Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting

Wei Fan¹, Pengyang Wang²*, Dongkun Wang², Dongjie Wang¹, Yuanchun Zhou³, Yanjie Fu¹⋆

¹Department of Computer Science, University of Central Florida,
²State Key Laboratory of Internet of Things for Smart City, University of Macau,
³Computer Network Information Center, Chinese Academy of Sciences

{weifan, wangdongjie}@knights.ucf.edu, {pywang, yc17908}@um.edu.mo, zyc@cnic.cn, yanjie.fu@ucf.edu

Abstract

The distribution shift in Time Series Forecasting (TSF), indicating series distribution changes over time, largely hinders the performance of TSF models. Existing works towards distribution shifts in time series are mostly limited in the quantification of distribution and, more importantly, overlook the potential shift between lookback and horizon windows. To address above challenges, we systematically summarize the distribution shifts in TSF into two categories. Regarding lookback windows as input-space and horizon windows as output-space, there exist (i) intra-space shift, that the distribution within the input-space keeps shifted over time, and (ii) inter-space shift, that the distribution is shifted between input-space and output-space. Then we introduce, Dish-TS, a general neural paradigm for alleviating distribution shifts in TSF. Specifically, for better distribution estimation, we propose the coefficient net (CONET), which can be any neural architectures, to map input sequences into learnable distribution coefficients. To relieve intra-space and inter-space shift, we organize Dish-TS as a Dual-CONET framework to separately learn the distribution of input- and output-space, which naturally captures the distribution difference of two spaces. In addition, we introduce a more effective training strategy for intractable CONET learning. Finally, we conduct extensive experiments on several datasets coupled with different state-of-the-art forecasting models. Experimental results show Dish-TS consistently boosts them with a more than 20% improvement. Source code is at https://github.com/weifan1/Dish-TS.

1 Introduction

Time Series Forecasting (TSF) has been playing an essential role in many applications, such as electricity consumption planning (Akay and Atak 2007), transportation traffic flow analysis (Ming et al. 2022), weather condition estimation (Han et al. 2021). Following by traditional statistical methods, e.g., (Holt 1957), deep learning-based TSF models, e.g., (Salinas et al. 2020; Rangapuram et al. 2018), have recently achieved great performance in various areas.

Despite the remarkable success of TSF models, the non-stationarity of time series data has been an under-addressed challenge for accurate forecasting (Hyndman and Athanasopoulos 2018). The non-stationarity, depicting the distribution of series data is shifted over time, can be interpreted as the distribution shift in time series (Brockwell and Davis 2009). Such a problem results into poor generalization, thus largely hindering the performance of time series forecasting.

After analyzing numerous series data, we systematically organize distribution shifts of TSF into two categories. Considering the lookback windows (‘lookbacks’ for brevity) as input-space of models and horizon windows (‘horizons’ for brevity) as output-space of models¹, there are (i) intra-space shift: time series distribution changes over time, making data within input-space (lookbacks) shifted; (ii) inter-space shift: the distribution is shifted between input-space (lookbacks) and output-space (horizons). Existing works have tried to alleviate distribution shift problem in TSF (Ogasawara et al. 2010; Passalis et al. 2019; Du et al. 2021; Kim et al. 2022). However, most of them exhibit two limitations:

First, the distribution quantification for intra-space in TSF is unreliable. Time series is ideally generated continuously from the true distribution, while the observational data is actually sampled discretely with sensors in a certain recording frequency. Existing works always directly normalize or rescale the series (Ogasawara et al. 2010; Passalis et al. 2019; Kim et al. 2022), by quantifying true distribution with fixed statistics (e.g., mean and std.) empirically obtained from observational data, and then normalizing series distri-

- Figure 1: (a) given time series (weather), take lookback windows to forecast horizon windows; (b) shows distributions (depicted by mean and std.) on different sampling frequencies towards one series; (c) shows the distribution difference of the lookback window and horizon window of (a).

¹In this paper, we use ‘lookbacks/horizons’, ‘lookback/horizon windows’, ‘input/output-space’ interchangeably.
bution with these statistics. However, the empirical statistics are unreliable and limited in expressiveness for representing the true distribution behind the data. For example, Figure 1(b) indicates three distributions (depicted by mean and std.) sampled from the same series with different frequencies (i.e., ten-minutely, hourly, daily). Despite coming from the same series, different sampling frequencies provide different statistics, prompting the question: which one best represents the true distribution? Since the recording frequency of time series is determined by sensors, it is difficult to identify what the true distribution is behind the data. Thus, how to properly quantify the distribution, as well as the distribution shift of intra-space, still remains a problem.

Second, the inter-space shift of TSF is neglected. In time series forecasting, considering the input-sequences (lookbacks) and output-sequences (horizons) as two spaces, existing works always assume the input-space and output-space follow the same distribution by default (Ogasawara et al. 2010; Passalis et al. 2019; Du et al. 2021). Though a more recent study, RevIN (Kim et al. 2022), tries to align instances through normalizing the input and denormalizing the output, it still puts a strong assumption that the lookbacks and horizons share the same statistical properties; hence the same distribution. Nonetheless, there is always a variation in distribution between input-space and output-space. As shown in Figure 1(c), the distribution (depicted by mean and std.) between the lookback window and the horizon window exhibits a considerable disparity. The ignorance of inter-space shift overlooks the gap between input- and output-space, thus hindering forecasting performance.

To overcome the above limitations, we propose an effective general neural paradigm, Dish-TS, against Distribution shift in Time Series. Dish-TS is model-agnostic and can be coupled with any deep TSF models. Inspired by (Kim et al. 2022), Dish-TS includes a two-stage process, which normalizes model input before forecasting and denormalizes model output after forecasting. To solve the problem of unreliable distribution quantification, we first propose a coefficient net (CONET) to measure the series distribution. Given any window of series data, CONET maps it into two learnable coefficients: a level coefficient and a scaling coefficient to illustrate series overall scale and fluctuation. In general, CONET can be designed as any neural architectures to conduct any linear/nonlinear mappings, providing sufficient modeling capacity of varied complexities. To relieve the aforementioned intra-space shift and inter-space shift, we organize Dish-TS as a Dual-CONET framework. Specifically, Dual-CONET consists of two separate CONETS: (1) BACKCONET, that produces coefficients to estimate the distribution of input-space (lookbacks), and (2) the HORICONET, that generates coefficients to infer the distribution of output-space (horizons). The Dual-CONET setting captures distinct distributions for input- and output-space respectively, which naturally relieves the inter-space shift.

In addition, Dish-TS is further introduced with an effective prior-knowledge induced training strategy for CONET learning, considering HORICONET needs to infer (or predict) distribution of output-space, which is more intractable due to inter-space shift. Thus, some extra distribution characteristics of output-space is used to provide HORICONET more supervision of prior knowledge. In summary, our contributions are listed:

- We systematically organize distribution shift in time series forecasting as intra-space shift and inter-space shift.
- We propose Dish-TS, a general neural paradigm for alleviating distribution shift in TSF, built upon Dual-CONET with jointly considering intra-space and inter-space shift.
- To implement Dish-TS, we provide a most simple and intuitive instance of CONET design with a prior knowledge-induced training fashion to demonstrate the effectiveness of this paradigm.
- Extensive experiments over various datasets have shown our proposed Dish-TS consistently boost current SOTA models with an average improvement of 28.6% in univariate forecasting and 21.9% in multivariate forecasting.

2 Related Work

Models for Time Series Forecasting.** Time series forecasting (TSF) is a longstanding research topic. At an early stage, researchers have proposed statistical modeling approaches, such as exponential smoothing (Holt 1957) and auto-regressive moving averages (ARMA) (Whittle 1963). Then, more works propose more complicated models: Some researchers adopt a hybrid design (Montero-Manso et al. 2020; Smyl 2020). With the great successes of deep learning, many deep learning models have been developed for time series forecasting (Rangapuram et al. 2018; Salinas et al. 2020; Zia and Razaq 2020; Cao et al. 2020; Fan et al. 2022). Among them, one representative method, N-BEATS, (Oreshkin et al. 2020) applies pure fully connected networks and achieves superior performance. Transformer (Vaswani et al. 2017) has been also used for series modelling. To improve it, Informer (Zhou et al. 2021) improves in attention computation, memory consumption and inference speed. More recently, Autoformer (Xu et al. 2021) replace attention with auto-correlation to facilitate forecasting.

Distribution Shift in Time Series Forecasting.** Despite of many remarkable models, time series forecasting still suffers from distribution shift considering distribution of real-world series is changing over time (Akay and Atak 2007). To solve this problem, some normalization techniques are proposed: Adaptive Norm (Ogasawara et al. 2010) puts z-score normalization on series by the computed global statistics. Then, DAIN (Passalis et al. 2019) applies nonlinear neural networks to adaptively normalize the series. (Du et al. 2021) proposed Adaptive RNNs to handle the distribution shift in time series. Recently, RevIN (Kim et al. 2022) proposes an instance normalization to reduce series shift. Though DAIN has used simple neural networks for normalization, most works (Ogasawara et al. 2010; Du et al. 2021; Kim et al. 2022) still used static statistics or distance function to describe distribution and normalize series, which is limited in expressiveness. Some other works study time series distribution shift in certain domains such as trading markets (Cao et al. 2022). Moreover, they hardly consider the inter-space shift between model input-space and output-space.
3 Problem Formulations

Time Series Forecasting. Let x_t denote the value of a regularly sampled time series at time-step t, and the classic time series forecasting formulation is to project historical observations $x_{t-L:t} = [x_{t-L+1},\ldots,x_t]$ into their subsequent future values $x_{t+H} = [x_{t+1},\ldots,x_{t+H}]$, where L is the length of lookback windows and H is the length of horizon windows. The univariate setting can be easily extended to the multivariate setting. Let $\{x_{t}^{(1)},x_{t}^{(2)},\ldots,x_{t}^{(N)}\}_{t=1}^{T}$ stands for N distinct time series with the same length T, and the multivariate time series forecasting is:

$$\begin{align*}
(x_{t+H}^{(1)},\ldots,x_{t+H}^{(N)})^T = \mathcal{F}_\Theta \left((x_{t-L+1}^{(1)},\ldots,x_{t-L}^{(N)})^T\right)
\end{align*}$$

where Gaussian noises ϵ_{t+H} exist in the forecasting but dropped for brevity; $\{x_{t-L+1}^{(i)}\}_{t=1}^{N}$ and $\{x_{t+H}^{(i)}\}_{t=1}^{N}$ are the multivariate lookback window and horizon window respectively; the mapping function $\mathcal{F}_\Theta: \mathbb{R}^{L \times N} \rightarrow \mathbb{R}^{H \times N}$ can be regarded as a forecasting model parameterized by Θ.

Distribution Shifts in Time Series. As aforementioned, this paper focuses on two kinds of distribution shifts in time series. In training forecasting models, one series will be cut into several lookback windows $\{x_{t-L+1}^{(i)}\}_{t=1}^{T}$ and their corresponding horizon windows $\{x_{t+H}^{(i)}\}_{t=1}^{T}$. The intra-space shift is defined as: for any time-step $u \neq v$,

$$|d(\chi_{input}^{(i)}(u), \chi_{input}^{(i)}(v))| > \delta$$

where δ is a small threshold; d is a distance function (e.g., KL divergence), $\chi_{input}^{(i)}(u)$ and $\chi_{input}^{(i)}(v)$, standing for the distributions of lookback windows $x_{u-L:u}^{(i)}$ and $x_{v-L:v}^{(i)}$, are shifted. Note that when most existing works (Ogasawara et al. 2010; Wang et al. 2019; Du et al. 2021; Kim et al. 2022) mention distribution shift in series, they mean our called intra-space shift. In contrast, the inter-space shift is:

$$|d(\chi_{input}^{(i)}(u), \chi_{output}^{(i)}(u))| > \delta$$

where $\chi_{input}^{(i)}(u)$ and $\chi_{output}^{(i)}(u)$ denotes the distribution of lookback window and horizon window at step u, respectively, which is always ignored by current TSF models.

4 DISH-TS

In this section, we elaborate on our general neural paradigm, DISH-TS. We start with an overview of this paradigm in Section 4.1. Then, we illustrate the architectures of DISH-TS in Section 4.2. Also, we provide a simple and intuitive instance of DISH-TS in Section 4.3 and introduce a prior knowledge-induced training strategy in Section 4.4, to demonstrate a workable design against the shift in forecasting.

4.1 Overview

DISH-TS is a simple yet effective, flexible paradigm against distribution shift in time series. Inspired by (Kim et al. 2022), DISH-TS includes a two-stage process, normalizing before forecasting and denormalizing after forecasting. The paradigm is built upon the coefficient net (CONET), which maps input series into coefficients for distribution measurement. As Figure 2 shows, DISH-TS is organized as a dual-CONET framework, including a BACKCONET to illustrate input-space (lookbacks) and a HORICONET to illustrate output-space (horizons). Data of lookbacks are transformed by coefficients from BACKCONET before being taken to any forecasting model \mathcal{F}_Θ; the output (i.e., forecasting results) are transformed by coefficients from HORICONET to acquire the final predictions. In addition, the HORICONET can be trained in a prior knowledge-induced fashion as a more effective way, especially in long series forecasting.

4.2 Dual-Conet Framework

We introduce CONET and Dual-Conet framework; then we illustrate how forecasting models are integrated into Dual-Conet by a two-stage normalize-denormalize process.

Conet. Non-stationary time series makes it intractable for accurate predictions. Pilot works (Ogasawara et al. 2010; Du et al. 2021; Kim et al. 2022) measure distribution and its change via statistics (typically mean and std.) or distance function. However, as stated in Section 1, these operations are unreliable quantifications and limited in expressiveness. In this regard, we propose a coefficient net (CONET) for learning better distribution measurement to capture the shift. The general formulation is:

$$\varphi, \xi = CONET(x)$$

where $\varphi \in \mathbb{R}^1$ denotes level coefficient, representing the overall scale of input series in a window $x \in \mathbb{R}^L$; $\xi \in \mathbb{R}^1$ denotes scaling coefficient, representing fluctuation scale of x. In general, CONET could be set as any neural architectures to conduct any linear/nonlinear mappings, which brings sufficient modeling capability and flexibility.
Dual-Conet. To relieve the aforementioned intra-space shift and inter-space shift in time series, Dish-TS needs to capture the distribution difference among input-space and the difference between input-space and output-space. Inspired by one remarkable model N-BEATS (Oreshkin et al. 2020) that uses ‘backcast’ and ‘forecast’ to conduct backward and forward predictions, we formulate the Dish-TS as a Dual-Conet architecture, including a Back-Conet for input-space distribution of \(\{ x_{t-L:t}^{(i)} \}_{t=L}^{T-H} \in X_{\text{input}}^{(i)} \) and a HORICONET for output-space distribution of \(\{ x_{t+1:t+H}^{(i)} \}_{t=L}^{T-H} \in X_{\text{output}}^{(i)} \). In multivariate forecasting, the two CONETS are illustrated as:

\[
\varphi_{b,t}^{(i)}, \xi_{b,t}^{(i)} = \text{BACKCONET}(x_{t-L:t}^{(i)}), i = 1, \ldots, N \\
\varphi_{h,t}^{(i)}, \xi_{h,t}^{(i)} = \text{HORICONET}(x_{t-L:t}^{(i)}), i = 1, \ldots, N
\]

where \(\varphi_{b,t}, \xi_{b,t} \in \mathbb{R} \) are coefficients for lookbacks, and \(\varphi_{h,t}, \xi_{h,t} \in \mathbb{R} \) are coefficients for horizons at time-step \(t \), given single \(i \)-th variate series. Though sharing the same input \(x_{t-L:t}^{(i)} \), the two CONETS have distinct targets, where BACKCONET aims to approximate distribution \(X_{\text{input}}^{(i)} \) from input lookback signals, while HORICONET is to infer (or predict) future distribution \(X_{\text{output}}^{(i)} \) based on historical observations. This brings additional challenges in training HORICONET, detailed in Section 4.4.

Integrating Dual-Conet into Forecasting. After acquiring coefficients from Dual-Conet, the coefficients can be integrated into any time series forecasting model to alleviate the two aforementioned shifts through a two-stage normalizing-de-normalizing process. Specifically, let \(\mathcal{F}_{\Theta} \) represent any forecasting model, the original forecasting process \(x_{t+1:t+H} = \mathcal{F}_{\Theta}(x_{t-L:t}) \) is rewritten as:

\[
x_{t+1:t+H} = \xi_{h,t}^{(i)} \mathcal{F}_{\Theta} \left(\frac{1}{\xi_{b,t}^{(i)}} (x_{t-L:t} - \varphi_{b,t}^{(i)}) \right) + \varphi_{h,t}^{(i)} \tag{6}
\]

where \(x_{t+1:t+H} \) are the final transformed forecasting results after integration with dual conets. Actually, Equation (6) includes a two-stage process with \(\mathcal{F}_{\Theta} \): (i) normalize input lookbacks \(x_{t-L:t} \) before forecasting by \(x_{t-L:t}^{(i)} = \frac{1}{\xi_{b,t}^{(i)}} (x_{t-L:t} - \varphi_{b,t}^{(i)}) \); (ii) denormalize model’s direct output \(x_{t+1:t+H}^{(i)} \) after forecasting by \(x_{t+1:t+H} = \xi_{h,t}^{(i)} x_{t+1:t+H}^{(i)} + \varphi_{h,t}^{(i)} \).

Note that even though the above operations only consider additive and multiplicative transformations, CONET itself could be any complicated linear/nonlinear mappings in the generation of coefficients, which is flexible. Finally, the transformed forecasts \(x_{t+1:t+H} \) are taken to loss optimization.

4.3 A Simple and Intuitive Instance of Conet

Essentially, the flexibility of Dish-TS comes from the specific CONET design, which could be any neural architectures for different modeling capacity. To demonstrate the effectiveness of our framework, we provide a most simple and intuitive instance of CONET design to reduce series shift.

Specifically, given multivariate input \(\{ x_{t-L:t}^{(i)} \}_{t=L}^{T-H} \), the most intuitive way is to use standard fully connected layers to conduct linear projections. Let \(v_{f}^{(i)}, v_{b}^{(i)} \in \mathbb{R} \) stand for two basic learnable vectors of layer \(\ell \) of BACKCONET and HORICONET respectively. Here we consider \(\ell = 1 \) for simplicity, and then the projection is:

\[
\varphi_{b,1} = \sigma(\sum_{r=1}^{\text{dim}(v_{b}^{(i)})} v_{b,r} x_{t-r:t-L}) \tag{7}
\]

where the level coefficients \(\varphi_{b}^{(i)} \) and \(\varphi_{h}^{(i)} \) are respectively from BACKCONET and HORICONET to represent the overall scale of input \(x_{t-L:t} \) and output \(x_{t+1:t+H} \); \(\sigma \) here denotes a leaky ReLU non-linearity (Maas et al. 2013) is utilized instead of original ReLU that ignores negative data and thus causes information loss. Also, we aim to let scaling coefficients represent the fluctuation for series. Inspired by the calculation of standard deviation \(\sqrt{\int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx} \) where \(x \) is variable and \(\mu \) is mean, we propose the following operation to get scaling coefficients:

\[
\xi_{b,1} = \sqrt{\mathbb{E}(x_{t}^{(i)} - \varphi_{b,1})^2}, \quad \xi_{h,1} = \sqrt{\mathbb{E}(x_{t}^{(i)} - \varphi_{h,1})^2} \tag{8}
\]

where scaling coefficients \(\xi_{b,1}, \xi_{h,1} \) can actually be seen as the average deviation of \(x_{t-L:t} \) with regard to \(\varphi_{b,1} \) and \(\varphi_{h,1} \). The equation (8) is also simple, intuitive and easy to compute, without introducing extra parameters to optimize.

4.4 Prior Knowledge-Induced Training Strategy

As aforementioned, BACKCONET estimates distribution of input-space \(X_{\text{input}}^{(i)} \), while HORICONET needs to infer distribution of output-space \(X_{\text{output}}^{(i)} \), which is more intractable because of the gap between input- and output-space. The gap is even larger with the increase of horizon length.

To solve this problem, we aim to pour some prior knowledge (i.e., mean of horizons) as soft targets in Dish-TS to assist the learning of HORICONET to generate coefficients \(\varphi_{h,t}^{(i)}, \xi_{h,t}^{(i)} \). Even though the statistic mean of horizons cannot fully reflect the distribution, it can still demonstrate characteristics of output-space, as discussed in Section 1. Thus, along the line of equation (6), the classic mean square error can be given by \(\mathcal{L}_{\text{mse}} = \sum_{k=1}^{K} \sum_{i=1}^{N} \left(\hat{x}_{t+1:t+H}^{(i)} - x_{t+1:t+H}^{(i)} \right)^2 \), where \(K \) is the batch size, \(t_k \) is randomly-sampled time points to compose batches, and \(N \) is number of series. With prior knowledge, we rewrite the final optimization loss \(\mathcal{L} \) as:

\[
\sum_{k=1}^{K} \sum_{i=1}^{N} \left[\left(\hat{x}_{t+1:t+H}^{(i)} - x_{t+1:t+H}^{(i)} \right)^2 + \alpha \left(\frac{1}{T-H} \sum_{t=t+1}^{t+H} \left(x_{t}^{(i)} - \varphi_{h,t}^{(i)} \right)^2 \right) \right] \tag{9}
\]

where the left item is mean square error; the right item is the learning guidance of prior knowledge; \(\alpha \) is to control weight of prior guidance; \(\varphi_{h,t}^{(i)} \) is the level coefficients of HORICONET to softly optimize.
<table>
<thead>
<tr>
<th>Method</th>
<th>Informer</th>
<th>+Dish-T5</th>
<th>Disk-T5</th>
<th>Autoformer</th>
<th>+Dish-T5</th>
<th>N-BEATS</th>
<th>+Dish-T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>MSE</td>
<td>MAE</td>
<td>MSE</td>
<td>MAE</td>
<td>MSE</td>
<td>MAE</td>
<td>MSE</td>
</tr>
<tr>
<td>Electricity</td>
<td>4.394</td>
<td>4.897</td>
<td>1.116</td>
<td>2.413</td>
<td>1.616</td>
<td>3.138</td>
<td>1.353</td>
</tr>
<tr>
<td></td>
<td>4.405</td>
<td>4.904</td>
<td>1.256</td>
<td>2.581</td>
<td>2.291</td>
<td>3.772</td>
<td>1.783</td>
</tr>
<tr>
<td></td>
<td>3.933</td>
<td>4.675</td>
<td>1.060</td>
<td>2.354</td>
<td>2.281</td>
<td>3.726</td>
<td>1.330</td>
</tr>
<tr>
<td></td>
<td>4.083</td>
<td>4.747</td>
<td>1.015</td>
<td>2.301</td>
<td>2.072</td>
<td>3.502</td>
<td>1.162</td>
</tr>
<tr>
<td>ETTh1</td>
<td>0.427</td>
<td>1.536</td>
<td>0.339</td>
<td>1.343</td>
<td>0.420</td>
<td>1.505</td>
<td>0.344</td>
</tr>
<tr>
<td></td>
<td>0.855</td>
<td>2.272</td>
<td>0.570</td>
<td>1.824</td>
<td>0.767</td>
<td>2.172</td>
<td>0.588</td>
</tr>
<tr>
<td></td>
<td>0.930</td>
<td>2.328</td>
<td>0.840</td>
<td>2.258</td>
<td>1.100</td>
<td>2.669</td>
<td>0.872</td>
</tr>
<tr>
<td></td>
<td>0.964</td>
<td>2.567</td>
<td>0.911</td>
<td>2.448</td>
<td>1.098</td>
<td>2.659</td>
<td>0.959</td>
</tr>
<tr>
<td></td>
<td>1.146</td>
<td>2.829</td>
<td>0.993</td>
<td>2.520</td>
<td>1.230</td>
<td>2.796</td>
<td>0.936</td>
</tr>
<tr>
<td>ETTm2</td>
<td>1.328</td>
<td>2.525</td>
<td>0.760</td>
<td>1.686</td>
<td>1.718</td>
<td>2.976</td>
<td>0.762</td>
</tr>
<tr>
<td></td>
<td>1.488</td>
<td>2.649</td>
<td>1.070</td>
<td>2.117</td>
<td>3.061</td>
<td>4.259</td>
<td>1.847</td>
</tr>
<tr>
<td></td>
<td>5.114</td>
<td>5.832</td>
<td>2.754</td>
<td>3.841</td>
<td>4.167</td>
<td>4.959</td>
<td>3.413</td>
</tr>
<tr>
<td></td>
<td>5.958</td>
<td>6.490</td>
<td>4.284</td>
<td>5.096</td>
<td>5.735</td>
<td>5.993</td>
<td>4.449</td>
</tr>
<tr>
<td>Weather</td>
<td>3.632</td>
<td>1.381</td>
<td>0.725</td>
<td>0.584</td>
<td>1.082</td>
<td>0.775</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>5.933</td>
<td>1.856</td>
<td>1.251</td>
<td>0.798</td>
<td>1.617</td>
<td>0.968</td>
<td>1.317</td>
</tr>
<tr>
<td></td>
<td>6.895</td>
<td>2.071</td>
<td>1.898</td>
<td>1.022</td>
<td>1.901</td>
<td>1.034</td>
<td>1.824</td>
</tr>
<tr>
<td></td>
<td>6.786</td>
<td>2.045</td>
<td>1.932</td>
<td>1.042</td>
<td>1.970</td>
<td>1.046</td>
<td>1.847</td>
</tr>
<tr>
<td></td>
<td>7.393</td>
<td>2.175</td>
<td>2.237</td>
<td>1.099</td>
<td>2.190</td>
<td>1.100</td>
<td>2.015</td>
</tr>
</tbody>
</table>

Table 1: Univariate time series forecasting performance. The length of lookbacks/horizons is set the same. Results of *Illness* dataset are included Appendix B.1, due to space limit.

5 Experiment

5.1 Experimental Setup

Datasets. We conduct our experiments on five real-world datasets: (i) *Electricity* dataset collects the electricity consumption (Kwh) of 321 clients. (ii) *ETT* dataset includes data of electricity transformers temperatures. We select *ETTh1* dataset (hourly) and *ETTm2* dataset (15-minutely). (iii) *Weather* dataset records 21 meteorological features every ten minutes. (iv) *Illness* dataset includes weekly-recorded influenza-like illness patients data. We mainly follow (Zhou et al. 2021) and (Xu et al. 2021) to preprocess and split data. More details are in Appendix A.1

Evaluation. To directly reflect distribution shift in time series, all the experiments are conducted on original data without data normalization or scaling. We evaluate time series forecasting performance on the mean squared error (MSE) and mean absolute error (MAE). Note that our evaluations are on original data; thus the reported metrics are scaled for readability. More evaluation details are in Appendix A.2.

Implementation. All the experiments are implemented with PyTorch (Paszke et al. 2019) on an NVIDIA RTX 3090 24GB GPU. In training, all the models are trained using L2 loss and Adam (Kingma and Ba 2014) optimizer with learning rate of [1e-4, 1e-3]. We repeat three times for each experiment and report average performance. We let lookback/horizon windows have the same length, gradually prolonged from 24 to 336 except for *Illness* dataset that has length limitation. We have also discussed larger lookback length L, larger horizon length H, and prior guidance rate α. Implementation details are included in Appendix A.3.

Baselines. As aforementioned, our *Dish-TS* is a general neural framework that can be integrated into any deep time series forecasting models for end-to-end training. To verify the effectiveness, we couple our paradigm with three state-of-the-art backbone models, Informer (Zhou et al. 2021), Autoformer (Xu et al. 2021) and N-BEATS (Oreshkin et al. 2020). More baseline details are in Appendix A.4.

5.2 Overall Performance

Univariate time series forecasting. Table 1 demonstrates the overall univariate time series forecasting performance of three state-of-the-art backbones and their *Dish-TS* equipped versions, where we can easily observe that *Dish-TS* helps all the backbones achieve much better performance. The most right column of Table 1 shows the average improvement of *Dish-TS* over baseline models under different circumstances. We can see that *Dish-TS* can achieve a MSE improvement more than 20% in most cases, up to 50% in some cases. Notably, Informer usually performs worse but can be improved significantly with *Dish-TS*.

Multivariate time series forecasting. Table 2 demonstrates the overall multivariate time series forecasting performance across four datasets and the results and analysis for *Illness* dataset are in Appendix B.1. Still, we notice *Dish-TS* can also improve significantly in the task of multivariate forecasting compared with three backbones. We find out a stable improvement (from 10% to 30%) on *ETTh1, ETTm2* and *Weather* datasets when coupled with *Dish-TS*. Interestingly, we notice the both original Informer and Autoformer can hardly converge well in *Electricity* original data. With *Dish-TS*, the data distribution is normalized for better forecasting.
Table 2: Multivariate time series forecasting performance of backbones and Dish-TS. * means N-BEATS is re-implemented for multivariate time series forecasting; see Appendix A.4 for more details.

<table>
<thead>
<tr>
<th>Datasets Length</th>
<th>24</th>
<th>48</th>
<th>96</th>
<th>168</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>0.042</td>
<td>0.057</td>
<td>0.036</td>
<td>0.249</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>0.969</td>
<td>1.002</td>
<td>0.056</td>
<td>0.289</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>1.070</td>
<td>1.046</td>
<td>0.084</td>
<td>0.325</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>0.960</td>
<td>1.013</td>
<td>0.088</td>
<td>0.335</td>
<td>0.585</td>
</tr>
<tr>
<td></td>
<td>1.113</td>
<td>1.058</td>
<td>0.153</td>
<td>0.400</td>
<td>0.569</td>
</tr>
</tbody>
</table>

Table 3: Performance comparisons on MSE with the state-of-the-art normalization technique in multivariate time series forecasting taking Autoformer as the backbone. Improvement is towards RevIN. Univariate forecasting results are in Appendix B.2.

<table>
<thead>
<tr>
<th>Datasets Length</th>
<th>24</th>
<th>48</th>
<th>96</th>
<th>168</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>0.352</td>
<td>2.120</td>
<td>2.224</td>
<td>1.100</td>
<td>4.485</td>
</tr>
<tr>
<td></td>
<td>3.064</td>
<td>2.042</td>
<td>2.507</td>
<td>1.457</td>
<td>5.812</td>
</tr>
</tbody>
</table>

Table 4: Impact of larger horizons on forecasting, also referred as long TSF problems. Performance (MSE) is reported when horizon is prolonged (336 to 720) and lookback is fixed as 96, taking N-BEATS as backbone model.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>336</th>
<th>420</th>
<th>540</th>
<th>600</th>
<th>720</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>1.7429</td>
<td>1.7859</td>
<td>1.7720</td>
<td>1.6140</td>
<td>1.6023</td>
</tr>
<tr>
<td>+Dish-TS</td>
<td>1.3361</td>
<td>1.4507</td>
<td>1.4107</td>
<td>1.4340</td>
<td>1.4785</td>
</tr>
<tr>
<td>ETTm2</td>
<td>1.0468</td>
<td>1.2688</td>
<td>1.1696</td>
<td>1.3281</td>
<td>1.4270</td>
</tr>
<tr>
<td>+Dish-TS</td>
<td>0.9699</td>
<td>1.0864</td>
<td>1.1361</td>
<td>1.1852</td>
<td>1.1913</td>
</tr>
</tbody>
</table>

5.3 Comparison with Normalization Methods

In this section, we further compare performance with the state-of-the-art normalization technique, RevIN (Kim et al. 2021), that handles distribution shift in time series forecasting. Here we don’t consider AdaRNN (Du et al. 2021) because it is not compatible for fair comparisons. Table 3 shows the comparison results in multivariate time series forecasting taking Autoformer as the backbone. Improvement is towards RevIN. Univariate forecasting results are in Appendix B.2.

5.4 Parameters and Model Analysis

Horizon Analysis. We aim to discuss the influence of larger horizons (known as long time series forecasting (Zhou et al. 2021)) on the model performance. Interestingly, from Table 4, we find out backbone (N-BEATS) performs even better in Electricity as horizon becomes larger while on other datasets like ETTm2 larger horizons introduce more difficulty in forecasting. However, Dish-TS can still achieve better performance in different settings. Performance on Dish-TS is slowly worse with horizon’s increasing. An intuitive reason is larger horizons include more distribution changes and thus need more complicated modelling.

Lookback Analysis. We analyze the influence of lookback length on the model performance. As Table 5 shows,
we notice Dish-TS achieves 1.286 → 0.731 on Electricity and 0.571 → 0.520 when lookback increases from 48 to 144. This signifies in many cases larger lookback windows bring more historical information to infer the future distribution, thus boosting the prediction performance.

Prior Guidance Rate. We study the impact of prior guidance on model performance. Figure 3 shows the performance comparison with different guidance weight α in Equation (9). From the table, we observe when lookback/horizon is small, the performance gap among different αs is less obvious. However, when length is larger (than 168), the prediction error of $\alpha = 0$ (no guidance) increases quickly, while other settings achieve less errors.

Table 5: Impact of lookback length on forecasting. Metric MSE is reported when lookback is set from 48 to 240 when horizon is fixed as 48, taking N-BEATS as the backbone.

Table 6: Impact of initialization of CONET. Lookbacks and horizons have the same length. Underlined are best results.

Conet Initialization. We aim to study the impact of Conet initialization on model performance. As mentioned in Section 4.3, we create two learnable vectors \mathbf{v}_b, \mathbf{v}_f for Conets. We consider three strategies to initialize \mathbf{v}_b, \mathbf{v}_f: (i) avg: with scalar ones; (ii) norm: with standard normal distribution; (iii) uniform: with random distribution between 0 and 1. From Table 6, we observe three strategies perform similarly in most cases, showing stable performance. We also notice uniform and avg initialization performs better than norm, which signifies Dish-TS and the hidden distribution may be better learned when not using norm initialization.

Computational Consumption. We record the extra memory consumption of Dish-TS. As shown in Appendix B.3, our simple instance of Dish-TS (referred in Section 4.3) only causes extra 4MiB (or less) memory consumption, which can be ignored in real-world applications.

Visualizations. We compare predictions of base model and Dish-TS in Figure 4(a), predictions of RevIN (Kim et al. 2022) and Dish-TS in Figure 4(b). We easily observe when series trend largely changes (could be regarded as the distribution largely changes), both backbone model (Autoformer) and RevIN cannot acquire accurate predictions (in black circles). In contrast, our Dish-TS can still make correct forecasting. We show more visualizations in Appendix B.4.

6 Conclusion Remarks

In this paper, we systematically summarize the distribution shift in time series forecasting as intra-space shift and inter-space shift. We propose a general paradigm, Dish-TS to better alleviate the two shift. To demonstrate the effectiveness, we provide a most simple and intuitive instance of Dish-TS along with a prior knowledge-induced training strategy, to couple with state-of-the-art models for better forecasting. We conduct extensive experiments on several datasets and the results demonstrate a very significant improvement over backbone models. We hope this general paradigm together with such an effective instance of Dish-TS design can facilitate more future research on distribution shift in time series.
Acknowledgements

The research was partially done at IOTSC, University of Macau. This research was partially supported by the National Science Foundation (NSF) via the grant numbers: 2040950, 2006889, 2045567.

References

