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Abstract

Sketch-based image retrieval (SBIR) is an attractive research
area where freehand sketches are used as queries to re-
trieve relevant images. Existing solutions have advanced the
task to the challenging zero-shot setting (ZS-SBIR), where
the trained models are tested on new classes without seen
data. However, they are prone to overfitting under a realis-
tic scenario when the test data includes both seen and un-
seen classes. In this paper, we study generalized ZS-SBIR
(GZS-SBIR) and propose a novel semi-transductive learn-
ing paradigm. Transductive learning is performed on the im-
age modality to explore the potential data distribution within
unseen classes, and zero-shot learning is performed on the
sketch modality sharing the learned knowledge through a
semi-heterogeneous architecture. A hybrid metric learning
strategy is proposed to establish semantics-aware ranking
property and calibrate the joint embedding space. Extensive
experiments are conducted on two large-scale benchmarks
and four evaluation metrics. The results show that our method
is superior over the state-of-the-art competitors in the chal-
lenging GZS-SBIR task.

Introduction

With the prevalence of touchscreen devices, hand-drawn in-
put has been widely adopted and is infiltrating into every
aspect of everyday life. Sketching therefore, as a simple, in-
tuitive, and informative means of communication, is show-
ing great potential in human-computer interaction. Sketch-
based image retrieval (SBIR) is a representative multime-
dia retrieval application that aims to retrieve relevant images
with freehand sketches. It has attracted wide attention in re-
cent years and brought to various fruition in computer vision
(Li et al. 2014; Saavedra and Barrios 2015; Liu et al. 2017,
Song et al. 2017; Guo et al. 2017; Li, Zhou, and Yang 2019;
Pang et al. 2019), computer graphics (Eitz et al. 2010, 2011;
Shrivastava et al. 2011; Eitz, Hays, and Alexa 2012; Xu et al.
2013; Chen, Wang, and Liu 2020), and human-computer
interaction (Huang, Canny, and Nichols 2019; Huang and
Canny 2019).

The main difficulty in the SBIR community is the scarcity
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of hand-drawn sketches. Unlike photos that are easily ac-
cessible on the Internet, the acquisition of sketches relies
heavily on manual drawing. With the explosive growth of
multimedia content in daily life, the existing sketch datasets
are always insufficient in scale and variety. Deployed re-
trieval systems trained on a limited number of classes (only
a few hundred) most likely receive query sketches from new
classes. The zero-shot SBIR (ZS-SBIR) (Shen et al. 2018)
has emerged with the vision of generalizing the trained re-
trieval model to unseen classes, thereby bypassing the need
to collect sketches for every novel category to work with.

ZS-SBIR shares the same challenges as conventional
SBIR. As a cross-modal learning task, the main difficulty
lies in bridging the domain gap between sketch and im-
age. Freehand sketches are abstract and sparse line drawings,
which require a feature extraction flow different to colorful
images. Additionally, “zero-shot” means that no examples
of test classes are available in the training phase. The re-
trieval model should have the ability to learn ranking prop-
erty from seen classes and transfer the knowledge to unseen
classes. Zero-shot learning itself is a non-trivial task and the
introduction of sketch modality makes ZS-SBIR harder due
to the high inter- and intra-class variances.

The usual solution for ZS-SBIR is to shape a cross-
modal embedding space through deep metric learning. Both
the query sketch and the candidate images are mapped to
the high-dimensional feature space and the retrieval is per-
formed by finding the nearest neighbors. However, since no
data of unseen classes is available, the learned feature map-
ping likely overfits, and the embedding space biases toward
the clusters of seen classes (Chao et al. 2016). Since ZS-
SBIR is only evaluated on unseen classes, most retrieval
models are deceived by the idealized setting and exhibit
overestimated performance. Recently, the more realistic and
challenging generalized ZS-SBIR (GZS-SBIR) is attracting
more attention. Sketches and images from both the seen and
unseen classes are mixed to form a new generalized test set.
GZS-SBIR imposes higher requirements on preventing over-
fitting and balancing the semantic distribution.

It has been explored that generalized zero-shot learning
can not be implemented without knowing any information
about unseen classes (Liu et al. 2018). Side information, like
attribute vectors or word embeddings in the semantic space,
is needed to bridge the seen and unseen classes. Generally,
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Figure 1: Schematics of semi-transductive GZS-SBIR.

a visual-semantic joint embedding space will be constructed
to align visual features with corresponding class prototypes.
Then the ranking property learned from seen classes is ex-
pected to be transferred to unseen classes through seman-
tic relevance. However, the drawback is that this only con-
nection between visual subspace and semantic subspace is
weak. The semantic space is originally built via the vector
similarity of class prototypes, while the data distribution in
the visual space has a far larger variance between classes.
The weak information conveyed by class semantics is insuf-
ficient to eliminate the mapping bias from unseen classes.

The key point of generalized zero-shot learning is to avoid
overfitting to seen classes and increase the generalization to-
ward unseen classes. We have realized that there is still great
potential to improve GZS-SBIR if the model can perceive
the latent data distribution of unseen classes. In this paper,
we introduce a novel semi-transductive learning paradigm.
The core idea is illustrated in Fig. 1. Based on the fact
that images are easier to collect than sketches, we suggest
conducting transductive learning in the image modality by
utilizing unlabeled images of unseen classes. By exploring
the potential adaptation with unlabeled images, the model
is able to better generalize to unseen classes and reduce
overfitting to seen classes. Since SBIR is a cross-modal
learning problem, we transfer the learned image distribution
of unseen classes to the sketch modality by sharing high-
level learning paths through a semi-heterogeneous network
structure. While learning a semantics-guided ranking prop-
erty, a hybrid metric learning strategy is designed to cal-
ibrate the biases between seen and unseen classes. In the
test phase, sketches and images from the the unseen classes
will reuse the adapted feature encoding. They are mapped
around the corresponding class prototypes and inherit rank-
ing property. Toward a practical GZS-SBIR, the proposed
semi-transductive learning paradigm is expected to benefit
from the expansion and enrichment of the retrieval database
without additional annotation effort.

The main contributions are summarized as follows:

* The novel semi-transductive learning paradigm is intro-
duced to effectively improve generalized ZS-SBIR.
* A hybrid metric learning strategy is designed to cali-
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brate semantic biases and learn semantics-guided rank-
ing property.

» Extensive experiments are conducted on four evaluation
metrics to show the effectiveness of our method.

Related Work
Sketch-Based Image Retrieval

Due to the inherent cross-modal nature of sketch-based im-
age retrieval (SBIR), the main challenge lies in bridging the
domain gap between freehand sketches and natural images.
The breakthrough of deep learning has driven the trend of
learning cross-domain high-level representations from raw
pixels directly (Sangkloy et al. 2016; Yu et al. 2016). The
current SBIR study has been identified as two separate fields
based on the matching precision required: fine-grained (i.e.,
instance-level) SBIR (Song et al. 2017; Huo et al. 2018; Xu
et al. 2018; Pang et al. 2019, 2020) and coarse-grained (i.e.,
category-level) SBIR (Sangkloy et al. 2016; Qi et al. 2016;
Liu et al. 2017; Jiang, Xia, and Lu 2017; Li, Zhou, and
Yang 2019). Fine-grained SBIR aims to capture fine-grained
intra-class similarities, while coarse-grained SBIR performs
a wider search among multiple categories. Zero-shot SBIR
is a continuation of coarse-grained SBIR.

Zero-Shot Learning

Zero-shot learning (ZSL) in computer vision refers to iden-
tifying objects whose examples are not seen during training.
Early works relied on manually annotated class attributes
to infer unseen classes (Lampert, Nickisch, and Harmeling
2014; Al-Halah, Tapaswi, and Stiefelhagen 2016). With the
help of convolutional neural networks (CNNs), recent stud-
ies focused on learning cross-modal embedding of images
and class prototypes. These works can be roughly catego-
rized into three types: (i) mapping visual features to the se-
mantic space (Frome et al. 2013; Socher et al. 2013; Norouzi
et al. 2014; Akata et al. 2016; Xian et al. 2016), (ii) mapping
class semantics to the visual space (Changpinyo, Chao, and
Sha 2017; Zhang, Xiang, and Gong 2017), and (iii) learning
another common feature space (Zhang and Saligrama 2015;
Fuetal. 2015; Zhang and Saligrama 2016). Our method falls
into the first scheme of aligning visual space with semantic
space, while additionally calibrating distribution and impos-
ing ranking constraints in the embedding space.

Zero-Shot Sketch-Based Image Retrieval

Zero-shot sketch-based image retrieval (ZS-SBIR) is a com-
bination of category-level SBIR and zero-shot learning.
Shen et al. first investigated this problem and designed a
deep three-branch network to learn cross-modal encoding
and shared binary representations. Yelamarthi et al. pro-
posed two autoencoder-based conditional generative mod-
els CAAE and CVAE and provided a new evaluation bench-
mark. Conditional generative models were further combined
with inverse autoregressive flow (IAF) (Verma et al. 2019)
and graph convolution network (GCN) (Zhang et al. 2020).
In order to reduce the intra-class variance, adversarial train-
ing was adopted (Dutta and Akata 2019; Zhu et al. 2020;



Pandey et al. 2020; Dutta and Biswas 2020) to map the vi-
sual data to the semantic space by means of cycle-consistent
generative models. Toward practical ZS-SBIR, Dey et al.
combined triplet-based ranking metric, semantic reconstruc-
tion, and domain disentanglement to learn domain-agnostic
cross-modal embedding. Our solution shares some similar
concepts like semi-heterogeneity and semantic alignment
(Liu et al. 2019; Chaudhuri et al. 2020).

The above methods are primarily designated to address
non-generalized ZS-SBIR. There are very few studies that
have specifically investigated GZS-SBIR (Dutta and Akata
2019; Dutta and Biswas 2020; Pandey et al. 2020). Re-
cently, Zhu et al. proposed a dual learning cOmmon Con-
ditional Encoder Adversarial Network (OCEAN) to address
the semantic gap issue in GZS-SBIR. However, the knowl-
edge transfer still only relied on semantic auxiliary informa-
tion, thereby the encoding bias remaining unresolved. Our
core point is that in addition to class prototypes, accessible
abundant unlabeled images can be fully utilized to improve
model generalization.

Problem Formulation
Generalized ZS-SBIR

Let D = {X,Y } be a database of sketches and images
belonging to class set C. For regular SBIR, the goal is to
retrieve images y; € Y that belong to the same category
as the query sketch z; € X, ie., n(z;) = n(y;), where
1 : D — C is a labeling function. However, in practical ap-
plications, the database D cannot cover all common object
categories. Therefore, the key is to make the trained retrieval
models generalize to unseen data.

ZS-SBIR builds database D with two disjoint subsets
D® ={X*Y?®}and D" = { X", Y™" } in accordance with
seen classes C* and unseen classes C*, where C*NC* = ().
Models are trained on seen data D?® but are expected to per-
form well on unseen data D“. However, when data from
seen and unseen classes are mixed for test, retrieval mod-
els designed for ZS-SBIR tend to overly bias toward seen
classes. In order to evaluate generalized retrieval perfor-
mance, GZS-SBIR extends the test set by including some
seen-class data as D' = { X* U X*' | Y* U Y*}, where
X CcX®andY® CY*.

In generalized zero-shot learning tasks, some form of aux-
iliary information is always needed to transfer the learned
knowledge from seen classes to unseen classes. Typically,
the embedding vectors of class words learned with natural
language models are adopted as £ = {¢; | €; € R, 1 <
i < |C|}, where d is the pretrained embedding dimension.
Although the semantic information of unseen classes is in-
volved, the unseen image data is still unavailable in the train-
ing phase, which is considered to satisfy the essential hy-
pothesis of zero-shot learning (Liu et al. 2018).

Semi-Transductive GZS-SBIR

SBIR is essentially a cross-modal learning task, in which the
freehand sketches are scarce, whereas the natural images are
abundant and easy to collect. In most real-word scenarios,
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the image database to be retrieved is bounded; thus a closed-
world assumption is generally reasonable. We propose semi-
transductive learning (STL) by including idle natural images
to explore the potential data distribution of unseen classes.
Specifically, unlabeled images of unseen classes participate
in model training in a semi-supervised manner. The training
set is extended as D' = { X*Y* U Y*}, where the la-
bels of Y are unknown. In this paradigm, the image modal-
ity forms transductive semi-supervised learning, while the
sketch modality still performs zero-shot learning; thus we
name it semi-transductive GZS-SBIR.

Methodology
Semi-Heterogeneous Encoding

We resolve sketch-based image retrieval by first extracting
cross-modal feature encoding and then learning representa-
tion ranking. Given a query sketch x; € X, the retrieval
model is expected to produce a ranking list of all candidate
images y € Y satisfying the following criterion:

sim(¢(:), 9 (yi)) > sim (¢ (i), (y;)), ()

where n(x;) = n(y;) and n(z;) # n(y;). The function
sim(+, -) measures the vector similarity of any pair of sketch
and image representation. The cosine similarity is employed
in this work:

U1 - Ua

sim(ffl,z—)’g) = COS<171,’[72> = m

2
The mapping functions ¢ : X +— R%and ) : Y +— R? are
the feature encoders that need to be learned for each modal-
ity. On one hand, since SBIR involves two instinct modali-
ties (i.e, line drawings vs. colorful images), two modality-
specific feature encoding paths are needed. On the other
hand, the extracted visual features should be comparable in
the joint embedding space, which means that the final repre-
sentations should have certain modality invariance.

As shown in Fig. 2a, we designed two independent CNN
feature encoders to extract modality-specific underlying vi-
sual features. They are built with the same backbone net-
work but own separately trainable weights. As conven-
tionally, two soft-attention modules (Dey et al. 2019) are
plugged onto each CNN feature maps F' to localize impor-
tant regions and focus on representative features. The atten-
tion module learns a differentiable soft-mask M that indi-
cates the importance of each neuron and re-weight the fea-
tures maps through softmax as: F' + F X Ggofimax(M).

The output feature volume of each modality-specific CNN
is flattened and fed into a shared multi-layer perceptron
(MLP). The shared MLP summarizes middle-level features
and extracts high-level visual representations that are in-
dependent of modalities. This semi-heterogeneous design
ensures the comparability of sketches and images in the
common ranking space. Moreover, the shared part elim-
inates modality and thus enables knowledge sharing be-
tween sketches and images. This is the basis for our semi-
transductive idea to work. As will be explained later and
shown Fig. 2c, the learned information about unseen classes
will be transmitted form unseen images to unseen query
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Figure 2: Model evolution. (a) Basic semi-heterogeneous network with ranking property learning. (b) Semantics extraction and
alignment with class prototypes. (c) Our final model with distribution calibration and enhanced semi-transductive ranking.

sketches through the shared visual representation.

Ranking Property

We employ the margin-based triplet loss (Schroff,
Kalenichenko, and Philbin 2015) to learn Eq. 1. First,
a triplet ¢ = (x;,v;,y;) is sampled from the seen data
{X°,Y?}, where z; € X?* is the anchor sketch and
Yi,y; € Y° are the positive and negative images, respec-
tively, which satisfies 7(z;) = n(y;) and n(x;) # n(y;).
Their corresponding visual representations are extracted
as Uq, = ¢(x;), Up = ¢¥(y;), and ¥, = ¥(y;). The goal is
minimize the following cost:

Liank () = max(0, A + dist(T,, Tp) — dist(¥,, ¥)), (3)

where A is a hyper-parameter of margin. The margin-based
metric learning strengthens the ranking property by forcing
the negative image to be farther away than the positive image
by some distance. The distance function dist(-, -) is defined
based on Eq. 1 as:

“

After training, retrieval is performed by computing the dis-
tance (or equivalently, cosine similarity) between the query
sketch and all candidate images to obtain a ranking list.

dist(0,T2) = 1 — cos(¥, Ua).

Discriminative Semantic Alignment

The problem with vanilla triplet ranking is that the model is
supervised by seen classes C'® but never exposed to any data
of unseen classes C* (illustrated in Fig. 2a). The model has
no knowledge about the relation between C* and C*. Thus
the retrieval on new classes would be rather undetermined.
In order to transfer the ranking property from seen to un-
seen classes, we establish a linkage by aligning the visual
feature space with the semantic space as shown in Fig. 2b.
The relevance of class prototypes can provide guidance for
the adaptation of unseen classes. The embedding vectors
E={é|é& e€R3 1<i<|C|}learned by word2vec
(Mikolov et al. 2013) are used as the initial auxiliary infor-
mation. The class prototypes H = {ﬁz | h; € Rd/, 1< <

7681

|C| } are obtained by transforming F with normalization to
hold class-specific angular information as:
T
By = Lf’ . (5)
W TEi

where W is the learnable weights and ||-||2 denotes lo-norm.
The main purpose of scaling factor A is to stabilize model
training; its exact value is not sensitive and we set it to 10
throughout all experiments.

The semantic representation of sketches and images are
extracted from their visual representation through a shared
fully-connected layer ¢ : R? RY. Then we calcu-
late the vector similarity between the semantic representa-
tion (of sketches and images) and the class prototypes to
obtain discriminative scores. Note that ( also includes [2-
normalization, so that cosine similarity S(-) can be easily
implemented by dot product:

S.(z) = (¢()) - he, z€ X% ceC, (6)

Se(y) =C(W®) -he, yeYiecel — (7)
Several studies have reveled that CNNs make absolute
confident scores on the supervised classes. Despite high dis-
criminative accuracy, overfitting to seen classes generally
hurts model generalization to unseen classes. In order to mit-
igate the overconfidence, we employ the temperature tech-
nique (Hinton, Vinyals, and Dean 2015) to reform the soft-
max prediction as:
ch(x) — eXp(Sc(x) ) 7) ,
ZC’GC exp(Sc/ (l) ’ 7)
where v € N is the temperature parameter. As v > 1, the
distribution becomes more skewed; as v < 1, the distribu-
tion is softened (when v = 0, all classes have equal proba-
bility). We empirically found that a value between 15 and 20

works well. Finally, the discriminative semantic alignment is
trained on seen data by cross-entropy loss:

Lm(®) = > n(w)log Pe(w),
ceCs
Pe(y) and Lgem (y) for y € Y® can be similarly defined.

—

A

reX® cel,

®)

reX® (9
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Figure 3: (a) Distribution calibration between seen and unseen classes. (b) Semi-transductive triplet ranking.

Semi-Transductive Adaptation

A semantics-aware sketch-based image retrieval model is
built under the joint guidance of L. and Ly (Fig. 2b).
The learning paths ¢(-), 1(), and {(-) will be reused when
testing on new data. By sharing the semantic relevance
established by the class prototypes, unseen data is likely
mapped to more suitable positions in the visual embedding
space. However, the feature encoding is still biased due to
the high inter-class variances.

We calibrate the biased distribution by utilizing unlabeled
images Y* from unseen classes C". First, the discrimina-
tive scores of an unlabeled image y* € Y™ can be predicted
according to Eq. 7. Due to overfitting, the top prediction gen-
erally falls in seen classes, i.e.,

argmax P.(y) € C?,
ceC

yeyy (10)
We formalize the problem as a binary classification task:
whether the highest prediction belongs to seen or unseen
classes? Consequently, a variant of hinge loss is used to cal-
ibrate the distribution of unlabeled images y € Y*:

Luans (y) = max(0, § + max Pe(y) — max Per(y)). (1)

The model weights are updated in the direction of decreas-
ing the predictions on seen classes and increasing the confi-
dences on unseen classes. Conversely, the loss is claimed by
zero. Finally, the highest prediction on unseen classes should
be at least § higher than that on seen classes. The process is
conceptually shown in Fig. 3a.

Based on the calibrated distribution, we can assign each
unlabeled image y € Y a pseudo-label as:

n(y) = argmax e cu Pe(y) (12)

The unlabeled images with their predicted labels are incor-
porated into ranking property learning to reflect the cal-
ibration, i.e., the triplet set 7°%t% is now sampled from
{X*,Y® U Y"} rather than { X® Y*}. Please refer to
Fig. 2¢ and Fig. 3b for intuitive concepts.

Learning Objectives
The final objective is to minimize the weighted losses:

min (Lo + w1 Liom + w2Lians) (13)
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where w; and w9 are weighting factors, and

s+u 1

k= [t D Lan(d), (14)
teTs«l»u
1
‘C:em = Tvel sl ['sem(x) + ﬁsem(y) y
15)
1
Litans = W Z Lians(Y)- (16)
yeyu
Experiments
Settings
Datasets. We employ two widely used SBIR datasets:

Sketchy (Sangkloy et al. 2016) and TU-Berlin (Eitz, Hays,
and Alexa 2012). Sketchy consists of 75,471 freehand
sketches and 12,500 photos belonging to 125 object cate-
gories. Liu et al. enriched the dataset by collecting additional
60,502 natural images from ImageNet (Deng et al. 2009).
The TU-Berlin dataset includes 250 categories, each with 80
hand-drawn sketches. Zhang et al. extended it with 191,067
real images crawled from ImageNet and search engines, thus
enabling SBIR experiments. We split each dataset into seen
and unseen classes following conventions (Dey et al. 2019).
During evaluation, 20% seen classes and all unseen classes
are mixed to form the generalized test set (Zhu et al. 2020).

Evaluation Metrics. Several different evaluation metrics
are used in the literature. Some studies reported mean Av-
erage Precision (mAP) on the whole dataset and Preci-
sion on the top-100 recalled images (P@100) (Shen et al.
2018; Dutta and Akata 2019; Dey et al. 2019; Liu et al.
2019; Chaudhuri et al. 2020; Dutta and Biswas 2020; Zhu
et al. 2020). While others considered the top-200 recalls and
reported mAP@200 and P@200 (Yelamarthi et al. 2018;
Verma et al. 2019; Dey et al. 2019; Liu et al. 2019; Pandey
et al. 2020; Dutta and Biswas 2020; Zhu et al. 2020). We
endeavored to gather all relevant competitors and conduct a
comprehensive assessment on four common metrics.

Implementation Details. The feature encoders ¢(-) and
() make use of the convolutional layers of VGG-16 net



Sketchy TU-Berlin
Method
mAP(%) P@100(%) mAP(%) P@100(%)

ZSIH (Shen et al. 2018) 21.9 29.6 14.2 21.8

SEM-PCYC (Dutta and Akata 2019) 30.7 36.4 19.2 29.8

CSDB (Dutta and Biswas 2020) 33.1 38.1 14.9 22.6

OCEAN (Zhu et al. 2020) 44.5 54.8 31.2 34.1

STL (Ours) 53.0+0.3 58.1+0.3 40.2+0.4 49.8+0.5

Table 1: GZS-SBIR Performance in terms of mAP and P@100.
Sketchy TU-Berlin
Method
mAP@200(%) P@200(%) mAP@200(%) P@200(%)

CAAE (Yelamarthi et al. 2018) 12.4 18.6 9.1 16.2

CVAE (Yelamarthi et al. 2018) 13.4 20.2 9.9 17.7

SAN (Pandey et al. 2020) 22.7 30.4 12.4 20.3

SEM-PCYC (Dutta and Akata 2019) 355 32.7 30.1 26.7

OCEAN (Zhu et al. 2020) 54.7 443 36.9 31.9

STL (Ours) 63.4+0.2 53.8+0.3 52.9+0.3 46.7+0.5

Table 2: GZS-SBIR Performance in terms of mAP @200 and P@200.

(Simonyan and Zisserman 2014) that is pre-trained on Im- Sketchy TU-Berlin
ageNet (Deng et al. 2009). The attention mechanism upon B
feature maps is implemented using 1 x 1 convolutions. The érsank (I;eterogeneous) 1?; 23
shared MLP for visual representation consist of the last three rank (Siamese) : :
fully connected layers in VGG-16, among which the first L2« 16.3 9.6
two layers are followed by ReLU non-linearity and dropout Lk + Liem 27.4 13.8
regularization with probability 0.5. The feature dimension of Lstu L3+ LY 53.0 40.2

the embedding space is set to 1024D. Note that although our
model introduces more computation during training, only
the feature encoder and nearest neighbor search are used
in the test phase. The test-time computational cost is in the
same order of magnitude as the recent competitive methods.

Hyperparameters. The weighting factors for each dataset
are determined by grid search with wy; € [0.01,1] and
ws € [0.001,10]. For Sketchy, w; = 0.5, we = 0.1, and
for TU-Berlin w; = 0.5, wy = 0.5. The margin hyper-
parameters in L (Eq. 3) and Lyans (Eq. 11) are empiri-
cally set to A = 0.1 and 6 = 0.01, respectively. The whole
model is implemented on top of PyTorch (Paszke et al. 2019)
and is trained end-to-end by stochastic gradient descent with
learning rate le-3 and a mini-batch size 20. The early stop-
ping strategy is adopted to combat overfitting.

Quantitative Results

The quantitative results for generalized zero-shot sketch-
based image retrieval are presented in Tab. 1 and Tab. 2.
We conducted five independent experiments and reported
the mean and standard deviation to be statistically signif-
icant. Our model is denoted as STL (acronym for Semi-
Transductive Learning) in the last row.

It can be seen that our solution is superior to all other
state-of-the-art alternatives by a large margin. On the
Sketchy dataset, our approach has achieved an improvement
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rank

Table 3: Ablation study for GZS-SBIR in terms of mAP.

of more than 8% on mAP, mAP @200, and P@200 compared
with the OCEAN method. On the TU-Berlin dataset, our
model also outperforms OCEAN by 9% on mAP (40.2% vs.
31.2%). More significantly, our method gains about 15%—
16% improvements on P@100, mAP@200, and P@200
compared with OCEAN method. Comparing Tab. 1 and
Tab. 2, the performance of all methods on the TU-Berlin
dataset is obviously lower than that on the Sketchy dataset.
We attribute it to the inherent hierarchy ambiguity in TU-
Berlin, which will be further explained in Sec. Visualization.
In terms of evaluation metrics, P@ 100 and P@200 only
measure the retrieval precision under specific recalls, which
are usually unstable indicators. The slightly larger standard
deviation reported in the tables may confirm this. The mAP
(i.e., mAP@all) and mAP @200 metrics deserve special at-
tention as they indicate the average retrieval performance.

Ablation Study

Our final model is learned under the joint supervision of
three losses. We gradually remove modules to investigate
their contributions. The results are shown in Tab. 3. Obvi-
ously, L, makes the greatest contribution. In fact, once it
is removed, the semi-transductive learning paradigm degen-
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Figure 5: Effect analysis of embedding dimension.

erates into ordinary zero-shot learning. The Ranking module
loses the ability to explore unlabeled data due to the link-
age. In short, our model is a tight whole, and the compo-
nents depend on each other to work properly. In addition,
the adopted semi-heterogeneous backbone is more suitable
for cross-modal learning than other alternatives. It can be
speculated that the large number of learnable parameters in
the heterogeneous structure increases the risk of overfitting.

Analysis

The recent trend of CNN-based deep retrieval models is to
embed images into a high-dimensional feature space, e.g.,
512D in OCEAN and 1024D in SketchGCN. We experi-
mented with lower embedding dimensions and retrained our
models for GZS-SBIR. The results of representative mAP
and mAP@200 are shown in Fig. 5. Overall, the perfor-
mance shows an upward trend with the increase of embed-
ding dimension. It is noteworthy that our model is still com-
petitive even if the embedding space is compressed to 64D.
Our 64D model has achieved mAP 44.6% and mAP@200
56.3% on Sketchy, which are superior to the 512D OCEAN
model in Tab. 1 (44.5%) and Tab. 2 (54.7%). Similarly, it
also outperforms OCEAN on TU-Berlin with mAP 36.3%
vs. 31.2% and mAP@200 49.0% vs. 36.9%.

7684

Visualization

Fig. 4 visualizes several retrieval examples produced by our
method. The trained model has the ability to retrieve relevant
images with high semantic and visual similarity whether for
simple (e.g., flower in TU-Berlin) or complex objects (e.g.,
cabin in Sketchy). For freehand sketches that may cause am-
biguity, even if the retrieved images belong to wrong classes,
they still show a high degree of visual similarity. Clues can
be found from dolphin, helicopter, book, and skyscraper ex-
amples. Also note that several shoe images are retrieved for
the rollerblades query. Although assessed as failures, they
are indeed relevant in semantics and appearance. This re-
flects a inherent problem in TU-Berlin that the definition of
category hierarchy is somewhat confusing: (i) classes from
different WordNet (Miller 1995) levels are mixed (e.g., mug
vs. beer-mug), and (ii) semantic concepts and attribute de-
scriptions are used together (e.g., seagull vs. flying bird).

Conclusion

In this study, we have re-examined the challenging and real-
istic generalized zero-shot sketch-based image retrieval task.
A novel semi-transductive learning paradigm is proposed to
improve the generalization ability of zero-shot SBIR mod-
els on both seen and unseen classes. We propose to transfer
cross-modal domain knowledge from unlabeled image data
through a semi-heterogeneous feature encoder. A hybrid
metric learning strategy with semantic alignment and distri-
bution calibration is designed to adapt the retrieval model to
the target domain. The proposed method has been evaluated
on two large-scale benchmark datasets for the challenging
GZS-SBIR task, and extensive experiments confirmed the
superiority of our solution over various state-of-the-art com-
petitors.
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