Interpreting Unfairness in Graph Neural Networks via Training Node Attribution

Yushun Dong1, Song Wang1, Jing Ma1, Ninghao Liu2, Jundong Li1

1University of Virginia
2University of Georgia
\{yd6eb, sw3wv, jm3mr, jundong\}@virginia.edu, ninghao.liu@uga.edu

Abstract

Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mechanisms. However, most existing works overwhelmingly focus on GNN debiasing, but fall short on explaining how such bias is induced. In this paper, we study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes. Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs, and develop an algorithm to efficiently estimate the influence of each training node on such bias. We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets. Finally, we also demonstrate how the proposed framework could be used for debiasing GNNs. Open-source code can be found at https://github.com/yushundong/BIND.

Introduction

Graph data is pervasive among a plethora of realms, e.g., financial fraud detection (Wang et al. 2019; Pourhabibi et al. 2020; Cheng et al. 2020), social recommendation (Fan et al. 2019; Song et al. 2019; Guo and Wang 2020), and chemical reaction prediction (Do, Tran, and Venkatesh 2019; Shi et al. 2020; Kwon et al. 2022). As one of the state-of-the-art approaches to handle graph data, Graph Neural Networks (GNNs) have been attracting increasing attention (Kipf and Welling 2017; Hamilton, Ying, and Leskovec 2017; Veličković et al. 2017). Over the years, various graph analytical tasks have benefited from GNNs, e.g., crime forecasting (Jin et al. 2020), and the exhibited bias (i.e., unfairness) is destructive for the involved individuals (Dong et al. 2022a,c; Song et al. 2022). To tackle this problem, there has been a line of works focusing on debiasing GNNs in node classification (Dong et al. 2022a; Dai and Wang 2021a; Agarwal, Lakkaraju, and Zitnik 2021; Dong et al. 2021; Loveland et al. 2022; Dai and Wang 2022). Their goal is to relieve the bias in GNN predictions on the test set and in this paper we refer to it as model bias.

In addition to debiasing GNNs, it is also critical to interpret how the model bias arises in GNNs. This is because such an understanding not only helps to determine whether a specific node should be involved in the training set, but also has much potential to guide the design of GNN debiasing methods (Dong et al. 2022a; Loveland et al. 2022; Li et al. 2021). Nevertheless, most existing GNN interpretation methods aim to understand how a prediction is made (Yuan et al. 2020b; Liu, Feng, and Hu 2022) instead of other aspects such as fairness. Consequently, although the graph data has been proved to be a significant source of model bias (Dong et al. 2022a; Li et al. 2021), existing works are unequipped to tackle this problem. In this paper, we aim to address this problem at the instance (node) level. Specifically, given a GNN trained for node classification, we aim to answer: “To what extent the GNN model bias is influenced by the existence of a specific training node in this graph?”

Nevertheless, answering the above question is technically challenging. Essentially, there are three main challenges: (1) Influence Quantification. To depict the influence of each training node on the model bias of GNNs, the first and foremost challenge is to design a principled fairness metric. A straightforward approach is to directly employ traditional fairness metrics (e.g., Δ_{SP} for Statistical Parity (Dwork et al. 2012) and Δ_{EO} for Equal Opportunity (Hardt, Price, and Srebro 2016a)). However, these metrics are not applicable in our task. The reason is that most of them are computed based on the predicted labels, while a single training node can barely twist these predicted labels on test data (Zhang et al. 2022a; Sun et al. 2020). Consequently, the influence of a single training node on the model bias would be hard to capture. (2) Computation Efficiency. To compute the influence of each training node on the model bias, a natural way is to re-train the GNN on a new graph with this specific training node being deleted and observe how the exhibited model bias changes. However, such a re-training process is prohibitively expensive. (3) Non-I.I.D. Characterization. Graph data goes against the widely

Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
adopted i.i.d. assumption, as neighboring nodes are often dependent on each other (Ma, Deng, and Mei 2021; Ying et al. 2019). Therefore, when a specific node is deleted from the graph, all its neighbors could exert different influences on the model bias of GNN during training. Such complex dependencies bring obstacles towards the analysis of node influence on the model bias.

To tackle the above challenges, in this paper, we propose a novel framework named BIND (Biased training Node iDentification) to quantify and estimate the influence of each training node on the model bias of GNNs. Specifically, to handle the first challenge, we propose Probabilistic Distribution Disparity (PDD) as a principled strategy to quantify the model bias. PDD directly quantifies the exhibited bias in the GNN probabilistic output instead of the predicted labels. Therefore, PDD is with finer granularity and is more suitable for capturing the influence of each specific training node compared with traditional fairness metrics. To handle the second challenge, we propose an estimation algorithm for the node influence on model bias, which avoids the re-training process and thus achieves better efficiency. To tackle the third challenge, we also characterize the dependency between nodes based on the analysis of the training loss for GNNs. Finally, experiments on real-world datasets corroborate the effectiveness of BIND. Our contributions are mainly summarized as follows:

(1) **Problem Formulation.** We formulate a novel problem of interpreting the bias exhibited in GNNs through attributing to the influence of training nodes; (2) **Metric and Algorithm Design.** We propose a novel framework BIND to quantify and efficiently estimate the influence of each training node on the model bias of GNNs; (3) **Experimental Evaluation.** We perform comprehensive experiments on real-world datasets to evaluate the effectiveness of the proposed framework BIND.

Preliminaries

We first present the notations used in this paper. Then, we define the problem of interpreting GNN unfairness through quantifying the influence of each specific training node.

Notations. In this paper, matrices, vectors, and scalars are represented with bold uppercase letters (e.g., \mathbf{A}), bold lowercase letters (e.g., \mathbf{x}), and normal lowercase letters (e.g., x), respectively. We denote an input graph as $\mathcal{G} = \{V, E, \tilde{E}\}$, where $V = \{v_1, \ldots, v_n\}$ denotes the node set, $E \subseteq V \times V$ represents the edge set, $\tilde{E} = \{x_1, \ldots, x_n\}$ is the node attribute vectors, and x_i ($1 \leq i \leq n$) represents the attribute vector of node v_i. We denote $\mathcal{G}^{(l)}$ as the new graph with node v_i being deleted from \mathcal{G}. Additionally, we employ Y' ($V' \subseteq V$) to represent the training node set, where $|Y'| = m$. The nodes in graph \mathcal{G} are mapped to the output space with a trained GNN f_{WW}, where \mathcal{W} represents the learnable parameters of the GNN model. We denote the optimized parameters (i.e., the parameters after training) as $\hat{\mathcal{W}}$. In node classification, the probabilistic classification output for the n nodes is denoted as $\hat{Y} = \{y_1, \ldots, y_n\}$, where $y_i \in \mathbb{R}^c$, and c is the number of classes. We use Y and S to denote the ground truth label and the sensitive attribute for nodes, respectively. For an L-layer GNN f_{WW}, we define the subgraph up to L hops away centered on v_i as its computation graph (denoted as $\mathcal{G}_i = \{V_i, E_i, \tilde{E}_i\}$). Here V_i, E_i, and \tilde{E}_i denote the set of nodes, edges, and node attributes in \mathcal{G}_i, respectively. It is worth noting that existing works have proven that \mathcal{G}_i fully determines the information f_{WW} utilizes to make the prediction of v_i (Ying et al. 2019). For node v_i, we use V'_i to indicate the intersection between V_i and V', i.e., $V'_i = V_i \cap V'$, which is the set of training nodes in \mathcal{G}_i.

Problem Statement. The problem of interpreting GNN unfairness is formally defined as follows.

Problem 1. GNN Unfairness Interpretation. Given the graph data \mathcal{G} and a GNN model f_{WW} trained based on \mathcal{G}, we define the problem of interpreting GNN unfairness as to quantify the influence of each training node to the unfairness exhibited in GNN predictions on the test set.

Methodology

In this section, we first briefly introduce GNNs for the node classification task. Then, to tackle the challenge of **Influence Quantification**, we propose Probabilistic Distribution Disparity (PDD) to measure model bias and define node influence on the bias in a trained GNN. Furthermore, to tackle the challenge of **Computation Efficiency**, we design an algorithm to estimate the node influence on the model bias. Finally, we introduce how to characterize the dependency between nodes in influence estimation, which tackles the challenge of **Non-I.I.D. Characterization**.

GNNs in Node Classification

In the node classification task, GNNs take the input graph \mathcal{G} and output a probabilistic output matrix \hat{Y}, where the i-th row in \hat{Y} is \hat{y}_i, i.e., the probabilistic prediction of a node’s membership over all possible classes. Usually, there are multiple layers in GNNs, where the formulation of the l-th layer can be summarized as:

$$z^{(l+1)}_i = \sigma \left(\text{AGG} \left(z^{(l)}_i, h \left(\{ z^{(l)}_j : v_j \in \mathcal{N}(v_i) \} \right) \right) \right).$$

Here $z^{(l)}_i$ is the embedding of node i at the l-th layer; $\mathcal{N}(v_i)$ is the set of one-hop neighbors around v_i; $h(\cdot)$ is a function with learnable parameters; $\text{AGG}(\cdot)$ and $\sigma(\cdot)$ denote the aggregation function (e.g., mean operator) and activation function (e.g., ReLU), respectively. Later on, a loss function L_{V} (e.g., cross-entropy loss) defined on the set of training nodes V' is employed for GNN training.

Probabilistic Distribution Disparity

Traditional bias metrics such as Δ_{SP} for statistical parity and Δ_{EO} for equal opportunity are computed on the predicted class labels. However, a single training node can hardly twist these predicted labels (Zhang et al. 2022a; Sun et al. 2020). Hence the node-level contribution to model bias can barely be captured by traditional bias metrics. To capture the influence of a single training node on model bias, we propose Probabilistic Distribution Disparity (PDD) as a novel bias quantification strategy. PDD can be instantiated with different fairness notions to depict the model bias from different perspectives. Specifically, we assume the population is divided into different sensitive subgroups, i.e., demographic subgroups described by the sensitive attribute. To achieve finer granularity, we define PDD as the Wasserstein-1 distance (Kantorovich 1960) between the probability distributions of a variable of
interest in different sensitive subgroups. Compared with traditional fairness metrics, continuous changes brought by each specific training node are reflected in the measured distributions, and Wasserstein distance is theoretically more sensitive to the change of the measured distributions over other commonly used distribution distance metrics (Arjovsky, Chintala, and Bottou 2017). In addition, we note that the variable of interest depends on the chosen fairness notion in applications, and a larger value of PDD indicates a higher level of model bias. We introduce two instantiations of PDD based on two traditional fairness notions, including Statistical Parity (Dwork et al. 2012) and Equal Opportunity (Hardt, Price, and Srebro 2016a). Both notions are based on binary classification tasks and binary sensitive attributes (generalizations to non-binary cases can be found in Appendix A).

Let the distribution of the probabilistic predictions in \(\hat{GNN} \), as \(\Delta \Gamma \), introduce how to efficiently estimate the influence of all nodes in the training set. In Section 3, we model bias. For both instantiations of \(\Delta \Gamma \) extent \(\Gamma \) with node \(f \) \(f \) contributes to improving the fairness level, i.e., \(f \) is helpful for fairness. Nevertheless, the above computation requires re-training the GNN to obtain the influence of each training node, which is too expensive if we want to compute the influence of all nodes in the training set. In Section 4, we introduce how to efficiently estimate \(\Delta \Gamma \).

Definition 1. Node Influence on Model Bias. Let \(f_{\hat{G}} \) and \(f_{\hat{W}} \), denote the GNN model trained on graph \(\hat{G} \) and \(\hat{G}_{-v_i} \), (i.e., \(\hat{G} \) with node \(v_i \in V' \) being deleted), respectively. Let \(\Gamma_1 \) and \(\Gamma_2 \) be the Probabilistic Distribution Disparity value based on the output of \(f_{\hat{G}} \) and \(f_{\hat{W}} \), for nodes in test set. We define \(\Delta \Gamma = \Gamma_2 - \Gamma_1 \) as the influence of node \(v_i \) on the model bias.

The rationale behind this definition is to measure to what extent \(\Gamma \) changes if the GNN model is trained on a graph without \(v_i \). Thus, \(\Delta \Gamma \) depicts the influence of node \(v_i \) on the model bias. For both instantiations of \(\Gamma \) (i.e., \(\Delta \Gamma_{SP} \) and \(\Delta \Gamma_{EO} \)), if \(\Delta \Gamma > 0 \), deleting the training node \(v_i \) from \(\hat{G} \) leads to a more unfair (or biased) GNN model. This indicates that node \(v_i \) contributes to improving the fairness level, i.e., \(v_i \) is helpful for fairness. Nevertheless, the above computation requires re-training the GNN to obtain the influence of each training node, which is too expensive if we want to compute the influence of all nodes in the training set. In Section 4, we introduce how to efficiently estimate \(\Delta \Gamma \).

Node Influence on Model Bias Estimation

It is noteworthy that PDD is a function of \(\hat{W} \) for a trained GNN, as \(\hat{W} \) directly determines the probabilistic predictions for test nodes. Hence we first characterize how a training node in \(\hat{G} \) influences \(\hat{W} \), followed by how this node influences PDD via applying the chain rule. Formal, the optimal parameters \(\hat{W} \) minimize the objective function \(L_{\hat{V}}(\hat{G}, \hat{W}) \) of the node classification task, so that:

\[
\hat{W} = \arg \min_{\hat{W}} L_{\hat{V}}(\hat{G}, \hat{W}) = \arg \min_{\hat{W}} \frac{1}{m} \sum_{i=1}^{m} L_{v_i}(\hat{G}_i, \hat{W}).
\]

Here \(L_{v_i}(\hat{G}_i, \hat{W}) \) denotes the loss term associated with node \(v_i; \hat{G}_i \) is the computation graph of \(v_i \); \(m \) is the total number of training nodes. If a training node \(v_i \) is deleted from \(\hat{G} \), the loss function will change and thus leads to a different \(\hat{W} \). We take \(v_i \) as an example to analyze the influence on \(\hat{W} \) after deleting a training node from \(\hat{G} \). Traditionally, the existence of node \(v_i \) is considered as a binary state, which is either one (if \(v_i \) exists in \(\hat{G} \)) or zero (otherwise). But in our analysis, we treat it as a continuous variable to depict the intermediate states of the existence of \(v_i \). Suppose that the existence of \(v_i \) is down-weighted in the training of a GNN on \(\hat{G} \). This operation leads to two changes in the loss function: (1) the loss term associated with node \(v_i \), i.e., \(L_{v_i}(\hat{G}_i, \hat{W}) \), is down-weighted; (2) the loss terms associated with other training nodes in the computation graph of \(v_i \) would also be influenced. The reason is that these nodes could be affected by the information from node \(v_i \) during the message passing in GNNs (Kipf and Welling 2017; Ying et al. 2019). Based on the above analysis, we define \(\hat{W}_{c,v_i} \) as the optimal parameter that minimizes the loss function when node \(v_i \) is down-weighted as follows:

\[
\hat{W}_{c,v_i} \overset{\text{def}}{=} \arg \min_{\hat{W}} L_{\hat{V}}(\hat{G}, \hat{W}) - \epsilon \left(L_{v_i}(\hat{G}, \hat{W}) + L_{\hat{V}}(\hat{G}_i, \hat{W}) \right),
\]

where \(\epsilon \in [0, 1/m] \) controls the scale of down-weighting \(v_i \). An illustration in Fig. 1 shows how down-weighting \(v_i \) affects the loss values of training nodes in its computation graph. To formally characterize how node \(v_i \) influences \(\hat{W} \), we have Theorem 1 as follows (see proofs in Appendix C).

Theorem 1. According to the optimization objective of \(\hat{W}_{c,v_i} \) in Eq. (4), we have

\[
\frac{d\hat{W}_{c,v_i}}{d\epsilon} \bigg|_{\epsilon=0} = \left(\frac{\partial^2 L_{\hat{V}}(\hat{G}, \hat{W})}{\partial \hat{W}^2} \right)^{-1} \cdot \left(\frac{\partial L_{v_i}(\hat{G}, \hat{W})}{\partial \hat{W}} + \frac{\partial L_{\hat{V}}(\hat{G}_i, \hat{W})}{\partial \hat{W}} \right).
\]

Then, we characterize the influence of down-weighting node \(v_i \) on the value of PDD. We present Corollary 1 based on the chain rule as follows (see the proofs in Appendix C).

Corollary 1. Define the derivative of \(\Gamma \) w.r.t. \(\epsilon \) at \(\epsilon = 0 \) as \(I_{\Gamma}(v_i) \). According to Theorem 1, we have

\[
I_{\Gamma}(v_i) \overset{\text{def}}{=} \frac{d\Gamma}{d\epsilon} \bigg|_{\epsilon=0} = \left(\frac{\partial \Gamma}{\partial \hat{W}} \right)^T \frac{d\hat{W}_{c,v_i}}{d\epsilon} \bigg|_{\epsilon=0}.
\]

With Corollary 1, we can now estimate the value change of \(\Gamma \) when node \(v_i \) is down-weighted via

\[
\Gamma_{v_i} - \Gamma_{v_i} = -\epsilon \cdot I_{\Gamma}(v_i) + o(\epsilon) \approx -\epsilon \cdot I_{\Gamma}(v_i).
\]

1Refer to the online version for Appendix.
Loss Value Decreases
Down-weight v_j

According to the first-order Taylor expansion, here Γ_{ϵ,v_i} and Γ_{0,v_i} are the PDD values after and before node v_i is down-weighted, respectively. To estimate the value change in Γ for a GNN trained on G_{-i}, we introduce Theorem 2 as follows (see the proofs in Appendix C).

Theorem 2. Compared with the GNN trained on G, $\Delta\Gamma = \Gamma_{\epsilon,v_i} - \Gamma_{0,v_i}$ is equivalent to the value change in Γ when the GNN mode is trained on graph G_{-i}.

Theorem 2 enables us to directly compute the $\Delta\Gamma$ for an arbitrary training node v_i, which helps avoid the expensive re-training process. In the next section, we further define $L_{\gamma_i}(G, W)$ and present an algorithm to efficiently estimate the node influence on model bias.

Non-I.I.D. Characterization

Generally, there are two types of dependencies between a training node v_i and other nodes in its computation graph G_i, namely its dependency on other training nodes and its dependency on test nodes. The dependency between training nodes directly influences W during GNN training, and thus influences the probabilistic outcome of all test nodes. Hence it is critical to properly characterize the dependency between v_i and other training nodes. Specifically, we aim to characterize how the loss summation of all training nodes in G_i changes due to the existence of v_i. We denote the training nodes other than node v_i in G_i as $V_i \setminus \{v_i\}$. For any node $v_j \in V_i \setminus \{v_i\}$, we denote $G_{j,-i}$ as the computation graph of node v_j with node v_i being deleted. $L_{\gamma_i}(G, W)$ is then formally expressed as

$$L_{\gamma_i}(G, W) = \sum_{v_j \in V_i \setminus \{v_i\}} (L_{\gamma_i}(G_j, W) - L_{\gamma_i}(G_{j,-i}, W)). \tag{8}$$

The first term represents the summation of loss for nodes in $V_i \setminus \{v_i\}$ on G, and the second term denotes the summation of loss for these nodes on G_{-i}. In this regard, $L_{\gamma_i}(G, W)$ generally describes the change of the summation of loss for nodes in $V_i \setminus \{v_i\}$ on graph G compared with G_{-i}. If v_i is down-weighted by a certain degree, the change of the loss summation for nodes in $V_i \setminus \{v_i\}$ can be depicted by a linearly re-scaled $L_{\gamma_i}(G, W)$, as described in Eq. (4).

Additionally, there could also be dependencies between v_i and test nodes in G_i, as v_i can influence the representations of its neighboring test nodes due to the information propagation mechanism in GNNs during inference. Such a dependency could also influence the value of PDD when v_i is deleted from G. Correspondingly, we introduce the characterization of the dependency between v_i and test nodes. Specifically, we present an upper bound to depict the normalized change magnitude of the neighboring test nodes’ representations when a training node v_i is deleted. Here the analysis is based on the prevalent GCN model (Kipf and Welling 2017), and can be easily generalized to other GNNs. Following widely adopted assumptions in (Huang and Zitnik 2020; Xu et al. 2018), we have Proposition 1 (see the proofs in Appendix C).

Proposition 1. Denote the representations of node $v_j (v_j \in V_i \setminus V')$ on graph G and G_{-i} as z_j and z_j^*, respectively. Define $h_{j,i}^{(j,i)}$ and $q_{j,i}^{(j,i)}$ as the distance from v_j to v_i and the number of all possible paths from v_j to v_i, respectively. Define the set of geometric mean node degrees of $q_{j,i}^{(j,i)}$ paths as $D = \{d_{j,i}^{(j,i)}, ..., d_{j,i}^{(j,i)}\}$. Define $q_{\min}^{(j,i)}$ as the minimum value of D. Assume the norms of all node representations are the same. We then have $\|z_j^* - z_j\|_2/\|z_j\|_2 \leq q_{j,i}^{(j,i)}/q_{\min}^{(j,i)}h_{j,i}^{(j,i)}$.

From Proposition 1, we observe that (1) deleting v_i exerts an upper-bounded impact on the representations of other test nodes in its computation graph; and (2) this upper-bound exponentially decays w.r.t. the distance between v_i and test nodes. Hence the dependency between v_i and test nodes has limited influence on Γ during inference when v_i is deleted from the graph. On the contrary, considering that the dependency between v_i and other training nodes directly influences W and thus influences the inference results of all nodes, such a dependency should not be neglected. Consequently, we argue that it is reasonable to estimate the influence of each training node on Γ by only considering the dependency between training nodes. We present the algorithmic routine of $\Delta\Gamma$ estimation in Algorithm 1.

![Figure 1: An illustration of how down-weighting node v_i influences the loss values of the training nodes in G_i (including v_i, v_j, v_j, and v_j). Scenarios from $\epsilon = 0$ to $\epsilon = 1/m$ are presented.](image-url)
Complexity Analysis
To better understand the computational cost, here we analyze the time complexity of estimating $\Delta \Gamma$ according to Algorithm 1. We denote the number of parameters in W and the average number of training nodes in the computation graph of an arbitrary training node as t and \bar{r}, respectively. For each node v_i, the time complexity to compute $\partial L_{V_i}(\hat{G}_i, W) / \partial W$ is $O(t)$ and $O(\bar{r}t)$, respectively. Thus, the time complexity is $O(m\bar{r}t)$ to traverse all training nodes. For the Hessain matrix inverse, we employ a widely-used estimation approach (see Appendix A) with linear time complexity w.r.t t. Thus the time complexity of Eq. (5) and (8) is $O(m\bar{r}t^2)$. Additionally, the time complexity of Eq. (6) and (7) is $O(mt)$ and $O(m)$, respectively. To summarize, the time complexity of Algorithm 1 is $O(m\bar{r}t^2)$. Considering that $\bar{r} \leq m$, the algorithm has a quadratic time complexity w.r.t. training node number. This verifies the impressive time efficiency of our algorithm.

Experiments
We aim to answer the following research questions in experiments. RQ1: How efficient is BIND in estimating the influence of training nodes on the mode bias? RQ2: How well can BIND estimate the influence of the model bias? RQ3: How well can we debias GNNs via deleting harmful training nodes based on our estimation? More details of experimental settings, supplementary experiments, and further analysis are in Appendix B.

Experimental Setup
Downstream Task & Datasets. Here the downstream task is node classification. Four real-world datasets are adopted in our experiments, including Income, Recidivism, Pokec-z, and Pokec-n. Specifically, Income is collected from Adult Data Set (Dua and Graff 2017). Each individual is represented by a node, and we establish connections (i.e., edges) between individuals following a similar criterion adopted in (Agarwal, Lakkaraju, and Zitnik 2021). The sensitive attribute is race and the task is to classify whether the salary of a person is over $50K per year or not. Recidivism is collected from (Jordan and Freiburger 2015). A node represents a defendant released on bail, and defendants are connected based on their similarity. The sensitive attribute is race, and the task is to classify whether a defendant is on bail or not. Pokec-z and Pokec-n are collected from Pokec, which is a popular social network in Slovakia (Takac and Zabovsky 2012). In both datasets, each user is a node, and each edge stands for the friendship relation between two users. Here the locating region of users is the sensitive attribute. The task is to classify the working field of users. More details are in Appendix B.

Baselines & GNN Backbones. We compare our method with three state-of-the-art GNN debiasing baselines, namely FairGNN (Dai and Wang 2021a), NIFTY (Agarwal, Lakkaraju, and Zitnik 2021), and EDITS (Dong et al. 2022a). To perform GNN debiasing, FairGNN employs adversarial training to filter out the information of sensitive attributes from node embeddings; NIFTY maximizes the agreement between the predictions based on perturbed sensitive attributes and unperturbed ones; EDITS pre-processes the input graph data to be less biased via attribute and structural debiasing. We mainly present the results of using GCN (Kipf and Welling 2017) as the backbone GNN model, while experiments with other GNNs are discussed in Appendix B.

Evaluation Metrics. First, we employ running speedup factors to evaluate efficiency. Second, we use the widely adopted Pearson Correlation (Koh and Liang 2017; Chen et al. 2020) between the estimated and actual $\Delta \Gamma$ to evaluate the effectiveness of node influence estimation. Third, we adopt two traditional fairness metrics, namely Δ_{SP} (the metric for Statistical Parity) (Dwork et al. 2012) and Δ_{EO} (the metric for Equal Opportunity) (Hardt, Price, and Srebro 2016b), to evaluate the effectiveness of debiasing GNNs via harmful nodes deletion. Additionally, the classification accuracy is also employed to evaluate the utility-fairness trade-off.

Efficiency of Node Influence Estimation
To answer RQ1, we evaluate the efficiency of $\Delta \Gamma$ estimation by comparing its running time with that of GNN re-training. The running time of GNN re-training is computed as follows. We first delete the target node from the original input graph G and re-train the GCN to obtain $f_{\hat{W}}$. We then obtain $\Delta \Gamma$ based on the values of Γ given by f_W and $f_{\hat{W}}$. The above running time is defined as the time cost of GNN re-training. The running time averaged across all training nodes is compared between GNN re-training and BIND, and we present the running speedup factors of BIND on the four real-world datasets in Fig. 2. We observe that the running speedup factors are over 450 on all four real-world datasets, which corroborates the efficiency superiority of BIND in estimating the value of $\Delta \Gamma$. Additionally, we observe that the estimation on Pokec-z and Pokec-n datasets has higher speedup factors on both Δ_{SP} and Δ_{EO} compared with the other two datasets. A reason could be that nodes in Pokec-z and Pokec-n have lower average degrees (see Appendix B). This facilitates the computation of $\hat{L}_{V_i}(\hat{G}_i, W)$ (the term that characterizes non-i.i.d.) and corresponding derivatives.

Effectiveness of Node Influence Estimation
We now evaluate the effectiveness of $\Delta \Gamma$ estimation. It is worth noting that the numerical values of the estimated influence on model bias are small for most of the nodes (see Appendix B). Here we introduce a strategy to evaluate the

![Figure 2: Evaluation of efficiency: speedup factors of Δ_{SP} and Δ_{EO} estimation over GNN re-training.](image-url)
We then construct a series of node sets associated with non-overlapping computation graphs are selected in conjunction benefits the estimation, we also estimate $\Delta \Gamma$ with the GNN re-training process. The values of $\Delta \Gamma$ are estimated by the training set size. It is worth noting that only nodes with non-overlapping computation graphs are selected in constructing each node set. This ensures that these nodes result in an estimated $\Delta \Gamma$ equivalent to the summation of their estimated $\Delta \Gamma$ (see Appendix C). We present the Pearson correlation of estimated $\Delta \Gamma_{SP}$ and $\Delta \Gamma_{EO}$ with the actual values on four datasets in Fig. 3. It is worth noting that achieving an exact linear correlation (i.e., Pearson correlation equals one) between the estimated and actual $\Delta \Gamma$ is almost impossible, since we only employ the first-order Taylor expansion in our estimation for $\Delta \Gamma$. From Fig. 3, we observe that the estimation achieves Pearson correlation values over 0.9 on both $\Delta \Gamma_{SP}$ and $\Delta \Gamma_{EO}$ across all datasets. Such consistencies between estimated and actual values verify the effectiveness of BIND.

Additionally, to understand how the non-i.i.d. characterization benefits the estimation, we also estimate $\Delta \Gamma$ with BIND after the non-i.i.d. characterization being disabled (i.e., setting the $L_{YY}(G_{i}, W)$ term in Eq. 4 as 0). We present the estimated $\Delta \Gamma$ v.s. actual $\Delta \Gamma$ on Income dataset with non-i.i.d. characterization being enabled and disabled in Fig. 4a and 4b, respectively. We observe the correlation decreases between the estimated and actual $\Delta \Gamma$ after the non-i.i.d. characterization is disabled. Such a decrease is also observed on other datasets in terms of both statistical parity and equal opportunity. Such an observation verifies the contribution of non-i.i.d. characterization to the estimation of $\Delta \Gamma$.

Finally, we evaluate how well the values of the proposed PDD matches the values of traditional fairness metrics. We collect the value pairs of $(\Delta_{SP}, \Gamma_{SP})$ and $(\Delta_{EO}, \Gamma_{EO})$ during the GNN re-training process. The values of Δ_{SP} v.s. actual Γ_{SP} are presented in Fig. 4c, and the values of Δ_{EO} v.s. actual Γ_{EO} are shown in Fig. 4d. We observe a satisfying match between Γ and traditional metrics, which corroborates that PDD is a valid indicator of the fairness level depicted by traditional fairness metrics.

Debiasing via Harmful Nodes Deletion

In this subsection, we demonstrate how BIND could be employed for GNN debiasing. The basic intuition here is to identify and delete those harmful nodes according to the estimated node influence on model bias, and evaluate whether GNNs can be debiased when they are trained on this new graph. Specifically, we set $\Gamma = \lambda \Delta_{SP} + (1 - \lambda) \Delta_{EO}$ and estimate the node influence on Γ to consider both statistical parity and equal opportunity. We then set a budget k, and follow the strategy adopted in Section to select and delete a set of training nodes with the largest positive influence summation on Γ under this budget. We set $\lambda = 0.5$ to assign statistical parity and equal opportunity the same weight, and perform experiments with k being 1% (denoted as BIND 1%) and 10% (denoted as BIND 10%) of the total number of training nodes. We present the results on the four adopted datasets in Table 1. The following observations are made: (1) compared with other baselines, BIND achieves competitive performance (i.e., lower values) on both Δ_{SP} and Δ_{EO}. Hence, training GNNs on a new graph after deleting harmful nodes (to fairness) is an effective approach for GNN debiasing; (2) there is no obvious performance decrease on the model utility of BIND compared with other baselines. We thus argue that deleting harmful nodes can also lead to a satisfying fairness-utility trade-off.

Related Work

Graph Neural Networks. GNNs can be divided into spectral-based and spatial-based ones (Wu et al. 2020; Zhou et al. 2020). Spectral GNNs inherit the insights from Convolutional Neural Networks (CNNs) (Bruna et al. 2013), and followed by many works (Defferrard, Bresson, and Vandergheynst 2016; Levie et al. 2018; Kipf and Welling 2017). Their goal is to design graph filters to extract task-related information from the input graphs (Chung and Graham 1997). Differently, spatial GNNs design message-passing mechanisms in the spatial domain to extract information from each node’s neighbors (Wu et al. 2020; Zhou et al. 2020). Various aggregation strategies contribute to different tasks (Veličković et al. 2017; Xu et al. 2019b; Suresh et al. 2021; Park and Neville 2020).

Algorithmic Fairness. Algorithmic fairness can be defined from different perspectives (Pessach and Shmueli 2020; M. et al. 2021; Du et al. 2020; Caton and Haas 2020; Corbett-Davies and Goel 2019; Mitchell et al. 2021), where Group Fairness and Individual Fairness are two popular notions (Dwork et al. 2012). Generally, group fairness enforces similar statistics (e.g., positive prediction rate in binary classification tasks) across different demographic subgroups (Dwork et al. 2012). Typically, these demographic subgroups are described by certain sensitive attributes, such as gender, race, and religion. Individual fairness argues for similar outputs for similar individuals (Dwork et al. 2012). Algorithmic fairness can be considered in different stages of learning pipelines, including pre-processing (Dong et al. 2022a), in-processing (Dong et al. 2021; Lahoti, Gummadidi, and Weikum 2019; Dai and Wang 2021b), and post-processing (Kang et al. 2020). Particularly, re-weighting train-
we also analyze the non-IID characteristic between nodes to achieve GNN debiasing based on influence estimation. To the best of our knowledge, this is a first-of-its-kind study. Moreover, most of existing methods based on re-weighting training samples are developed under the IID assumption. However, in this paper, we also analyze the non-IID characteristic between nodes to understand how each training node influences model bias.

Interpretation of Deep Learning Models. Deep learning models have huge parameter size and high complexity (Buhrmester, Münch, and Arens 2021; Samek, Wiegand, and Müller 2017; Fong and Vedaldi 2017; Xu et al. 2019a). To make these models more trustworthy and controllable, many studies have been devoted to improving their transparency (Fong and Vedaldi 2017). Generally, these works are divided into transparency design and post-hoc explanation (Xu et al. 2019a). The basic goal of transparency design is to understand the model in terms of model structure (Liu et al. 2021; Zhang et al. 2019) and training algorithms (Plumb et al. 2019), while post-hoc explanation aims to explain specific prediction results via visualization (Ding et al. 2017) and explanatory examples (Chen et al. 2018). In the realm of learning on graphs, some existing works aim to interpret GNNs (Ying et al. 2019; Luo et al. 2020; Yuan et al. 2020a), and they mainly focus on understanding the utility (e.g., node classification accuracy) of GNNs on the test set. Our work is different from them in two aspects: (1) we focus on interpreting the model bias instead of the utility for GNNs; (2) we aim to understand the model bias via attributing to the training set instead of only focusing on the test set.

Conclusion

In this paper, we study a novel problem of characterizing how each training node influences the bias exhibited in a trained GNN. We first propose a strategy named Probabilistic Distribution Disparity (PDD), which can be instantiated with different existing fairness notions, to quantify the node influence on the model bias. We then propose a novel framework named BIND to achieve an efficient influence estimation for each training node. We also develop a node deletion strategy to achieve GNN debiasing based on influence estimation. Extensive experiments verify (1) the consistency between the proposed PDD and traditional fairness metrics; (2) the efficiency and effectiveness of the influence estimation algorithm; and (3) the performance of the proposed strategy on GNN debiasing. We leave interpreting how the unfairness arises in other graph learning tasks as future works.

| Table 1: Comparison on GNN utility and bias mitigation between BIND and baselines. BIND 1% and BIND 10% denote the node deletion budget k being 1% and 10% of the training node size, respectively. (↑) denotes the larger, the better; (↓) denotes the opposite. Numerical results are in percentages. Best ones and runner-ups are in bold and underline, respectively. |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| | Van. GCN | FairGNN | NIFTY | EDITS | BIND 1% | BIND 10% |
| **Income** | | | | | | |
| (↑) Acc | 74.7 ± 1.4 | 69.1 ± 0.6 | 70.8 ± 0.9 | 68.3 ± 0.8 | 75.2 ± 0.0 | 71.7 ± 0.7 |
| (↓) δSP | 25.9 ± 1.9 | 12.4 ± 4.7 | 24.4 ± 1.6 | 24.0 ± 1.9 | 19.2 ± 0.6 | 14.7 ± 1.4 |
| (↓) δEO | 32.3 ± 0.8 | 15.6 ± 6.8 | 26.9 ± 3.7 | 24.9 ± 1.0 | 26.4 ± 0.4 | 16.2 ± 2.0 |
| **Recidivism** | | | | | | |
| (↑) Acc | 89.8 ± 0.0 | 89.7 ± 0.2 | 79.1 ± 0.9 | 89.6 ± 0.1 | 88.7 ± 0.0 | 88.5 ± 0.2 |
| (↓) δSP | 7.4 ± 0.2 | 7.3 ± 0.5 | 1.82 ± 0.8 | 5.02 ± 0.0 | 7.40 ± 0.0 | 6.57 ± 0.2 |
| (↓) δEO | 5.2 ± 0.1 | 5.17 ± 0.0 | 1.28 ± 0.5 | 2.39 ± 0.1 | 5.09 ± 0.1 | 4.23 ± 0.2 |
| **Pokec-z** | | | | | | |
| (↑) Acc | 63.2 ± 0.7 | 64.0 ± 0.7 | 65.3 ± 0.2 | 61.6 ± 0.9 | 63.5 ± 0.4 | 62.9 ± 0.4 |
| (↓) δSP | 7.32 ± 2.2 | 4.95 ± 0.8 | 2.34 ± 1.0 | 1.29 ± 0.8 | 6.75 ± 2.3 | 1.02 ± 0.9 |
| (↓) δEO | 7.60 ± 2.3 | 4.29 ± 0.7 | 1.46 ± 1.3 | 1.62 ± 1.6 | 5.41 ± 3.4 | 2.28 ± 1.5 |
| **Pokec-n** | | | | | | |
| (↑) Acc | 58.5 ± 0.8 | 60.3 ± 0.5 | 61.1 ± 0.3 | 56.8 ± 0.9 | 60.6 ± 0.8 | 58.8 ± 1.8 |
| (↓) δSP | 6.57 ± 2.6 | 5.30 ± 1.4 | 6.55 ± 0.7 | 2.75 ± 1.8 | 5.85 ± 2.0 | 2.45 ± 0.9 |
| (↓) δEO | 2.33 ± 0.5 | 1.67 ± 0.2 | 1.83 ± 0.6 | 2.24 ± 1.5 | 1.15 ± 0.7 | 2.22 ± 1.6 |

Figure 4: In (a) and (b), we compare the estimation effectiveness of $\Delta \Gamma_{SP}$ with and without characterizing non-i.i.d.; in (c) and (d), we present the consistency between Γ and traditional fairness metrics (ΔSP for statistical parity and ΔEO for equal opportunity) under different node deletion budgets.
Acknowledgments
This work is supported by the National Science Foundation under grants IIS-2006844, IIS-2144209, IIS-2223768, IIS-2223769, CNS-2154962, and BCS-2228534, the JP Morgan Chase Faculty Research Award, and the Cisco Faculty Research Award.

References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein GAN. In ICML.
Dai, E.; and Wang, S. 2021b. Towards Self-Explainable Graph Neural Network. In CIKM.
Dai, E.; and Wang, S. 2022. Learning fair graph neural networks with limited and private sensitive attribute information. TKDE.
Ding, Y.; Liu, Y.; Luan, H.; and Sun, M. 2017. Visualizing and understanding neural machine translation. In ACL.
Do, K.; Tran, T.; and Venkatesh, S. 2019. Graph transformation policy network for chemical reaction prediction. In SIGKDD.
Dong, Y.; Kang, J.; Tong, H.; and Li, J. 2021. Individual Fairness for Graph Neural Networks: A Ranking based Approach. In SIGKDD.
Dong, Y.; Wang, S.; Wang, Y.; Derr, T.; and Li, J. 2022c. On Structural Evaluation of Bias in Graph Neural Networks. In KDD.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R. 2012. Fairness through awareness. In ITCS.
Fong, R. C.; and Vedaldi, A. 2017. Interpretable explanations of black boxes by meaningful perturbation. In ICCV.
Guo, Z.; and Wang, H. 2020. A deep graph neural network-based mechanism for social recommendations. TKDE.
Huang, K.; and Zitnik, M. 2020. Graph meta learning via local subgraphs. In NeurIPS.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.
Koh, P. W.; and Liang, P. 2017. Understanding black-box predictions via influence functions. In ICML.
Li, P.; Wang, Y.; Zhao, H.; Hong, P.; and Liu, H. 2021. On dyadic fairness: Exploring and mitigating bias in graph connections. In ICLR.

Liu, N.; Feng, Q.; and Hu, X. 2022. Interpretabiltiy in Graph Neural Networks. Graph Neural Networks: Foundations, Frontiers, and Applications.

Park, H.; and Neville, J. 2020. Role Equivalence Attention for Label Propagation in Graph Neural Networks. In PAKDD.

Song, W.; Dong, Y.; Liu, N.; and Li, J. 2022. GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks. In KDD.

Wang, Y.; Zhao, Y.; Dong, Y.; Chen, H.; Li, J.; and Derr, T. 2022. Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage. In KDD.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019b. How Powerful are Graph Neural Networks? In ICLR.

Zhang, Q.; Yang, Y.; Ma, H.; and Wu, Y. N. 2019. Interpreting cnns via decision trees. In CVPR.

