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Abstract

Graph Neural Networks (GNNs) have emerged as the leading
paradigm for solving graph analytical problems in various
real-world applications. Nevertheless, GNNs could potentially
render biased predictions towards certain demographic sub-
groups. Understanding how the bias in predictions arises is
critical, as it guides the design of GNN debiasing mechanisms.
However, most existing works overwhelmingly focus on GNN
debiasing, but fall short on explaining how such bias is in-
duced. In this paper, we study a novel problem of interpreting
GNN unfairness through attributing it to the influence of train-
ing nodes. Specifically, we propose a novel strategy named
Probabilistic Distribution Disparity (PDD) to measure the bias
exhibited in GNNs, and develop an algorithm to efficiently
estimate the influence of each training node on such bias. We
verify the validity of PDD and the effectiveness of influence
estimation through experiments on real-world datasets. Finally,
we also demonstrate how the proposed framework could be
used for debiasing GNNs. Open-source code can be found at
https://github.com/yushundong/BIND.

Introduction
Graph data is pervasive among a plethora of realms, e.g.,
financial fraud detection (Wang et al. 2019; Pourhabibi et al.
2020; Cheng et al. 2020), social recommendation (Fan et al.
2019; Song et al. 2019; Guo and Wang 2020), and chemi-
cal reaction prediction (Do, Tran, and Venkatesh 2019; Shi
et al. 2020; Kwon et al. 2022). As one of the state-of-the-
art approaches to handle graph data, Graph Neural Net-
works (GNNs) have been attracting increasing attention (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Veličković et al. 2017). Over the years, various graph an-
alytical tasks have benefited from GNNs, where node clas-
sification is among the most widely studied ones (Kipf and
Welling 2017; Wu et al. 2019, 2020). Nevertheless, in node
classification, GNNs often yield results with discrimination
towards specific demographic subgroups described by cer-
tain sensitive attributes (Dong et al. 2022a; Dai and Wang
2021a; Agarwal, Lakkaraju, and Zitnik 2021; Zhang et al.
2022b; Wang et al. 2022), such as gender, race, and religion.
In many high-stake applications, critical decisions are made
based on the classification results of GNNs (Shumovskaia
et al. 2020), e.g., crime forecasting (Jin et al. 2020), and the
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exhibited bias (i.e., unfairness) is destructive for the involved
individuals (Dong et al. 2022b,c; Song et al. 2022). To tackle
this problem, there has been a line of works focusing on
debiasing GNNs in node classification (Dong et al. 2022a;
Dai and Wang 2021a; Agarwal, Lakkaraju, and Zitnik 2021;
Dong et al. 2021; Loveland et al. 2022; Dai and Wang 2022).
Their goal is to relieve the bias in GNN predictions on the
test set and in this paper we refer to it as model bias.

In addition to debiasing GNNs, it is also critical to inter-
pret how the model bias arises in GNNs. This is because
such an understanding not only helps to determine whether
a specific node should be involved in the training set, but
also has much potential to guide the design of GNN debi-
asing methods (Dong et al. 2022a; Loveland et al. 2022; Li
et al. 2021). Nevertheless, most existing GNN interpretation
methods aim to understand how a prediction is made (Yuan
et al. 2020b; Liu, Feng, and Hu 2022) instead of other aspects
such as fairness. Consequently, although the graph data has
been proved to be a significant source of model bias (Dong
et al. 2022a; Li et al. 2021), existing works are unequipped
to tackle this problem. In this paper, we aim to address this
problem at the instance (node) level. Specifically, given a
GNN trained for node classification, we aim to answer: “To
what extent the GNN model bias is influenced by the existence
of a specific training node in this graph?”

Nevertheless, answering the above question is technically
challenging. Essentially, there are three main challenges: (1)
Influence Quantification. To depict the influence of each train-
ing node on the model bias of GNNs, the first and foremost
challenge is to design a principled fairness metric. A straight-
forward approach is to directly employ traditional fairness
metrics (e.g., ∆SP for Statistical Parity (Dwork et al. 2012)
and ∆EO for Equal Opportunity (Hardt, Price, and Srebro
2016a)). However, these metrics are not applicable in our task.
The reason is that most of them are computed based on the
predicted labels, while a single training node can barely twist
these predicted labels on test data (Zhang et al. 2022a; Sun
et al. 2020). Consequently, the influence of a single training
node on the model bias would be hard to capture. (2) Compu-
tation Efficiency. To compute the influence of each training
node on the model bias, a natural way is to re-train the GNN
on a new graph with this specific training node being deleted
and observe how the exhibited model bias changes. However,
such a re-training process is prohibitively expensive. (3) Non-
I.I.D. Characterization. Graph data goes against the widely
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adopted i.i.d. assumption, as neighboring nodes are often
dependent on each other (Ma, Deng, and Mei 2021; Ying
et al. 2019). Therefore, when a specific node is deleted from
the graph, all its neighbors could exert different influences
on the model bias of GNN during training. Such complex
dependencies bring obstacles towards the analysis of node
influence on the model bias.

To tackle the above challenges, in this paper, we pro-
pose a novel framework named BIND (Biased traIning Node
iDentification) to quantify and estimate the influence of each
training node on the model bias of GNNs. Specifically, to
handle the first challenge, we propose Probabilistic Distri-
bution Disparity (PDD) as a principled strategy to quantify
the model bias. PDD directly quantifies the exhibited bias in
the GNN probabilistic output instead of the predicted labels.
Therefore, PDD is with finer granularity and is more suitable
for capturing the influence of each specific training node com-
pared with traditional fairness metrics. To handle the second
challenge, we propose an estimation algorithm for the node
influence on model bias, which avoids the re-training process
and thus achieves better efficiency. To tackle the third chal-
lenge, we also characterize the dependency between nodes
based on the analysis of the training loss for GNNs. Finally,
experiments on real-world datasets corroborate the effective-
ness of BIND. Our contributions are mainly summarized as
(1) Problem Formulation. We formulate a novel problem of
interpreting the bias exhibited in GNNs through attributing
to the influence of training nodes; (2) Metric and Algorithm
Design. We propose a novel framework BIND to quantify
and efficiently estimate the influence of each training node on
the model bias of GNNs; (3) Experimental Evaluation. We
perform comprehensive experiments on real-world datasets to
evaluate the effectiveness of the proposed framework BIND.

Preliminaries
We first present the notations used in this paper. Then, we
define the problem of interpreting GNN unfairness through
quantifying the influence of each specific training node.
Notations. In this paper, matrices, vectors, and scalars are
represented with bold uppercase letters (e.g., A), bold lower-
case letters (e.g., x), and normal lowercase letters (e.g., n),
respectively. We denote an input graph as G = {V, E ,X},
where V = {v1, ..., vn} denotes the node set, E ⊆ V ×V rep-
resents the edge set, X = {x1, ...,xn} is the node attribute
vectors, and xi (1 ≤ i ≤ n) represents the attribute vector of
node vi. We denote G−i as the new graph with node vi being
deleted from G. Additionally, we employ V ′ (V ′ ⊆ V) to
represent the training node set, where |V ′| = m. The nodes
in graph G are mapped to the output space with a trained
GNN fW , where W represents the learnable parameters of
the GNN model. We denote the optimized parameters (i.e.,
the parameters after training) as Ŵ . In node classification,
the probabilistic classification output for the n nodes is de-
noted as Ŷ = {ŷ1, ..., ŷn}, where ŷi ∈ Rc, and c is the
number of classes. We use Y and S to denote the ground
truth label and the sensitive attribute for nodes, respectively.
For an L-layer GNN fW , we define the subgraph up to L
hops away centered on vi as its computation graph (denoted
as Gi = {Vi, Ei,Xi}). Here Vi, Ei, and Xi denote the set of
nodes, edges, and node attributes in Gi, respectively. It is

worth noting that existing works have proven that Gi fully de-
termines the information fW utilizes to make the prediction
of vi (Ying et al. 2019). For node vi, we use V ′

i to indicate
the intersection between Vi and V ′, i.e., V ′

i = Vi ∩ V ′, which
is the set of training nodes in Gi.
Problem Statement. The problem of interpreting GNN un-
fairness is formally defined as follows.
Problem 1. GNN Unfairness Interpretation. Given the
graph data G and a GNN model fŴ trained based on G,
we define the problem of interpreting GNN unfairness as to
quantify the influence of each training node to the unfairness
exhibited in GNN predictions on the test set.

Methodology
In this section, we first briefly introduce GNNs for the node
classification task. Then, to tackle the challenge of Influence
Quantification, we propose Probabilistic Distribution Dispar-
ity (PDD) to measure model bias and define node influence
on the bias in a trained GNN. Furthermore, to tackle the
challenge of Computation Efficiency, we design an algorithm
to estimate the node influence on the model bias. Finally,
we introduce how to characterize the dependency between
nodes in influence estimation, which tackles the challenge of
Non-I.I.D. Characterization.

GNNs in Node Classification
In the node classification task, GNNs take the input graph
G and output a probabilistic output matrix Ŷ , where the
i-th row in Ŷ is ŷi, i.e., the probabilistic prediction of a
node’s membership over all possible classes. Usually, there
are multiple layers in GNNs, where the formulation of the
l-th layer can be summarized as:

z
(l+1)
i =σ

(
AGG

(
z
(l)
i , h

({
z
(l)
j : vj ∈ N (vi)

})))
. (1)

Here z
(l)
i is the embedding of node i at the l-th layer; N (vi)

is the set of one-hop neighbors around vi; h(·) is a func-
tion with learnable parameters; AGG(·) and σ(·) denote the
aggregation function (e.g., mean operator) and activation
function (e.g., ReLU), respectively. Later on, a loss function
LV′ (e.g., cross-entropy loss) defined on the set of training
nodes V ′ is employed for GNN training.

Probabilistic Distribution Disparity
Traditional bias metrics such as ∆SP for statistical parity and
∆EO for equal opportunity are computed on the predicted
class labels. However, a single training node can hardly twist
these predicted labels (Zhang et al. 2022a; Sun et al. 2020).
Hence the node-level contribution to model bias can barely be
captured by traditional bias metrics. To capture the influence
of a single training node on model bias, we propose Proba-
bilistic Distribution Disparity (PDD) as a novel bias quantifi-
cation strategy. PDD can be instantiated with different fair-
ness notions to depict the model bias from different perspec-
tives. Specifically, we assume the population is divided into
different sensitive subgroups, i.e., demographic subgroups de-
scribed by the sensitive attribute. To achieve finer granularity,
we define PDD as the Wasserstein-1 distance (Kantorovich
1960) between the probability distributions of a variable of
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interest in different sensitive subgroups. Compared with tra-
ditional fairness metrics, continuous changes brought by each
specific training node are reflected in the measured distribu-
tions, and Wasserstein distance is theoretically more sensitive
to the change of the measured distributions over other com-
monly used distribution distance metrics (Arjovsky, Chintala,
and Bottou 2017). In addition, we note that the variable of
interest depends on the chosen fairness notion in applica-
tions, and a larger value of PDD indicates a higher level of
model bias. We introduce two instantiations of PDD based
on two traditional fairness notions, including Statistical Par-
ity (Dwork et al. 2012) and Equal Opportunity (Hardt, Price,
and Srebro 2016a). Both notions are based on binary classifi-
cation tasks and binary sensitive attributes (generalizations to
non-binary cases can be found in Appendix A1). For example,
Statistical Parity requires the probability of positive predic-
tions to be the same across two sensitive subgroups, where the
variable of interest is the GNN probabilistic output ŷ. We use
Ŷ(S=j) to denote the set of the probabilistic predictions for
test nodes whose sensitive attribute S equals to j (j ∈ {0, 1}).
Let the distribution of the probabilistic predictions in Ŷ(S=0)

and Ŷ(S=1) be P
(S=0)
ŷ and P

(S=1)
ŷ , respectively. The PDD

instantiated with statistical parity ΓSP is

ΓSP = Wasserstein1(P
(S=0)
ŷ , P

(S=1)
ŷ ), (2)

where Wasserstein1(·, ·) takes two distributions as input and
outputs the Wasserstein-1 distance between them. Denote Y
as the ground truth for node classification. Similarly, we can
also instantiate PDD based on Equal Opportunity ΓEO as

ΓEO = Wasserstein1(P
(S=0,Y=1)
ŷ , P

(S=1,Y=1)
ŷ ). (3)

P
(S=0,Y=1)
ŷ and P

(S=1,Y=1)
ŷ are model prediction distribu-

tions for nodes with (S = 0, Y = 1) and (S = 1, Y = 1),
respectively. With such a strategy, we then define node influ-
ence on model bias.
Definition 1. Node Influence on Model Bias. Let fŴ and
fŴ ′ denote the GNN model trained on graph G and G−i (i.e.,
G with node vi ∈ V ′ being deleted), respectively. Let Γ1 and
Γ2 be the Probabilistic Distribution Disparity value based
on the output of fŴ and fŴ ′ for nodes in test set. We define
∆Γ = Γ2 − Γ1 as the influence of node vi on the model bias.

The rationale behind this definition is to measure to what
extent Γ changes if the GNN model is trained on a graph
without vi. Thus, ∆Γ depicts the influence of node vi on the
model bias. For both instantiations of Γ (i.e., ΓSP and ΓEO),
if ∆Γ > 0, deleting the training node vi from G leads to
a more unfair (or biased) GNN model. This indicates that
node vi contributes to improving the fairness level, i.e., vi
is helpful for fairness. Nevertheless, the above computation
requires re-training the GNN to obtain the influence of each
training node, which is too expensive if we want to compute
the influence of all nodes in the training set. In Section , we
introduce how to efficiently estimate ∆Γ.

Node Influence on Model Bias Estimation
It is noteworthy that PDD is a function of Ŵ for a trained
GNN, as Ŵ directly determines the probabilistic predictions

1Refer to the online version for Appendix.

for test nodes. Hence we first characterize how a training
node in G influences Ŵ , followed by how this node influ-
ences PDD via applying the chain rule. Formally, the optimal
parameters Ŵ minimize the objective function LV′(G,W )
of the node classification task, so that:

Ŵ
def
= argmin

W
LV′(G,W ) = argmin

W

1

m

m∑
i=1

Lvi (Gi,W ) .

Here Lvi (Gi,W ) denotes the loss term associated with node
vi; Gi is the computation graph of vi; m is the total number
of training nodes. If a training node vi is deleted from G, the
loss function will change and thus leads to a different Ŵ . We
take vi as an example to analyze the influence on Ŵ after
deleting a training node from G. Traditionally, the existence
of node vi is considered as a binary state, which is either one
(if vi exists in G) or zero (otherwise). But in our analysis, we
treat it as a continuous variable to depict the intermediate
states of the existence of vi. Suppose that the existence of vi is
down-weighted in the training of a GNN on G. This operation
leads to two changes in the loss function: (1) the loss term
associated with node vi, i.e., Lvi

(Gi,W ), is down-weighted;
(2) the loss terms associated with other training nodes in
the computation graph of vi would also be influenced. The
reason is that these nodes could be affected by the information
from node vi during the message passing in GNNs (Kipf and
Welling 2017; Ying et al. 2019). Based on the above analysis,
we define Ŵϵ,vi

as the optimal parameter that minimizes the
loss function when node vi is down-weighted as follows:

Ŵϵ,vi
def
= argmin

W
LV′(G,W )

− ϵ
(
Lvi (Gi,W ) + L̃V′

i
(Gi,W )

)
, (4)

where ϵ ∈ [0, 1/m] controls the scale of down-weighting
vi. An illustration in Fig. 1 shows how down-weighting vi
affects the loss values of training nodes in its computation
graph. To formally characterize how node vi influences Ŵ ,
we have Theorem 1 as follows (see proofs in Appendix C).

Theorem 1. According to the optimization objective of Ŵϵ,vi

in Eq. (4), we have

dŴϵ,vi

dϵ

∣∣∣∣∣
ϵ=0

=

(
∂2LV′(G, Ŵ )

∂W 2

)−1

·

∂Lvi

(
Gi, Ŵ

)
∂W

+
∂L̃V′

i
(Gi, Ŵ )

∂W

 . (5)

Then, we characterize the influence of down-weighting
node vi on the value of PDD. We present Corollary 1 based
on the chain rule as follows (see the proofs in Appendix C).
Corollary 1. Define the derivative of Γ w.r.t. ϵ at ϵ = 0 as
IΓ(vi). According to Theorem 1, we have

IΓ(vi)
def
=

∂Γ

∂ϵ

∣∣∣∣
ϵ=0

=

(
∂Γ

∂W

)⊤
dŴϵ,vi

dϵ

∣∣∣∣∣
ϵ=0

. (6)

With Corollary 1, we can now estimate the value change
of Γ when node vi is down-weighted via

Γϵ,vi
− Γ0,vi

= −ϵ · IΓ(vi) + o(ϵ) ≈ −ϵ · IΓ(vi) (7)
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Training Node Loss Value Loss Value Decreases Loss Value Increases

vivivj1vj1vj2vj2

vj3vj3
vivivj1vj1vj2vj2

vj3vj3

vj1vj1vj2vj2

vj3vj3
Down-weight vivi Down-weight vivi

ϵ = 0ϵ = 0 ϵ = 1/mϵ = 1/m

Figure 1: An illustration of how down-weighting node vi influences the loss values of the training nodes in Gi (including vi, vj1 ,
vj2 , and vj3 ). Scenarios from ϵ = 0 to ϵ = 1/m are presented.

according to the first-order Taylor expansion. Here Γϵ,vi
and

Γ0,vi
are the PDD values after and before node vi is down-

weighted, respectively. To estimate the value change in Γ for
a GNN trained on G−i, we introduce Theorem 2 as follows
(see the proofs in Appendix C).
Theorem 2. Compared with the GNN trained on G, ∆Γ =
Γ 1

m ,vi
− Γ0,vi is equivalent to the value change in Γ when

the GNN mode is trained on graph G−i.
Theorem 2 enables us to directly compute the ∆Γ for an

arbitrary training node vi, which helps avoid the expensive
re-training process. In the next section, we further define
L̃V′

i
(Gi, Ŵ ) and present an algorithm to efficiently estimate

the node influence on model bias.

Non-I.I.D. Characterization
Generally, there are two types of dependencies between a
training node vi and other nodes in its computation graph
Gi, namely its dependency on other training nodes and its
dependency on test nodes. The dependency between training
nodes directly influences W during GNN training, and thus
influences the probabilistic outcome of all test nodes. Hence it
is critical to properly characterize the dependency between vi
and other training nodes. Specifically, we aim to characterize
how the loss summation of all training nodes in Gi changes
due to the existence of vi. We denote the training nodes other
than node vi in Gi as V ′

i\{vi}. For any node vj ∈ V ′
i\{vi},

we denote Gj,−i as the computation graph of node vj with
node vi being deleted. L̃Vi(Gi, Ŵ ) is then formally given as

L̃Vi
(Gi, Ŵ ) =

∑
vj∈V′

i
\{vi}

(
Lvj

(
Gj , Ŵ

)
− Lvj

(
Gj,−i, Ŵ

))
. (8)

The first term represents the summation of loss for nodes in
V ′
i\{vi} on G, and the second term denotes the summation

of loss for these nodes on G−i. In this regard, L̃Vi
(Gi, Ŵ )

generally depicts to what extent the loss summation changes
for nodes in V ′

i\{vi} on graph G compared with G−i. If vi
is down-weighted by a certain degree, the change of the loss
summation for nodes in V ′

i\{vi} can be depicted by a linearly
re-scaled L̃Vi

(Gi, Ŵ ), as described in Eq. (4).
Additionally, there could also be dependencies between vi

and test nodes in Gi, as vi can influence the representations of
its neighboring test nodes due to the information propagation
mechanism in GNNs during inference. Such a dependency
could also influence the value of PDD when vi is deleted
from G. Correspondingly, we introduce the characterization
of the dependency between vi and test nodes. Specifically,
we present an upper bound to depict the normalized change

Algorithm 1: Node Influence on Model Bias Estimation

Input: G: the graph data; fŴ : the trained GNN model; V ′: the set
of training nodes;

Output: IΓ = {Γ 1
m

,vi
− Γ0,vi : vi ∈ V ′};

1: Initialize IΓ = ∅;
2: Compute { ∂Γ

∂W
: vi ∈ V ′} based on fŴ ;

3: while vi ∈ V ′ do
4: Compute

dŴϵ,vi
dϵ

∣∣∣
ϵ=0

according to Eq. (5) and (8);

5: Compute IΓ(vi) according to Eq. (6);
6: Compute Γ 1

m
,vi

− Γ0,vi according to Eq. (7);
7: Append element Γ 1

m
,vi

− Γ0,vi onto IΓ;
8: end while
9: return IΓ;

magnitude of the neighboring test nodes’ representations
when a training node vi is deleted. Here the analysis is based
on the prevalent GCN model (Kipf and Welling 2017), and
can be easily generalized to other GNNs. Following widely
adopted assumptions in (Huang and Zitnik 2020; Xu et al.
2018), we have Proposition 1 (see the proofs in Appendix C).

Proposition 1. Denote the representations of node vj(vj ∈
V\V ′) based on G and G−i as zj and z⋆

j , respectively. Define
h(j,i) and q(j,i) as the distance from vj to vi and the number
of all possible paths from vj to vi, respectively. Define the
set of geometric mean node degrees of q(j,i) paths as D =

{d(j,i)1 , ..., d
(j,i)

q(j,i)
}. Define d

(j,i)
min as the minimum value of D.

Assume the norms of all node representations are the same.
We then have ∥z⋆

j − zj∥2/∥zj∥2 ≤ q(j,i)/(d
(j,i)
min)

h(j,i)

.

From Proposition 1, we observe that (1) deleting vi exerts
an upper-bounded impact on the representations of other test
nodes in its computation graph; and (2) this upper-bound
exponentially decays w.r.t. the distance between vi and test
nodes. Hence the dependency between vi and test nodes has
limited influence on Γ during inference when vi is deleted
from the graph. On the contrary, considering that the depen-
dency between vi and other training nodes directly influences
Ŵ and thus influences the inference results of all nodes,
such a dependency should not be neglected. Consequently,
we argue that it is reasonable to estimate the influence of
each training node on Γ by only considering the dependency
between training nodes. We present the algorithmic routine
of ∆Γ estimation in Algorithm 1.
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Complexity Analysis
To better understand the computational cost, here we an-
alyze the time complexity of estimating ∆Γ according to
Algorithm 1. We denote the number of parameters in W
and the average number of training nodes in the computa-
tion graph of an arbitrary training node as t and r̄, respec-
tively. For each node vi, the time complexity to compute
∂Lvi

(
Gi, Ŵ

)
/∂W and ∂L̃V′

i
(Gi, Ŵ )/∂W is O(t) and

O(r̄t), respectively. Hence the time complexity is O(mr̄t) to
traverse all training nodes. For the Hessian matrix inverse,
we employ a widely-used estimation approach (see Appendix
A) with linear time complexity w.r.t t. Thus the time com-
plexity of Eq. (5) and (8) is O(mr̄t). Additionally, the time
complexity of Eq. (6) and (7) is O(mt) and O(m), respec-
tively. To summarize, the time complexity of Algorithm 1
is O(mr̄t). Considering that r̄ ≤ m, the algorithm has a
quadratic time complexity w.r.t. training node number. This
verifies the impressive time efficiency of our algorithm.

Experiments
We aim to answer the following research questions in ex-
periments. RQ1: How efficient is BIND in estimating the
influence of training nodes on the mode bias? RQ2: How
well can BIND estimate the influence of training nodes on the
model bias? RQ3: How well can we debias GNNs via delet-
ing harmful training nodes based on our estimation? More
details of experimental settings, supplementary experiments,
and further analysis are in Appendix B.

Experimental Setup
Downstream Task & Datasets. Here the downstream task is
node classification. Four real-world datasets are adopted in
our experiments, including Income, Recidivism, Pokec-z, and
Pokec-n. Specifically, Income is collected from Adult Data
Set (Dua and Graff 2017). Each individual is represented by
a node, and we establish connections (i.e., edges) between
individuals following a similar criterion adopted in (Agarwal,
Lakkaraju, and Zitnik 2021). The sensitive attribute is race,
and the task is to classify whether the salary of a person is
over $50K per year or not. Recidivism is collected from (Jor-
dan and Freiburger 2015). A node represents a defendant
released on bail, and defendants are connected based on their
similarity. The sensitive attribute is race, and the task is to
classify whether a defendant is on bail or not. Pokec-z and
Pokec-n are collected from Pokec, which is a popular social
network in Slovakia (Takac and Zabovsky 2012). In both
datasets, each user is a node, and each edge stands for the
friendship relation between two users. Here the locating re-
gion of users is the sensitive attribute. The task is to classify
the working field of users. More details are in Appendix B.
Baselines & GNN Backbones. We compare our method
with three state-of-the-art GNN debiasing baselines, namely
FairGNN (Dai and Wang 2021a), NIFTY (Agarwal,
Lakkaraju, and Zitnik 2021), and EDITS (Dong et al. 2022a).
To perform GNN debiasing, FairGNN employs adversarial
training to filter out the information of sensitive attributes
from node embeddings; NIFTY maximizes the agreement be-
tween the predictions based on perturbed sensitive attributes
and unperturbed ones; EDITS pre-processes the input graph

Figure 2: Evaluation of efficiency: speedup factors of ∆ΓSP
and ∆ΓEO estimation over GNN re-training.

data to be less biased via attribute and structural debias-
ing. We mainly present the results of using GCN (Kipf and
Welling 2017) as the backbone GNN model, while experi-
ments with other GNNs are discussed in Appendix B.
Evaluation Metrics. First, we employ running speedup fac-
tors to evaluate efficiency. Second, we use the widely adopted
Pearson Correlation (Koh and Liang 2017; Chen et al. 2020)
between the estimated and actual ∆Γ to evaluate the effec-
tiveness of node influence estimation. Third, we adopt two
traditional fairness metrics, namely ∆SP (the metric for Sta-
tistical Parity) (Dwork et al. 2012) and ∆EO (the metric for
Equal Opportunity) (Hardt, Price, and Srebro 2016b), to eval-
uate the effectiveness of debiasing GNNs via harmful nodes
deletion. Additionally, the classification accuracy is also em-
ployed to evaluate the utility-fairness trade-off.

Efficiency of Node Influence Estimation
To answer RQ1, we evaluate the efficiency of ∆Γ estimation
by comparing its running time with that of GNN re-training.
The running time of GNN re-training is computed as fol-
lows. We first delete the target node from the original input
graph G and re-train the GCN to obtain fŴ ′ . We then obtain
∆Γ based on the values of Γ given by fŴ and fŴ ′ . The
above running time is defined as the time cost of GNN re-
training. The running time averaged across all training nodes
is compared between GNN re-training and BIND, and we
present the running speedup factors of BIND on the four
real-world datasets in Fig. 2. We observe that the running
speedup factors are over 450× on all four real-world datasets,
which corroborates the efficiency superiority of BIND in
estimating the value of ∆Γ. Additionally, we observe that
the estimation on Pokec-z and Pokec-n datasets has higher
speedup factors on both ∆ΓSP and ∆ΓEO compared with the
other two datasets. A reason could be that nodes in Pokec-z
and Pokec-n have lower average degrees (see Appendix B).
This facilitates the computation of L̃V′

i
(Gi, Ŵ ) (the term that

characterizes non-i.i.d.) and corresponding derivatives.

Effectiveness of Node Influence Estimation
We now evaluate the effectiveness of ∆Γ estimation. It is
worth noting that the numerical values of the estimated in-
fluence on model bias are small for most of the nodes (see
Appendix B). Here we introduce a strategy to evaluate the
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Figure 3: Evaluation of effectiveness: correlation between
estimated and actual ∆ΓSP and ∆ΓEO.

estimation effectiveness across a wider value range of ∆Γ.
The basic intuition here is that we select node sets and evalu-
ate how well their estimated ∆Γ summation aligns with the
actual one. Specifically, we first follow the widely adopted
routine (Koh and Liang 2017; Chen et al. 2020) to truncate
the helpful and harmful nodes with top-ranked ∆Γ values.
We then construct a series of node sets associated with the
largest positive and negative estimated ∆Γ summations under
different set size thresholds. The range of these thresholds
is between zero and a maximum possible value (determined
by the training set size). It is worth noting that only nodes
with non-overlapping computation graphs are selected in con-
structing each node set. This ensures that these nodes result
in an estimated ∆Γ equivalent to the summation of their
estimated ∆Γ (see Appendix C). We present the Pearson cor-
relation of estimated ∆ΓSP and ∆ΓEO with the actual values
on four datasets in Fig. 3. It is worth noting that achieving an
exact linear correlation (i.e., Pearson correlation equals one)
between the estimated and actual ∆Γ is almost impossible,
since we only employ the first-order Taylor expansion in our
estimation for ∆Γ. From Fig. 3, we observe that the estima-
tion achieves Pearson correlation values over 0.9 on both
ΓSP and ΓEO across all datasets. Such consistencies between
estimated and actual values verify the effectiveness of BIND.

Additionally, to understand how the non-i.i.d. character-
ization benefits the estimation, we also estimate ∆Γ with
BIND after the non-i.i.d. characterization being disabled (i.e.,
setting the L̃V′

i
(Gi,W ) term in Eq. 4 as 0). We present the

estimated ∆Γ v.s. actual ∆Γ on Income dataset with non-
i.i.d. characterization being enabled and disabled in Fig. 4a
and 4b, respectively. We observe the correlation decreases
between the estimated and actual ∆Γ after the non-i.i.d. char-
acterization is disabled. Such a decrease is also observed on
other datasets in terms of both statistical parity and equal
opportunity. Such an observation verifies the contribution of
non-i.i.d. characterization to the estimation of ∆Γ.

Finally, we evaluate how well the values of the proposed
PDD matches the values of traditional fairness metrics. We
collect the value pairs of (∆SP, ΓSP) and (∆EO, ΓEO) during
the GNN re-training process. The values of ∆SP v.s. actual
ΓSP are presented in Fig. 4c, and the values of ∆EO v.s. actual
ΓEO are shown in Fig. 4d. We observe a satisfying match
between Γ and traditional metrics, which corroborates that

PDD is a valid indicator of the fairness level depicted by
traditional fairness metrics.

Debiasing via Harmful Nodes Deletion
In this subsection, we demonstrate how BIND could be em-
ployed for GNN debiasing. The basic intuition here is to
identify and delete those harmful nodes according to the esti-
mated node influence on model bias, and evaluate whether
GNNs can be debiased when they are trained on this new
graph. Specifically, we set Γ = λΓSP + (1− λ)ΓEO and es-
timate the node influence on Γ to consider both statistical
parity and equal opportunity. We then set a budget k, and
follow the strategy adopted in Section to select and delete
a set of training nodes with the largest positive influence
summation on Γ under this budget. We set λ = 0.5 to assign
statistical parity and equal opportunity the same weight, and
perform experiments with k being 1% (denoted as BIND
1%) and 10% (denoted as BIND 10%) of the total number
of training nodes. We present the results on the four adopted
datasets in Table 1. The following observations are made:
(1) compared with other baselines, BIND achieves competi-
tive performance (i.e., lower values) on both ∆SP and ∆EO.
Hence training GNNs on a new graph after deleting harmful
nodes (to fairness) is an effective approach for GNN debi-
asing; (2) there is no obvious performance decrease on the
model utility of BIND compared with other baselines. We
thus argue that deleting harmful nodes can also lead to a
satisfying fairness-utility trade-off.

Related Work
Graph Neural Networks. GNNs can be divided into spectral-
based and spatial-based ones (Wu et al. 2020; Zhou et al.
2020). Spectral GNNs inherit the insights from Convolutional
Neural Networks (CNNs) (Bruna et al. 2013), and followed
by many works (Defferrard, Bresson, and Vandergheynst
2016; Levie et al. 2018; Kipf and Welling 2017). Their goal
is to design graph filters to extract task-related information
from the input graphs (Chung and Graham 1997). Differently,
spatial GNNs design message-passing mechanisms in the
spatial domain to extract information from each node’s neigh-
bors (Wu et al. 2020; Zhou et al. 2020). Various aggregation
strategies contribute to different tasks (Veličković et al. 2017;
Xu et al. 2019b; Suresh et al. 2021; Park and Neville 2020).
Algorithmic Fairness. Algorithmic fairness can be defined
from different perspectives (Pessach and Shmueli 2020;
M. et al. 2021; Du et al. 2020; Caton and Haas 2020;
Corbett-Davies and Goel 2019; Mitchell et al. 2021), where
Group Fairness and Individual Fairness are two popular
notions (Dwork et al. 2012). Generally, group fairness en-
forces similar statistics (e.g., positive prediction rate in bi-
nary classification tasks) across different demographic sub-
groups (Dwork et al. 2012). Typically, these demographic
subgroups are described by certain sensitive attributes, such
as gender, race, and religion. Individual fairness argues
for similar outputs for similar individuals (Dwork et al.
2012). Algorithmic fairness can be considered in different
stages of learning pipelines, including pre-processing (Dong
et al. 2022a), in-processing (Dong et al. 2021; Lahoti, Gum-
madi, and Weikum 2019; Dai and Wang 2021b), and post-
processing (Kang et al. 2020). Particularly, re-weighting train-
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Van. GCN FairGNN NIFTY EDITS BIND 1% BIND 10%

Income
(↑) Acc 74.7 ± 1.4 69.1 ± 0.6 70.8 ± 0.9 68.3 ± 0.8 75.2 ± 0.0 71.7 ± 0.7
(↓) ∆SP 25.9 ± 1.9 12.4 ± 4.7 24.4 ± 1.6 24.0 ± 1.9 19.2 ± 0.6 14.7 ± 1.4
(↓) ∆EO 32.3 ± 0.8 15.6 ± 6.8 26.9 ± 3.7 24.9 ± 1.0 26.4 ± 0.4 16.2 ± 2.0

Recidivism
(↑) Acc 89.8 ± 0.0 89.7 ± 0.2 79.1 ± 0.9 89.6 ± 0.1 88.7 ± 0.0 88.5 ± 0.2
(↓) ∆SP 7.47 ± 0.2 7.31 ± 0.5 1.82 ± 0.8 5.02 ± 0.0 7.40 ± 0.0 6.57 ± 0.2
(↓) ∆EO 5.23 ± 0.1 5.17 ± 0.0 1.28 ± 0.5 2.89 ± 0.1 5.09 ± 0.1 4.23 ± 0.2

Pokec-z
(↑) Acc 63.2 ± 0.7 64.0 ± 0.7 65.3 ± 0.2 61.6 ± 0.9 63.5 ± 0.4 62.9 ± 0.4
(↓) ∆SP 7.32 ± 2.2 4.95 ± 0.8 2.34 ± 1.0 1.29 ± 0.8 6.75 ± 2.3 1.02 ± 0.9
(↓) ∆EO 7.60 ± 2.3 4.29 ± 0.7 1.46 ± 1.3 1.62 ± 1.6 5.41 ± 3.4 2.28 ± 1.5

Pokec-n
(↑) Acc 58.5 ± 0.8 60.3 ± 0.5 61.1 ± 0.3 56.8 ± 0.9 60.6 ± 0.8 58.8 ± 1.8
(↓) ∆SP 6.57 ± 2.6 5.30 ± 1.4 6.55 ± 0.7 2.75 ± 1.8 5.85 ± 2.0 2.45 ± 0.9
(↓) ∆EO 2.33 ± 0.5 1.67 ± 0.2 1.83 ± 0.6 2.24 ± 1.5 1.15 ± 0.7 2.22 ± 1.6

Table 1: Comparison on GNN utility and bias mitigation between BIND and baselines. BIND 1% and BIND 10% denote the
node deletion budget k being 1% and 10% of the training node set size, respectively. (↑) denotes the larger, the better; (↓) denotes
the opposite. Numerical results are in percentages. Best ones and runner-ups are in bold and underline, respectively.

(a) With non-i.i.d. term (b) Without non-i.i.d. term (c) ∆SP v.s. ΓSP (Income) (d) ∆EO v.s. ΓEO (Recid.)

Figure 4: In (a) and (b), we compare the estimation effectiveness of ∆ΓSP with and without characterizing non-i.i.d.; in (c)
and (d), we present the consistency between Γ and traditional fairness metrics (∆SP for statistical parity and ∆EO for equal
opportunity) under different node deletion budgets.

ing samples to mitigate model bias is a popular fairness-
enhancing method during in-processing stage (Wang, Wu,
and He 2022; Han, Baldwin, and Cohn 2021; Yan, Seto, and
Apostoloff 2022; Jiang and Nachum 2020; Petrović et al.
2022). However, most of these methods only yield a set of
weights for training samples to mitigate bias (Yan, Seto, and
Apostoloff 2022; Wang, Wu, and He 2022), while to what ex-
tent each sample influences the exhibited bias is still unclear.
Different from them, this work aims to understand the influ-
ence of each training node on model bias. To the best of our
knowledge, this is a first-of-its-kind study. Moreover, most of
existing methods based on re-weighting training samples are
developed under the IID assumption. However, in this paper,
we also analyze the non-IID characteristic between nodes to
understand how each training node influences model bias.
Interpretation of Deep Learning Models. Deep learn-
ing models have huge parameter size and high complex-
ity (Buhrmester, Münch, and Arens 2021; Samek, Wiegand,
and Müller 2017; Fong and Vedaldi 2017; Xu et al. 2019a).
To make these models more trustworthy and controllable,
many studies have been devoted to improving their trans-
parency (Fong and Vedaldi 2017). Generally, these works
are divided into transparency design and post-hoc explana-
tion (Xu et al. 2019a). The basic goal of transparency design
is to understand the model in terms of model structure (Liu
et al. 2021; Zhang et al. 2019) and training algorithms (Plumb
et al. 2019), while post-hoc explanation aims to explain spe-

cific prediction results via visualization (Ding et al. 2017)
and explanatory examples (Chen et al. 2018). In the realm
of learning on graphs, some existing works aim to interpret
GNNs (Ying et al. 2019; Luo et al. 2020; Yuan et al. 2020a),
and they mainly focus on understanding the utility (e.g., node
classification accuracy) of GNNs on the test set. Our work
is different from them in two aspects: (1) we focus on inter-
preting the model bias instead of the utility for GNNs; (2)
we aim to understand the model bias via attributing to the
training set instead of only focusing on the test set.

Conclusion
In this paper, we study a novel problem of characterizing
how each training node influences the bias exhibited in a
trained GNN. We first propose a strategy named Probabilistic
Distribution Disparity (PDD), which can be instantiated with
different existing fairness notions, to quantify the node influ-
ence on the model bias. We then propose a novel framework
named BIND to achieve an efficient influence estimation for
each training node. We also develop a node deletion strategy
to achieve GNN debiasing based on influence estimation.
Extensive experiments verify (1) the consistency between
the proposed PDD and traditional fairness metrics; (2) the
efficiency and effectiveness of the influence estimation algo-
rithm; and (3) the performance of the proposed strategy on
GNN debiasing. We leave interpreting how the unfairness
arises in other graph learning tasks as future works.
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