NAS-LID (ProxylessNAS) 22.9 6.3 6.9 678 2.3†
FSNAS (OFA) (Zhao et al. 2021) 20.2 5.2 9.2 600 1.7‡
GM-NAS (OFA) (Hu et al. 2022) 19.7 5.0 9.3 587 1.7‡
NAS-LID (OFA) 19.5 5.0 9.9 776 1.7‡

Table 4: Comparison with state-of-the-art NAS methods on ImageNet. †The supernet partition and evolutionary search are
conducted on the CIFAR-10 dataset. ‡ Only the search cost of evolutionary search on the ImageNet dataset is reported.

LID Similarity Measures

Measure Kendall (τ) Spearman (γ)
max mean(std) max mean(std)

Pearson 0.30 0.26 (0.03) 0.45 0.39 (0.04)
Euclidean 0.37 0.34 (0.02) 0.53 0.48 (0.03)

Table 5: Ranking correlation of top 150 architectures on
NASBench-201 with different similarity measures.

The above experiments used Euclidean distance to mea-
sure LID similarity. If we ignore the scaling effect and only
consider the correlations among LIDs (e.g., treating [2, 6, 4]
and [20, 60, 40] as the same), is it also effective? We explore
this using the Pearson correlation coefficient. As shown in
Table 5, Pearson similarity is not as effective as the Eu-
clidean measure, which implies that the scale of the LID
values is essential to characterize the geometric properties
of different architectures in a high-dimensional space.

Conclusion & Future Work
Our empirical findings in this study demonstrate that LID
is a highly promising criterion for characterizing architec-
tures, with similar LID profiles indicating similar training

dynamics. We propose NAS-LID as a proof-of-concept for
using LID to split the supernet, grouping subnets into dif-
ferent clusters (i.e., sub-supernets) and reducing interfer-
ence between architectures during training. Compared to
the gradient-based method, NAS-LID effectively addresses
the curse of dimensionality in high-dimensional architec-
ture search spaces and achieves better space separability and
higher ranking correlation of subnets. The scale of LID val-
ues plays a crucial role in architecture characterization. Our
preliminary understanding is that the LID profile provides
insights into the underlying mechanisms of neural network
learning by revealing how each model layer transforms high-
dimensional data into low-dimensional sub-manifolds.

While our focus in this work is on image classification
models, we believe that exploring LID profiles of other mod-
els, including large language models, could provide deeper
insights into their relationship with model generalization
ability and broader potential. This creates opportunities for
further research and applications of LID in various areas.

Acknowledgements

We thank the NVIDIA Academic Hardware Grant Program
for its support of our work.

7845

References
Aghajanyan, A.; Gupta, S.; and Zettlemoyer, L. 2021. In-
trinsic Dimensionality Explains the Effectiveness of Lan-
guage Model Fine-Tuning. In Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural
Language Processing, 7319–7328. Online: Association for
Computational Linguistics.
Amsaleg, L.; Chelly, O.; Furon, T.; Girard, S.; Houle, M. E.;
Kawarabayashi, K.-i.; and Nett, M. 2015. Estimating local
intrinsic dimensionality. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 29–38.
Ansuini, A.; Laio, A.; Macke, J. H.; and Zoccolan, D. 2019.
Intrinsic dimension of data representations in deep neural
networks. Advances in Neural Information Processing Sys-
tems, 32.
Bashivan, P.; Tensen, M.; and DiCarlo, J. J. 2019. Teacher
guided architecture search. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 5320–5329.
Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and
Le, Q. 2018. Understanding and simplifying one-shot ar-
chitecture search. In International conference on machine
learning, 550–559. PMLR.
Boykov, Y. Y.; and Jolly, M.-P. 2001. Interactive graph cuts
for optimal boundary & region segmentation of objects in
ND images. In Proceedings eighth IEEE international con-
ference on computer vision. ICCV 2001, volume 1, 105–112.
IEEE.
Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; and Han, S. 2020.
Once-for-All: Train One Network and Specialize it for Effi-
cient Deployment. In International Conference on Learning
Representations.
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct
Neural Architecture Search on Target Task and Hardware.
In International Conference on Learning Representations.
Campadelli, P.; Casiraghi, E.; Ceruti, C.; and Rozza, A.
2015. Intrinsic dimension estimation: Relevant techniques
and a benchmark framework. Mathematical Problems in En-
gineering, 2015.
Chen, X.; Wang, R.; Cheng, M.; Tang, X.; and Hsieh, C.-J.
2021a. DrNAS: Dirichlet Neural Architecture Search. In
International Conference on Learning Representations.
Chen, X.; Xie, L.; Wu, J.; and Tian, Q. 2021b. Progressive
darts: Bridging the optimization gap for nas in the wild. In-
ternational Journal of Computer Vision, 129(3): 638–655.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Dong, X.; and Yang, Y. 2019a. One-shot neural architecture
search via self-evaluated template network. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 3681–3690.
Dong, X.; and Yang, Y. 2019b. Searching for a robust
neural architecture in four gpu hours. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1761–1770.
Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extending
the Scope of Reproducible Neural Architecture Search. In
International Conference on Learning Representations.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural archi-
tecture search: A survey. The Journal of Machine Learning
Research, 20(1): 1997–2017.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.;
and Sun, J. 2020. Single path one-shot neural architecture
search with uniform sampling. In European conference on
computer vision, 544–560. Springer.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, X.; Wang, S.; Chu, X.; Shi, S.; Tang, J.; Liu, X.; Yan,
C. C.; Zhang, J.; and Ding, G. 2021. Automated Model De-
sign and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans. In AAAI.
He, X.; Ying, G.; Zhang, J.; and Chu, X. 2022. Evolution-
ary Multi-objective Architecture Search Framework: Appli-
cation to COVID-19 3D CT Classification. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, 560–570. Springer.
He, X.; Zhao, K.; and Chu, X. 2021. AutoML: A sur-
vey of the state-of-the-art. Knowledge-Based Systems, 212:
106622.
Hinton, G.; Vinyals, O.; Dean, J.; et al. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7).
Houle, M. E. 2017. Local intrinsic dimensionality I: an
extreme-value-theoretic foundation for similarity applica-
tions. In International Conference on Similarity Search and
Applications, 64–79. Springer.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hu, S.; Wang, R.; HONG, L.; Li, Z.; Hsieh, C.-J.; and Feng,
J. 2022. Generalizing Few-Shot NAS with Gradient Match-
ing. In International Conference on Learning Representa-
tions.
Hu, S.; Xie, S.; Zheng, H.; Liu, C.; Shi, J.; Liu, X.; and
Lin, D. 2020. Dsnas: Direct neural architecture search with-
out parameter retraining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
12084–12092.
Krizhevsky, A.; and Hinton, G. 2009. Learning Multiple
Layers of Features from Tiny Images. Tech Report.
Lei, N.; An, D.; Guo, Y.; Su, K.; Liu, S.; Luo, Z.; Yau, S.-
T.; and Gu, X. 2020. A geometric understanding of deep
learning. Engineering, 6(3): 361–374.
Li, C.; Farkhoor, H.; Liu, R.; and Yosinski, J. 2018. Mea-
suring the Intrinsic Dimension of Objective Landscapes. In
International Conference on Learning Representations.

7846

Li, L.; and Talwalkar, A. 2020. Random search and repro-
ducibility for neural architecture search. In Uncertainty in
artificial intelligence, 367–377. PMLR.
Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille,
A. L.; and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical neu-
ral architecture search for semantic image segmentation. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 82–92.
Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-
J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018.
Progressive neural architecture search. In Proceedings of the
European conference on computer vision (ECCV), 19–34.
Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. In International Conference
on Learning Representations.
Liu, Y.; Jia, X.; Tan, M.; Vemulapalli, R.; Zhu, Y.; Green, B.;
and Wang, X. 2020. Search to distill: Pearls are everywhere
but not the eyes. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 7539–
7548.
Peng, J.; Zhang, J.; Li, C.; Wang, G.; Liang, X.; and Lin,
L. 2021. Pi-NAS: Improving neural architecture search by
reducing supernet training consistency shift. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 12354–12364.
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient neural architecture search via parameters sharing.
In International conference on machine learning, 4095–
4104. PMLR.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelligence,
volume 33, 4780–4789.
Shwartz-Ziv, R.; and Tishby, N. 2017. Opening the black
box of deep neural networks via information. arXiv preprint
arXiv:1703.00810.
Su, X.; You, S.; Zheng, M.; Wang, F.; Qian, C.; Zhang, C.;
and Xu, C. 2021. K-shot NAS: Learnable Weight-Sharing
for NAS with K-shot Supernets. In International Conference
on Machine Learning, 9880–9890. PMLR.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A.
2015. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 1–9.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2820–2828.
Tan, M.; and Le, Q. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, 6105–6114. PMLR.
Tishby, N.; Pereira, F. C.; and Bialek, W. 2000. The infor-
mation bottleneck method. arXiv preprint physics/0004057.

Xu, J.; Chen, Z.; Quek, T. Q.; and Chong, K. F. E. 2022a.
FedCorr: Multi-Stage Federated Learning for Label Noise
Correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10184–10193.
Xu, J.; Tan, X.; Song, K.; Luo, R.; Leng, Y.; Qin, T.; Liu, T.-
Y.; and Li, J. 2022b. Analyzing and mitigating interference
in neural architecture search. In International Conference
on Machine Learning, 24646–24662. PMLR.
Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.-J.; Tian, Q.; and
Xiong, H. 2020. PC-DARTS: Partial Channel Connections
for Memory-Efficient Architecture Search. In International
Conference on Learning Representations.
Yang, Y.; Li, H.; You, S.; Wang, F.; Qian, C.; and Lin, Z.
2020. Ista-nas: Efficient and consistent neural architecture
search by sparse coding. Advances in Neural Information
Processing Systems, 33: 10503–10513.
Yao, J.; Zhang, S.; Yao, Y.; Wang, F.; Ma, J.; Zhang, J.; Chu,
Y.; Ji, L.; Jia, K.; Shen, T.; et al. 2022. Edge-Cloud Polar-
ization and Collaboration: A Comprehensive Survey for AI.
IEEE Transactions on Knowledge and Data Engineering.
Ying, G.; He, X.; Gao, B.; Han, B.; and Chu, X. 2022.
EAGAN: Efficient Two-Stage Evolutionary Architecture
Search for GANs. In European Conference on Computer
Vision, 37–53. Springer.
Yu, J.; Jin, P.; Liu, H.; Bender, G.; Kindermans, P.-J.; Tan,
M.; Huang, T.; Song, X.; Pang, R.; and Le, Q. 2020. Bignas:
Scaling up neural architecture search with big single-stage
models. In European Conference on Computer Vision, 702–
717. Springer.
Zhao, Y.; Wang, L.; Tian, Y.; Fonseca, R.; and Guo, T. 2021.
Few-shot neural architecture search. In International Con-
ference on Machine Learning, 12707–12718. PMLR.
Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. Bayesnas:
A bayesian approach for neural architecture search. In In-
ternational conference on machine learning, 7603–7613.
PMLR.
Zhou, Z.; Ning, X.; Cai, Y.; Han, J.; Deng, Y.; Dong, Y.;
Yang, H.; and Wang, Y. 2022. Close: Curriculum learning on
the sharing extent towards better one-shot nas. In European
Conference on Computer Vision, 578–594. Springer.
Zoph, B.; and Le, Q. 2017. Neural Architecture Search with
Reinforcement Learning. In International Conference on
Learning Representations.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 8697–8710.

7847

