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Abstract

We consider primal-dual-based reinforcement learning (RL)
in episodic constrained Markov decision processes (CMDPs)
with non-stationary objectives and constraints, which plays
a central role in ensuring the safety of RL in time-varying
environments. In this problem, the reward/utility functions
and the state transition functions are both allowed to vary ar-
bitrarily over time as long as their cumulative variations do
not exceed certain known variation budgets. Designing safe
RL algorithms in time-varying environments is particularly
challenging because of the need to integrate the constraint
violation reduction, safe exploration, and adaptation to the
non-stationarity. To this end, we identify two alternative con-
ditions on the time-varying constraints under which we can
guarantee the safety in the long run. We also propose the
Periodically Restarted Optimistic Primal-Dual Proximal Pol-
icy Optimization (PROPD-PPO) algorithm that can coordi-
nate with both two conditions. Furthermore, a dynamic regret
bound and a constraint violation bound are established for the
proposed algorithm in both the linear kernel CMDP function
approximation setting and the tabular CMDP setting under
two alternative conditions. This paper provides the first prov-
ably efficient algorithm for non-stationary CMDPs with safe
exploration.

Introduction
Safe reinforcement learning (RL) studies how an agent learns
to maximize its expected total reward by interacting with an
unknown environment over time while dealing with restric-
tions/constraints arising from real-world problems (Amodei
et al. 2016; Dulac-Arnold, Mankowitz, and Hester 2019;
Garcıa and Fernández 2015). A standard approach for mod-
eling the safe RL is based on Constrained Markov Deci-
sion Processes (CMDPs) (Altman 1999), where one seeks
to maximize the expected total reward under a safety-related
constraint on the expected total utility.

While classical safe RL and CMDPs assume that an agent
interacts with a time-invariant (stationary) environment, both
the reward/utility functions and transition kernels can be
time-varying for many real-world safety-critical applications.
For example, in autonomous driving (Sallab et al. 2017) or
power grid control (Ding, Lavaei, and Arcak 2021), it is
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essential to guarantee safety, such as collision-avoidance and
contingency, while handling time-varying conditions related
to traffic and load demands. Similarly, in most safety-critical
human-computer interaction applications, e.g., automated
medical care, human behavior changes over time. In such
scenarios, if the automated system is not adapted to take such
changes into account, then the system could quickly violate
the safety constraint and incur a severe loss (Chandak et al.
2020; Moore et al. 2014). Despite the importance of non-
stationary safe RL problems, the literature lacks provably
efficient algorithms and theoretical results.

In this work, we formulate a general non-stationary safe
exploration problem as an episodic CMDP in which the transi-
tion model is unknown and non-stationary, the reward/utility
feedback after each episode is bandit and non-stationary, and
the variation budget is known. The goal is to design an al-
gorithm that can perform a non-stationary safe exploration,
that is, to adaptively explore the unknown and time-varying
environment and learn to satisfy time-varying constraints in
the long run.

The safe exploration in non-stationary CMDPs is more
challenging since the utilities and dynamics are time-varying
and unknown a priori. Thus, it is difficult/impossible to guar-
antee a small/zero constraint violation without knowing how
CMDPs will change. Previous constraint violation analyses
(Ding et al. 2021; Liu et al. 2021) strongly rely on the con-
ditions of having the same transition dynamics and rewards
over all episodes, which are not applicable to non-stationary
CMDPs. In view of the aforementioned challenges, we pro-
pose a new primal-dual method and develop novel techniques
to decouple the optimality gap and the constraint violation.
Our main contributions are summarized below:

• We identify two alternative conditions on the time-varying
constraints under which we can guarantee the safety in the
long run. The first assumption requires the knowledge of
the local variation budgets of the constraint for each epoch,
while the second assumption needs the strict feasibility
of the constraint at each episode and the knowledge of a
uniform strict feasibility threshold.

• We develop a new periodically restarted policy-based
primal-dual method, which can coordinate with both two
conditions, for general non-stationary CMDP problems.

• We study the proposed algorithm under two alternative
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conditions that require different amounts of knowledge
on the constraints. Our results are summarized in Table 1
and our method is the first provably efficient algorithm for
non-stationary CMDPs with safe exploration.

Related Work
Non-stationary RL. Non-stationary RL has been mostly
studied in the unconstrained setting (Jaksch, Ortner, and
Auer 2010; Auer, Gajane, and Ortner 2019; Ortner, Gajane,
and Auer 2020; Domingues et al. 2021; Mao et al. 2020;
Zhou et al. 2020; Touati and Vincent 2020; Fei et al. 2020;
Zhong, Yang, and Szepesvári 2021; Cheung, Simchi-Levi,
and Zhu 2020; Wei and Luo 2021). Our work is related to
policy-based methods for non-stationary RL since the opti-
mal solution of CMDP is usually a stochastic policy (Altman
1999) and thus a policy-based method is preferred. When
the variation budget is known a prior, (Fei et al. 2020) pro-
pose the first policy-based method for non-stationary RL,
but they assume stationary transitions and adversarial full-
information rewards in the tabular setting. (Zhong, Yang,
and Szepesvári 2021) extends the above results to a more
general setting where both the transitions and rewards can
vary over episodes. To eliminate the assumption of having
prior knowledge on variation budgets, (Wei and Luo 2021)
recently outline that an adaptive restart approach can be used
to convert any upper-confidence-bound-type stationary RL
algorithm to a dynamic-regret-minimizing algorithm. Beyond
the non-stationary unconstrained RL, (Qiu et al. 2020) con-
sider the online CMDPs where the reward is adversarial but
the transition model is fixed and the constraints are stochastic
over episodes. In summary, the above papers only consider
the non-stationarity in the objective and may not work for
the more general safe RL problems where there is also time-
varying constraints.

CMDP. The study of RL algorithms for CMDPs has re-
ceived considerable attention due to the safety requirement
(Altman 1999; Paternain et al. 2019; Yu et al. 2019; Dulac-
Arnold, Mankowitz, and Hester 2019; Garcıa and Fernández
2015; Gu et al. 2021, 2022). Our work is closely related to
Lagrangian-based CMDP algorithms with optimistic policy
evaluations (Efroni, Mannor, and Pirotta 2020; Singh, Gupta,
and Shroff 2020; Ding et al. 2021; Liu et al. 2021; Qiu et al.
2020). In particular, (Efroni, Mannor, and Pirotta 2020; Singh,
Gupta, and Shroff 2020) leverage upper confidence bound
(UCB) bonus on fixed reward/utility and transition probabil-
ity to propose sample efficient algorithms for tabular CMDPs.
(Ding et al. 2021) generalize the above results to the linear
kernel CMDPs. Under some mild conditions and additional
computation cost, (Liu et al. 2021) propose two algorithms
to learn policies with a zero or bounded constraint violation
for CMDPs. Beyond the stationary CMDP, (Qiu et al. 2020)
consider the online CMDPs where only the rewards in ob-
jective can vary over episodes. In contrast, our work focuses
on a more general and realistic safe RL setting where the
dynamics and rewards/utilities can all change over episodes,
and thus we significantly extend the existing results.

Due to space restrictions, we introduce the notations in
Appendix.

Preliminaries
Model. In this paper, we study safe RL in non-stationary
environments via episodic CMDPs with adversarial bandit-
information reward/utility feedback and unknown adversarial
transition kernels. At each episode m, a CMDP is defined by
the state space S , the action spaceA, the fixed length of each
episode H , a collection of transition probability measure
{Pm

h }Hh=1, a collection of reward functions {rmh }Hh=1, a col-
lection of utility functions {gmh }Hh=1 and the constraint offset
bm. We assume that S is a measurable space with a possibly
infinite number of elements, and thatA is a finite set. In addi-
tion, we assume rmh ∶ S ×A → [0,1] and gmh ∶ S ×A → [0,1]
are deterministic reward and utility functions. Our analysis
readily generalizes to the setting where the reward/utility
functions are random. In this paper, we focus on a bandit
setting where the agent only observes the values of reward
and utility functions, rmh (xmh , amh ) and gmh (xmh , amh ) at the
visited state-action pair (xmh , amh ). To avoid triviality, we take
bm ∈ (0,H] and assume that it is known to the agent.

Let the policy space ∆(A∣S,H) be {{πh(⋅∣⋅)}Hh=1 ∶
πh(⋅∣s) ∈ ∆(A),∀x ∈ S, h ∈ [H]}, where ∆(A) de-
notes a probability simplex over the action space. Let πm ∈
∆(A∣S,H) be a policy taken by the agent at episode m,
where πm

h (⋅∣xmh ) ∶ S → A is the action that the agent takes
at state xmh . For simplicity, we assume the initial state xm1 to
be fixed as x1 in different episodes. The episode terminates
at state xmH in which no control action is needed and both
reward and utility functions are equal to zero.

Given a policy π ∈ ∆(A∣S,H) and the episode m, the
value function V π,m

r,h associated with the reward function r at
step h in episode m is the expected value of the total reward,
V π,m
r,h (x) = Eπ,Pm [∑H

i=h r
m
i (xi, ai)∣xh = x], for all x ∈ S

and h ∈ [H], where the expectation Eπ,Pm is taken over the
random state-action sequence {(xmi , ami )}Hi=h, the action amh
follows the policy πm

h (⋅∣xmh ), and the next state xh+1 follows
the transition dynamics Pm

h (⋅∣xmh , amh ).
The action-value function is defined as Qπ,m

r,h (x, a) =
Eπ,Pm [∑H

i=h r
m
i (xmi , ami )∣xmh = x, amh = a], for all x ∈

S, a ∈ A and h ∈ [H]. Similarly, we define the value
function V π,m

g,h ∶ S → R and the action-value function
Qπ,m

g,h ∶ S × A → R associated with the utility function g.
For brevity, we use the symbol ◇ to denote r or g. and take
the shorthand Pm

h V
π,m
◇,h (x, a) ∶= Ex′∼Pm

h
(⋅∣x,a) [V π,m

◇,h+1(x′)].
The Bellman equation associated with a policy π is given by

Qπ,m
◇,h (x, a) = (◇mh + Pm

h V
π,m
◇,h+1)(x, a), (1a)

V π,m
◇,h (x) = ⟨Q

π,m
◇,h (x, ⋅), πh(⋅∣x)⟩A , (1b)

for all (x, a) ∈ S ×A, where ⟨⋅, ⋅⟩A denotes the inner product
over A and we will omit the subscript A in the sequel when
it is clear from the context.

Constrained MDP. In constrained MDPs, the agent aims
to approximate the optimal non-stationary policy by interact-
ing with the environment. In each episode m, the agent aims
to maximize the expected total reward while satisfying the
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Setting Assumption Dynamic regret Constraint violation

Tabular Bg,E , BP,E Õ (∣S ∣ 23 ∣A∣ 13H 5
3M

1+ρ
2 (B∆ +B∗)

1
3 ) Õ (∣S ∣ 23 ∣A∣ 13H 5

3M
2−ρ
2 (B∆ +B∗)

1
3 )

Tabular γ Õ (γ−1∣S ∣ 23 ∣A∣ 13H 5
2M

2
3 (B∆ +B⋆)

1
3 ) Õ (γ−1∣S ∣ 23 ∣A∣ 13H 5

2M
2
3 (B∆ +B⋆)

1
3 )

Linear kernel Bg,E , BP,E Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) Õ (d 9

8H
5
2M

3
4 (
√
dB∆ +B∗)

1
3 )

Linear kernel γ Õ (γ−1d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) Õ (γ−1d 9

8H
5
2M

3
4 (
√
dB∆ +B∗)

1
3 )

Table 1: We summarize the dynamic regrets and constraint violations obtained in this paper for tabular and linear kernel CMDPs
under different assumptions. Here,Bg,E andBP,E are the local variation budgets for the constraints and are defined in Assumption
2, γ is the strict feasibility threshold of the constraints and is defined in Assumption 3, H is the horizon of each episode, M is
the total number of episodes, d is the dimension of the feature mapping, ∣S ∣ and ∣A∣ are the cardinalities of the state and action
spaces, and B∆,B∗ are the variation budgets defined in (6) and (7). There is a trade-off controlled by ρ ∈ [1

3
, 1
2
] between the

dynamic regret and constraint violation for the tabular CMDP under Assumption 2.

constraints on the expected total utility

max
π∈∆(A∣S,H)

V π,m
r,1 subject to V π,m

g,1 ≥ bm (2)

for allm = 1,2, . . ., where the reward/utility functions and the
transition kernels are potentially different across the episodes.
The associated Lagrangian of problem (2) is given by

Lm(π,µ) ∶= V π,m
r,1 + µ (V

π,m
g,1 − bm) (3)

where the policy π is the primal variable and µ ≥
0 is the dual variable. We can reformulate the con-
strained optimization problem (2) as the saddle-point prob-
lem maxπ∈∆(A∣S,H)minµ≥0 Lm(π,µ). Let Dm(Y ) ∶=
maximize πLm(π,µ) be the dual function, µ⋆,m ∶=
argminµ≥0Dm(µ) be an optimal dual variable and π⋆,m

be a globally optimal solution of (2) at episode m.
Unlike the unconstrained MDP, the optimal solution of

CMDP is usually a stochastic policy and the best determin-
istic policy can lose as much as the difference between the
respective values of the best and the worst policies (Altman
1999). As a consequence, RL methods that implicitly rely
on the existence of a deterministic optimal policy (e.g., Q
learning) may not be suitable for this type of problem. This
further inspires the study of randomized policies and take on
a policy gradient approach for non-stationary CMDP.

Performance metrics. Suppose that the agent executes
policy πm in episode m. We now define the dynamic regret
and the constraint violation in the long run as:

DR(M) ∶=
M

∑
m=1
(V π⋆,m,m

r,1 − V πm,m
r,1 ) , (4)

CV(M) ∶= [
M

∑
m=1
(bm − V πm,m

g,1 )]
+
. (5)

There are two main reasons for considering the constraint
violation in the long run. Firstly, in many applications such
as supply chain and energy systems, the requirements of
balancing the time-varying and unknown demands with the
supply are formulated as some time-varying constraints. As
long as the supply and the demand can be balanced in the
long run, the policy is considered safe. Secondly, since the

utility function gmh is unknown a priori and time-varying, the
constraint V π,m

g,1 ≥ bm may not be satisfied in every episode
m. Rather, the agent strives to satisfy the constraints in the
long run. In other words, the agent aims to ensure the long-
term constraint ∑M

m=1(V π,m
g,1 − bm) ≥ 0 over some given

period of episodes M .
Linear function approximation We focus on a class of

CMDPs, where transition kernels and reward/utility functions
are linear in feature maps.
Assumption 1 (Linear Kernel CMDP) For every m ∈
[M], the CMDP(S,A,H,Pm, rm, gm) satisfies the follow-
ing conditions: (1) there exist a kernel feature map ψ ∶
S ×A × S → Rd1 and a vector θmh ∈ Rd1 with ∥θmh ∥2 ≤

√
d1

such that

Pm
h (x′ ∣ x, a) = ⟨ψ(x, a, x′), θmh ⟩

for all (x, a, x′) ∈ S ×A × S and h ∈ [H]; (2) there exist a
feature map φ ∶ S ×A → Rd2 and vectors θmr,h, θ

m
g,h ∈ Rd2

such that

rmh (x, a) = ⟨φ(x, a), θmr,h⟩ and gmh (x, a) = ⟨φ(x, a), θmg,h⟩

for all (x, a) ∈ S × A and h ∈ [H], where
max (∥θmr,h∥2 , ∥θ

m
g,h∥2) ≤

√
d2; (3) for every function V ∶

S → [0,H], ∥∫S ψ(x, a, x′)V (x′)dx′∥ ≤
√
d1H for all

(x, a) ∈ S ×A and max(d1, d2) ≤ d.
This assumption adapts the definition of linear kernel MDP
(Ayoub et al. 2020; Cai et al. 2020; Zhou, He, and Gu 2021)
to CMDP and has also been used in (Ding et al. 2021) for
stationary constrained MDP problems. We refer the reader to
Appendix for more discussions on this assumption.

Variation budget. Note that Pm
h and rmh , g

m
h are deter-

mined by the unknown measures {θmh }h∈[H],m∈[M] and the
latent vectors {θm◇,h}h∈[H],m∈[M] for ◇ = r or g which can
vary across the indexes (m,h) ∈ [M] × [H] in general. We
measure the non-stationarity of the CMDP in terms of its
variation in θmh , θ

m
r,h and θmg,h:

BP ∶= ∑M
m=2∑H

h=1 ∥θmh − θm−1h ∥
2
, (6a)

B◇ ∶= ∑M
m=2∑H

h=1 ∥θm◇,h − θm−1◇,h ∥2 , for ◇ = r or g, (6b)
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and denote B∆ = BP + Br + Bg. Note that our definition
of variation only imposes restrictions on the summation of
non-stationarity across two different episodes, and it does not
put any restriction on the difference between two consecutive
steps in the same episode. In addition to the variations defined
above, we introduce the total variation in the optimal policies
of adjacent episodes:

B⋆ ∶=
M

∑
m=2

H

∑
h=1

max
x∈S
∥π⋆,mh (⋅ ∣ x) − π⋆,m−1h (⋅ ∣ x)∥

1
. (7)

The notion of B⋆ is also used for online convex optimization
with a dynamic regret criterion (Besbes, Gur, and Zeevi 2015;
Hall and Willett 2013, 2015; Cao and Liu 2018) and for
policy-based methods in non-stationary unconstrained MDPs
(Fei et al. 2020; Zhong, Yang, and Szepesvári 2021). It is
worth noting that the variations (BP,B◇) and B⋆ do not
imply each other.

A special but important example of the non-stationarity is
the system with piece-wise constant dynamics and reward-
s/utilities where the number of switches is S. In this case, all
variation budgets (BP,B◇) and B⋆ can be upper bounded
by O(SH). As one of the first works to investigate the non-
stationary CMDP, we assume that we have access to quanti-
ties B∆ and B⋆ or some upper bounds on them via an oracle.

Assumptions on Time-Varying Constraints
In this paper, we consider two scenarios for the non-stationary
CMDPs, each requiring some specific knowledge to enable
safe exploration under the non-stationarity.

The first scenario assumes the knowledge of local variation
budgets of constraints. We first define local variation budgets
of constraints. To adapt the non-stationarity, the restart esti-
mation of the value function is used (see Section Periodically
Restarted Optimistic Policy Evaluation), which breaks the
M episodes into ⌈M

L
⌉ epochs. For every E ∈ [⌈M

L
⌉], define

Bg,E and BP,E to be the local variation budgets of the utility
function and transitions within epoch E . By definition, we

have ∑⌈
M
L ⌉
E=1 Bg,E ≤ Bg and ∑⌈

M
L ⌉
E=1 BP,E ≤ BP.

Assumption 2 (Local variation budgets of constraints)
We have access to the local variation budget Bg,E and BP,E
for every E ∈ [⌈M

L
⌉], and also the constrained optimization

problems given in (2) are uniformly feasible.
The second scenario extends the strict feasibility (also

known as Slater condition) for problem (2) to non-stationary
constrained optimization problems.
Assumption 3 (Uniformly strict feasibility) We have ac-
cess to a sequence of constraint thresholds {bm}Mm=1 and
a constant γ such that the constrained optimization problems
in (2) are γ−uniformly strictly feasible, i.e., there exist γ > 0
and π̄m ∈ ∆(A ∣ S,H) such that V π̄m,m

g,1 (x1) ≥ bm + γ for
all m = 1, . . . ,M .
Under this assumption, one can establish the strong duality
and the boundedness of the optimal dual variable.
Lemma 4 (Lemma 1 in (Ding et al. 2021)) Under As-
sumption 3, it holds that V π⋆,m,m

r,1 (x1) = Dm (µ⋆,m) and
0 ≤ µ⋆,m ≤H/γ for all m = 1, . . . ,M .

Remark 5 We require either Assumption 2 or Assumption
(3), and both of them need not hold simultaneously. Assump-
tion 2 requires the local variation budgets of constraints, but
does not enforce every instance problem (2) to be strictly
feasible. It is suitable for the case with a forecasting oracle
for the constraints. For example, in supply chain or energy
systems, the supply is desired to match the time-varying and
unknown demands where a forecasting oracle for the de-
mands is usually available. In addition, it is also suitable
for the case with only non-stationary rewards such as colli-
sion avoidance in a maze with a moving target. On the other
hand, Assumption 3 needs the knowledge of strict feasible
constraint thresholds, but does not require the local varia-
tion budgets of constraints. It is suitable for the case with a
relatively large feasibility threshold γ.

Safe Exploration under The Non-Stationarity

In Algorithm 1, we develop a new efficient method named
Periodically Restarted Optimistic Primal-Dual Proximal
Policy Optimization (PROPD-PPO) algorithm. In each
episode, our algorithm consists of three main stages: pe-
riodically restarted policy improvement, dual update, and
periodically restarted policy evaluation. We first present the
high-level idea behind our method.

High-Level Idea

Safe exploration in non-stationary CMDPs is more challeng-
ing in that we need to reduce the constraint violation even
when the constraints vary over the episodes. To overcome
this issue, we develop our method based on some assumed
knowledge on the constraints. Under Assumption 2, since the
optimal dual variables may not be well-bounded, we need
to add a dual regularization to stabilize the dual updates and
fully utilize the convexity of the dual function. In addition,
the knowledge of local variation of the constraints is needed
to obtain an optimistic estimator of constraint functions, so
that a large dual variable cannot amplify the estimation error
of the constraint functions. This is different from the dual
update that has been used in Lagrangian-based stationary
CMDPs under the strict feasible condition (Ding et al. 2020,
2021; Ying, Ding, and Lavaei 2021; Efroni, Mannor, and
Pirotta 2020; Liu et al. 2021; Qiu et al. 2020). On the other
hand, under Assumption 3, the optimal dual variables can
be bounded by Lemma 4. Then, the dual regularization and
an optimistic estimator for the constraint functions are not
necessary. Thus, a standard dual update will be enough.

Periodically Restarted Policy Improvement

One way to update the policy πm is to solve
the Lagrangian-based policy optimization problem
maxπ∈∆(A∣S,H)Lm

ξ (π,µm−1), where Lm
ξ (π,µm−1) is

defined in (9) and the dual variable µm−1 is from episode
m − 1. Motivated by the policy improvement step in NPG
(Kakade 2001), TRPO (Schulman et al. 2015), and PPO
(Schulman et al. 2017), we perform a simple policy update
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Algorithm 1: Periodically Restarted Optimistic Primal-Dual
Proximal Policy Optimization

1: Inputs: Time horizon M , restart period W,L,
{Q0

r,h,Q
0
g,h}Hh=1 and V 0

g,1 being zero functions, initial
policy {π0

h}h∈[H] being uniform distributions on A, ini-
tial dual variable µ0 = 0, dual regularization parameter ξ,
learning rates α, η > 0, χ.

2: for m = 1, . . . ,M do
3: Set the initial state xm1 = x1, ℓmπ = (⌈mL ⌉ − 1)L + 1,

ℓmQ = (⌈mW ⌉ − 1)W + 1.
4: if m = ℓmπ then
5: Set {Qm−1

r,h ,Qm−1
g,h }Hh=1 as zero functions and set

{πm−1
h }Hh=1 as uniform distributions on A.

6: end if
7: for h = 1,2, . . . ,H do
8: Update the policy πm

h (⋅ ∣ ⋅)∝
πm−1
h (⋅ ∣ ⋅) exp (α (Qm−1

r,h + µm−1Qm−1
g,h ) (⋅, ⋅)).

9: Take an action amh ∼ πm
h (⋅ ∣ xmh ) and receive re-

ward/utility rh(xmh , amh ), gh(xmh , amh ).
10: Observe the next state xmh+1.
11: end for
12: Update the dual variable by µm =

Proj[0,χ] (µm−1 + η (bm − V m−1
g,1 (x1) − ξµm−1)).

13: Estimate {Qm
r,h,Q

m
g,h}Hh=1 and V m

g,1 via

LSTD({xτh, aτh, rτh(xτh, aτh), gτh(xτh, aτh)}
H,m
h=1,τ=ℓm

Q
).

14: end for

in the online mirror descent fashion by

argmax
π∈∆(A∣S,H)

H

∑
h=1
⟨(Qm−1

r,h + µm−1Qm−1
g,h ) (xh, ⋅), πh − πm−1

h ⟩

− 1

α

H

∑
h=1

D (πh(⋅∣xh) ∣ πm−1
h (⋅∣xh)) . (8)

Since the above update is separable over H steps, we can
update the policy πm as line 8 in Algorithm 1, leading to
a closed-form solution for each step h ∈ [H]. Furthermore,
in order to guarantee the policy to be exploratory enough
in new environments, our policy improvement step also fea-
tures a periodic restart mechanism, which resets its policy
to a uniform distribution over the action space A every L
episodes.
Remark 6 Although policy improvement step (8) has been
used in stationary CMDPs (Ding et al. 2021), our method
differs in the sense that we remove the requirement to mix the
policy with a uniform policy at every iteration. This is due
to a technical improvement in the analysis by replacing the

“pushback property of KL-divergence lemma” (Lemma 14 in
(Ding et al. 2021)) with the “one-step descent lemma” for
the KL-regularized optimization.

Dual Update
We first define the modified Lagrangian of (3) to be

Lm
ξ (π,µ) ∶= V π,m

r,1 + µ (V
π,m
g,1 − bm) +

ξ

2
∥µ∥22 (9)

where ξ ≥ 0 is the dual regularization parameter to be de-
termined later. Since the value function V π,m

g,1 is unknown,
in order to infer the constraint violation for the dual update,
we estimate V πm,m

g,1 (x1) via an optimistic policy evaluation.
We update the Lagrange multiplier µ by moving µm to the
direction of minimizing the estimated Lagrangian L(π,µ):

L̃m
ξ (π,µ) ∶= V m

r,1 + µ (V m
g,1 − bm) +

ξ

2
∥µ∥22 . (10)

over µ ≥ 0 in line 14 of Algorithm 1, where η > 0 is a stepsize
and Prof[0,χ] is a projection onto [0, χ] with an upper bound
χ on µm. The choices of the parameters χ and ξ depend on
the assumption:

ξ > 0, χ =∞, under Assumption 2,

ξ = 0, χ = 2H

γ
,under Assumption 3.

Under Assumption 2, since the strictly feasibility may not
hold for all episodes (corresponding to γ = 0), we may not
have a finite upper bound on the dual variable µ. Thus, a
dual regularization with ξ > 0 is needed to stabilize the dual
updates under the non-stationarity. The value of ξ depends on
the number of episodes M and the variation budgets BP,Bg .
On the other hand, under Assumption 3, we choose χ = 2H

γ
≥

2µ∗,m similarly as (Ding et al. 2021; Efroni, Mannor, and
Pirotta 2020), so that the projection interval [0, χ] includes
all optimal dual variables {µ∗,m}Mm=1 in light of Lemma 4.

Periodically Restarted Optimistic Policy Evaluation
To evaluate the policy under the unknown nonstationarity,
we take the Least-Squares Temporal Difference (LSTD)
(Bradtke and Barto 1996; Lazaric, Ghavamzadeh, and
Munos 2010) with UCB to properly handle the exploration-
exploitation trade-off and apply the restart strategy to adapt
to the unknown nonstationarity. In particular, we apply the
restart strategy and evaluate the policy πm only based on the
previous historical trajectories from the episode ℓmQ to the
episode m instead of the all previous historical trajectories.
The method is standard and summarized in Appendix.

After obtaining the estimates of Pm
h V

m
◇,h+1 and ◇mh (⋅, ⋅) for

◇ = r or g, we update the estimated action-value function
{Qm
◇,h}

H

h=1 iteratively and add UCB bonus terms Γm
h (⋅, ⋅),

Γm
◇,h(⋅, ⋅) ∶ S ×A → R+ so that

Ω1,◇ ∶= (φm)⊺ um◇,h + Γm
h and Ω2,◇ ∶= (ϕm◇,h)

⊺
wm
◇,h + Γm

◇,h

all become upper bounds on Pm
h V

m
◇,h+1 and ◇mh (⋅, ⋅) (up to

some errors due to the non-stationarity). Here, the weights
um◇,h,w

m
◇,h and the bonus terms Γm

h ,Γ
m
◇,h are defined in Ap-

pendix. Moreover,
Qm

r,h(⋅, ⋅) =min (H − h + 1,Ω1,r(⋅, ⋅) +Ω2,r(⋅, ⋅))+ ,
Qm

g,h(⋅, ⋅) =min (H − h + 1,Ω1,g(⋅, ⋅) +Ω2,g(⋅, ⋅) +LV )+
where LV > 0 depends on the local variation budgets of the
constraint BP,E , Bg,E under Assumption 2, LV = 0 under
Assumption 3, and (x)+ denotes the maximum between x
and 0. The reason for introducing a positive LV term under
Assumption 2 is to guarantee that the model prediction error
in Qm

g,h is non-positive when the dual variable µ is very large.
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Main Results
We now present the dynamic regret and the constraint vi-
olation bounds for Algorithm 1 under the two alternative
assumptions introduced in Section Assumptions on Time-
Varying Constraints. The choices of the algorithm parameters
will depend on the assumption used for the analysis. When
both assumptions are satisfied, one can check which one
yields a tighter bound, and this depends on the value of the
strict feasibility threshold γ (and the values of H,M if in the
tabular CMDP setting).
Linear Kernal CMDP
We first present the results for linear Kernal CMDP under
each of Assumptions 2 and 3.
Theorem 7 (Linear Kernal CMDP + Assumption 2) Let
Assumptions 1 and 2 hold. Given p ∈ (0,1), we set α =
H−1M− 1

2 (
√
dB∆ + B⋆)

1
3 , L = M 3

4 (
√
dB∆ + B⋆)−

2
3 , η =

M− 1
2 , ξ = 2H(

√
dB∆ +B⋆)

1
3M− 1

2 , W = d− 1
4H−1M

1
2B
− 1

2

∆ ,
in Algorithm 1 and set set β = C1

√
dH2 log(dW /p),

LV = BP,EH
2d1
√
d1W + Bg,E

√
d2W . Then, with proba-

bility 1 − p, the dynamic regret and the constraint violation
satisfy

DR(M) ≤ Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) ,

CV(M) ≤ Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) .

Theorem 8 (Linear Kernal CMDP + Assumption 3)
Let Assumptions 1 and 3 hold. Given p ∈ (0,1), we set
α = γH− 3

2M− 1
3 (
√
dB∆ +B⋆)

1
3 , L =M 2

3 (
√
dB∆ +B⋆)−

2
3 ,

η = M− 1
2 , ξ = 0, W = d− 1

4H−1M
1
2B
− 1

2

∆ in Algorithm 1
and set set β = C1

√
dH2 log(dW /p), LV = 0. Then, with

probability 1 − p, the dynamic regret and the constraint
violation satisfy

DR(M) ≤ Õ (γ−1d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) ,

CV(M) ≤ Õ (γ−1d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 ) .

The proofs for Theorems 7 and 8 can be found in Appendix.
Our dynamic regret bounds in Theorems 7 and 8 have the
optimal dependence on the total number of episodes M . This
matches the existing bounds in the general non-stationary lin-
ear kernel MDP setting without any constraints (Zhong, Yang,
and Szepesvári 2021; Zhou et al. 2020; Touati and Vincent
2020). The dependence on the variation budgets (B∆,B⋆)
also matches the existing bound in policy-based method for
the non-stationary linear kernel MDP setting (Zhong, Yang,
and Szepesvári 2021). Regarding the long-term safe explo-
ration, we provide the first finite-time constraint violation
result in the non-stationary CMDP setting.

In the linear kernel CMDP setting, the same dynamic regret
and constraint violation bounds are obtained under either of
Assumptions 2 and 3, except that the dynamic regret and
constraint violation under Assumption 3 also depend on the
strict feasibility threshold γ. When γ is small, i.e., there exist
some episodes for which the CMDP problem (2) does not
have a large enough strict feasibility threshold, the dynamic
regret and constraint violation bounds in Theorem 8 may be
large.

Tabular CMDP
A special case of the linear kernel CMDP in Assumption 1 is
the tabular CMDP with ∣S ∣ <∞ and ∣A∣ <∞. In the tabular
case, improved results can be obtained by incorporating Al-
gorithm 1 with a variant of the optimistic policy evaluation
method. We refer the reads to Appendix for such procedures
and state the result below:

Theorem 9 (Tabular CMDP + Assumption 2) Let As-
sumption 2 hold and consider a tabular CMDP. Given
p ∈ (0,1) and ρ ∈ [1

3
, 1
2
], we set α =H− 1

3M−ρ(B∆ +B⋆)
1
3 ,

L = H−
1
3M

1+ρ
2 (B∆ + B⋆)−

2
3 , η = H−

1
3M− 1

2 ,

ξ = 2H
5
3 (B∆ + B⋆)

1
3M−ρ, W = H

2
3 ∣S ∣ 23 ∣A∣ 13 ( M

B∆
)

2
3

in Algorithm 1 and β = C4H
√
∣S ∣ log(∣S ∣∣A∣W /p),

LV = BP,EH + Bg,E . Then, with probability 1 − p, the
dynamic regret and the constraint violation satisfy

DR(M) ≤ Õ (∣S ∣ 23 ∣A∣ 13H 5
3M

1+ρ
2 (B∆ +B∗)

1
3 ) ,

CV(M) ≤ Õ (∣S ∣ 23 ∣A∣ 13H 5
3M

2−ρ
2 (B∆ +B∗)

1
3 ) .

Theorem 10 (Tabular CMDP + Assumption 3) Let As-
sumption 3 hold and consider a tabular CMDP. Given
p ∈ (0,1), we set α = γH−

3
2M− 1

3 (B∆ + B⋆)
1
3 , L =

M
2
3 (B∆ +B⋆)−

2
3 , η =M− 1

2 , ξ = 0, W = ∣S ∣ 23 ∣A∣ 13 ( M
B∆
)

2
3

in Algorithm 1 and β = C4H
√
∣S ∣ log(∣S ∣∣A∣W /p), LV = 0.

Then, with probability 1 − p, the dynamic regret and the
constraint violation satisfy

DR(M)≤Õ (γ−1∣S ∣ 23 ∣A∣ 13H 5
2M

2
3 (B∆ +B⋆)

1
3 ) ,

CV(M)≤Õ (γ−1∣S ∣ 23 ∣A∣ 13H 5
2M

2
3 (B∆ +B⋆)

1
3 ) .

The proofs for Theorems 9 and 10 can be found in Ap-
pendix. For the tabular CMDP under Assumption 2, there is a
trade-off for the dependence on the total number of episodes
M between the dynamic regret and the constraint violation.
This trade-off is controlled by the primal update parameter α
and the dual regularization parameter ξ. Such trade-off does
not appear in the linear kernel CMDP setting because the
dynamic regret and constraint violation in the linear kernel
CMDP are bottlenecked by the error in the non-stationary
policy evaluation.

The dynamic regret and constraint violation bounds in The-
orem 10 have an improved dependence on the total number
of episodes M compared to Theorems 7 and 8. This improve-
ment is due to the improved result of the policy evaluation
step in the tabular setting. The dependence on M in Theorem
10 is also better than that of Theorem 9. This is due to a
sharper analysis for the constraint violation under Assump-
tion 3 based on (Beck 2017, Proposition 3.60). However, the
dynamic regret and constraint violation bounds in Theorem
10 have a worse dependence on the horizon H and are also
dependent on the feasibility threshold γ compared to The-
orem 9. In addition, the dependence of the dynamic regret
on M and (B∆,B⋆) matches the existing bound in the non-
stationary tabular MDP setting without any constraints (Mao
et al. 2020).
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Proof Sketch
The safe exploration in non-stationary CMDP is more chal-
lenging since the utilities and dynamics are time-varying
and unknown a priori. In this section, we outline some of
the key ideas behind the proof, especially how to decouple
the dynamic regret and constraint violation under the non-
stationarity. We defer the full proof to Appendix.

Dynamic Regret
By combining the primal-dual analysis of stationary CMDPs
(Ding et al. 2021) and the analysis for the non-stationary
MDP (Zhong, Yang, and Szepesvári 2021; Fei et al. 2020), we
can obtain the following bound on the Lagrangian function:

M

∑
m=1
(V π⋆,m,m

r,1 −V πm,m
r,1 +µm (bm−V πm,m

g,1 ))

≤ δ1+αH2
M

∑
m=1
∣µm∣2+

M

∑
m=1

H

∑
h=1

µmEπ⋆,m,Pm [ιmg,h] (11)

where δ1 contains all terms irrelated to the dual variables
{µm}Mm=1 and ιmg,h is the model prediction error of the con-
straint. Furthermore, with the dual regularization and the dual
update, it holds that

−
M

∑
m=1

µm (V π⋆,m,m
g,1 − V m

g,1)

≤ ηH2(M + 1) + (ηξ2 − ξ)
M

∑
m=1
(µm)2. (12)

Combining the inequalities (11) and (12) yields

DR(M) ≤δ1 + (αH2 + ηξ2 − ξ)
M

∑
m=1
(µm)2

+ ηH2(M + 1) +
M

∑
m=1

H

∑
h=1

µmEπ⋆,m,Pm [ιmg,h] .

Under Assumption 2, since µm is not well-bounded (when
CMDP is not strictly feasible), a positive dual regularization
ξ is needed to guarantee αH2+ηξ2−ξ ≤ 0 and the knowledge
of the local variation budgets of the constraint BP,E ,Bg,E
are needed to guarantee that ιmg,h is non-positive. On the other
hand, under Assumption 3, µm is bounded by 2H

γ
and the

dynamic regret can be well-controlled without any additional
requirement on ξ and ιmg,h.

Constraint Violation
The techniques used for our analyses under Assumptions 2
and 3 are different. We first consider Assumption 2. If we set
ξη ≤ 1

2
and χ =∞ in Algorithm 1, then from the convexity

of the Lagrangian function with respect to the dual variable,
we have

M

∑
m=1
(µ − µm) (bm − V m

g,1) − (
ξM

2
+ 1

2η
)µ2 ≤ ηH2M

for every µ ≥ 0. By combining the above inequality with the
inequality (11) and using the fact that ∣V π⋆,m,m

r,1 − V πm,m
r,1 ∣ ≤

H , it holds that

µ
M

∑
m=1
(bm − V πm,m

g,1 ) − (ξM
2
+ 1

2η
)µ2 ≤ δ2,

where δ2 is irrelated to µ. Then, by maximizing both sides of
the above inequality over µ ≥ 0, we can obtain the constraint
violation under Assumption 2. On the other hand, the analysis
of the constraint violation under Assumption 3 relies on the
extension of (Beck 2017, Proposition 3.60) or (Ding et al.
2021, Lemma 10). In particular, it shows that if there exist δ3
and C̄⋆ ≥ 2maxm∈[M] µ

⋆,m such that

M

∑
m=1

V π⋆,m,m
r,1 − V πm,m

r,1 + C̄⋆
M

∑
m=1
(bm − V πm,m

g,1 ) ≤ δ3,

then the constraint violation can be bounded by
∑M

m=1 (bm − V πm,m
g,1 ) ≤ 2δ3

C̄⋆
.

Conclusion
In this paper, we formulate a general non-stationary safe RL
problem as a non-stationary episodic CMDP. To solve this
problem, we identify two alternative conditions on the time-
varying constraints under which we can guarantee the safety
in the long run. We also develop a new algorithm named
PROPD-PPO, which consists of three main mechanisms:
periodic-restart-based policy improvement, dual update with
dual regularization, and periodic-restart-based optimistic pol-
icy evaluation. We establish the dynamic regret bound and
a constraint violation bounds for the proposed algorithm in
both the linear kernel CMDP function approximation set-
ting and the tabular CMDP setting under two alternative
assumptions. This paper provides the first provably efficient
algorithm for non-stationary CMDPs with safe exploration.
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