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Abstract
Graph Contrastive Learning (GCL) has recently drawn much
research interest for learning generalizable node representa-
tions in a self-supervised manner. In general, the contrastive
learning process in GCL is performed on top of the represen-
tations learned by a graph neural network (GNN) backbone,
which transforms and propagates the node contextual informa-
tion based on its local neighborhoods. However, nodes sharing
similar characteristics may not always be closely connected,
which poses a great challenge for unsupervised GCL efforts
due to their inherent limitations in capturing such global graph
knowledge. In this work, we address their inherent limitations
by proposing a simple yet effective framework – Simple Neural
Networks with Structural and Semantic Contrastive Learning
(S3-CL). Notably, by virtue of the proposed structural and
semantic contrastive learning algorithms, even a simple neural
network can learn expressive node representations that pre-
serve valuable global structural and semantic patterns. Our
experiments demonstrate that the node representations learned
by S3-CL achieve superior performance on different down-
stream tasks compared with the state-of-the-art unsupervised
GCL methods. Implementation and more experimental details
are publicly available at https://github.com/kaize0409/S-3-CL.

1 Introduction
Learning expressive node representations of graph-structured
data plays an essential role in a variety of real-world ap-
plications, ranging from social network analysis (Kipf and
Welling 2017), to drug discovery (Fout et al. 2017), to fi-
nancial fraud detection (Ding et al. 2019). Recently, graph
neural networks (GNNs), which generally follow a recur-
sive message-passing scheme, have emerged as powerful
architectures in graph machine learning (Kipf and Welling
2017; Veličković et al. 2018; Hamilton, Ying, and Leskovec
2017; Wu et al. 2019; Ding et al. 2020; Wang et al. 2020).
Though GNNs are empirically effective in handling super-
vised or semi-supervised graph machine learning tasks, the
labor-intensive and resource-expensive data labeling cost is
meanwhile unbearable (Ding et al. 2022b; Zhang et al. 2022;
Ding et al. 2022c). To relieve the burdensome reliance on
human-annotated labels, unsupervised (self-supervised) node
representation learning with GNNs has drawn much research
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attention lately (Kipf and Welling 2016; Veličković et al.
2019; You et al. 2020).

More recently, contrastive learning (He et al. 2020; Chen
et al. 2020b) has been actively explored to advance the perfor-
mance of GNNs in graph self-supervised learning (Veličković
et al. 2019; You et al. 2020; Hassani and Khasahmadi 2020;
Qiu et al. 2020; Zhu et al. 2020b). In general, graph con-
trastive learning (GCL) methods learn representations by
creating two augmented views of each graph element and
maximizing the agreement between the encoded represen-
tations of the two augmented views. Correspondingly, the
relevant view pairs (positive) will be pulled together, and the
irrelevant view pairs (negative) will be pushed away in the la-
tent space. With only non-semantic labels, unsupervised GCL
can provide generalizable node representations for various
downstream tasks (You et al. 2020; Hassani and Khasahmadi
2020; Du et al. 2021), becoming a prevailing paradigm in
unsupervised node representation learning.

Despite the success, the research of unsupervised GCL
is still in its infancy – most of the existing GCL methods
learn node representations based on the information from
the local neighborhoods due to the shallow property of con-
ventional GNNs. While for real-world graphs, nodes sharing
similar characteristics may not always be closely connected,
requiring the learning algorithm to retain such “global” aware-
ness. However, it is a non-trivial task for the existing GCL
methods built on top of shallow GNNs since they have in-
herent limitations in capturing either structural global knowl-
edge or semantic global knowledge. Specifically: (i) from
the structural perspective, long-range node interactions are
highly desired for capturing structural global knowledge, es-
pecially for many downstream tasks that have large problem
radii (Alon and Yahav 2021). To this end, a straightforward
way is to employ a deeper GNN encoder to encode the aug-
mented graphs. However, directly stacking multiple GNN
layers will not only lead to information distortion caused by
the oversmoothing issue (Chen et al. 2020a), but also intro-
duce additional training parameters that hamper the model
training efficiency; and (ii) from the semantic perspective,
existing unsupervised GCL methods predominately focus on
instance-level contrast that leads to a latent space where all
nodes are well-separated and each node is locally smooth (Li
et al. 2021) (i.e., input with different augmentations have sim-
ilar representations), while the underlying semantic structure
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(i.e., intra-cluster compactness and inter-cluster separability)
of the input graph is largely ignored (Li et al. 2021). The lack
of prior knowledge of ground-truth labels (e.g., cluster/class
numbers) leaves a significant gap for unsupervised GCL to
consolidate the semantic structure from a global view in the
latent space. Yet, how to bridge this gap remains unattended.

In this paper, we address the aforementioned limitations by
proposing a simple yet effective GCL framework, namely, S3-
CL (Simple Neural Networks with Structural and Semantic
Contrastive Learning). The proposed two new contrastive
learning algorithms enable the framework to outperform other
GCL counterparts with a much simpler and parameter-less
encoding backbone, such as an MLP or even a one-layer neu-
ral network. To capture long-range node interactions without
oversmoothing, the structural contrastive learning algorithm
first generates multiple augmented views of the input graph
based on different feature propagation scales (i.e., multi-scale
feature propagation). Then by performing contrastive learn-
ing on the node representations learned from the local and
multiple high-order views, the encoder network can improve
node-wise discrimination by exploiting the consistency be-
tween the local and global structure information of each node.
In the meantime, the semantic contrastive learning algorithm
further enhances intra-cluster compactness and inter-cluster
separability to better consolidate the semantic structure from
a global view. Specifically, it infers the clusters among nodes
and their corresponding prototypes by a new Bayesian non-
parametric algorithm and then performs semantic contrastive
learning to enforce those nodes that are semantically simi-
lar to cluster around their corresponding cluster prototypes
in the latent space. By jointly optimizing the structural and
semantic contrastive losses, the pre-trained encoder network
can learn highly expressive node representations for various
downstream tasks without using any human-annotated labels.
We summarize our contributions as follows:
• We develop a new GCL framework S3-CL, which can learn

expressive node representations in a self-supervised fashion
by using a simple and parameter-less encoding backbone.

• We propose structural and semantic contrastive learning
algorithms, which can be used for explicitly capturing the
global structural and semantic patterns of the input graph.

• We conduct extensive experiments to show that our ap-
proach significantly outperforms the state-of-the-art GCL
counterparts on various downstream tasks.

2 Preliminaries
We start by introducing the notations used throughout the
paper. An attributed graph with N nodes can be formally
represented by G = (V, E ,X), where V = {v1, v2, . . . , vN}
and E ⊆ V × V denote the set of nodes and edges respec-
tively. Let A ∈ {0, 1}N×N be the adjacency matrix of graph
G. Aij = 1 if and only if (vi, vj) ∈ E . Ã stands for the adja-
cency matrix for a graph with added self-loops I. We let D
and D̃ denote the diagonal degree matrix of A and Ã respec-
tively. xi is the i-th row of the attribute matrix X ∈ RN×D,
which denotes the feature of node vi. Hence, an attributed
graph can also be described as G = (X,A) for simplicity.
Graph Contrastive Learning. In general, graph contrastive

learning aims to pre-train a graph encoder that can maximize
the node-wise agreement between two augmented views of
the same graph element in the latent space via a contrastive
loss. Generally, given an attributed graph G = (X,A), two
different augmented views of the graph, denoted as G(1) =
(X(1),A(1)) and G(2) = (X(2),A(2)), are generated through
the data augmentation function(s). The node representations
on G1 and G(2) are denoted as H(1) = fθ(X

(1),A(1)) and
H(2) = fθ(X

(2),A(2)), where fθ(·) is an encoder network.
The agreement between the node representations is com-
monly measured through Mutual Information (MI). Thus, the
contrastive objective can be generally formulated as:

max
θ

N∑
i=1

MI(h(1)
i ,h

(2)
i ). (1)

Following this formulation, Deep Graph Infomax
(DGI) (Veličković et al. 2019) is the first method that con-
trasts the patch representations with high-level graph rep-
resentations by maximizing their mutual information. MV-
GRL (Hassani and Khasahmadi 2020) adopts graph diffusion
to generate an augmented view, and contrast representations
of first-order neighbors with a graph diffusion. GCC (Qiu
et al. 2020) and GRACE (Zhu et al. 2020a) create the aug-
mented views by sampling subgraphs. MERIT (Jin et al.
2021) adopts a siamese self-distillation network and per-
forms contrastive learning across views and networks at the
same time. Nonetheless, existing unsupervised GCL meth-
ods only focus on short-range node interactions and are also
ineffective in capturing the semantic structure of graphs.

3 Methodology
In this paper, we propose a novel graph contrastive learning
framework S3-CL for unsupervised/self-supervised node rep-
resentation learning. The overall framework is illustrated in
Figure 1. Our proposed framework consists of three main
components: (i) a simple (e.g., 1-layer) encoder network;
(ii) a structural contrastive learning algorithm; and (iii) a
semantic contrastive learning algorithm.

3.1 Structural Contrastive Learning
Existing GCL methods for unsupervised node representation
learning aim to achieve node-wise discrimination by max-
imizing the agreement between the representations of the
same graph element in different augmented views. Despite
their success, they commonly ignore the global structure
knowledge due to the limitations of either the adopted data
augmentation function or the GNN encoder. In this work,
we propose the structural contrastive learning algorithm,
which enables a simple neural network to capture both local
and global structural knowledge by performing contrastive
learning on multi-scale augmented graph views.
Multi-scale Feature Propagation. In order to capture long-
range node interactions without suffering the oversmoothing
issue, in our structural contrastive learning algorithm, we
propose to adopt multi-scale feature propagation to augment
the input graph from the structural perspective. Compared to
arbitrarily modifying the graph structure such as perturbing
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Figure 1: Illustration of the overall framework S3-CL for self-supervised node representation learning.

edges or nodes, feature propagation not only allows incor-
porating long-range node interactions but also mitigates the
noises in the original graph (Ding et al. 2022b). Unlike exist-
ing GCL algorithms that perform only two augmentations for
each instance, we perform feature propagation with different
scales to generate L augmented feature matrices {X̄(l)}Ll=1,
each of which encodes the l-hop node interactions in the
graph. Then each augmented feature matrix X̄(l) can be en-
coded by a encoder network fθ(·) and the corresponding
node representations can be computed by:

H(l) = fθ(X̄
(l)) = ReLU(X̄(l)Θ), X̄(l) = TlX, (2)

where T ∈ RN×N is a generalized transition matrix and we
take T = Ãsym = D̃−1/2ÃD̃−1/2 in this work. H(1) is
learned from a local view as the message-passing is only en-
abled between direct neighbors, while {H(l)}Ll=2 are learned
from a set of high-order views that encode the long-range
node interactions at different scales.

It is noteworthy that our model inherently separates the fea-
ture propagation step, i.e., X̄(l) = TlX, and transformation
step, i.e., fθ(X̄(l)) into the data augmentation and represen-
tation learning modules, respectively. Compared to standard
GNNs that couple the two steps together in each layer, this de-
coupling strategy allows the model to perform the high-order
feature propagation without conducting non-linear transfor-
mations, reducing the risk of over-smoothing (Feng et al.
2020; Ding et al. 2022a) in contrastive learning. In the mean-
time, we can use a much simpler encoding backbone to trans-
form the augmented features to node representations without
stacking multiple GNN layers.
Structural Contrastive Objective. In our structural con-
trastive learning, we aim to maximize the agreement between
the representations of each node learned from the local view
and its different high-order views by maximizing their mutual
information. Instead of directly contrasting the output of the
encoder network, we follow previous research in contrastive
learning (Chen et al. 2020b) and apply a projection head

gψ(·) to the node representations computed by the encoder
network. As such, the representations we contrast in our
structural contrastive learning can be denoted by {U(l)}Ll=1,
where U(l) = gψ(H

(l)), and gψ(·) is a two-layer MLP in
our implementation.

In our work, we adopt InfoNCE (Oord, Li, and Vinyals
2018) to estimate the lower bound of the mutual information
between the node representations learned from a local view
U(1) and different high-order views {U(l)}Ll=2 of the input
graph. The loss function of structural contrastive learning can
be defined as:

Lstr = −
N∑
i=1

L∑
l=2

log
exp(u

(1)
i · u(l)

i /τ1)∑M+L−1
j=1 exp(u

(1)
i · u(l)

j /τ1)
, (3)

where τ1 is the temperature parameter. Note that
{u(l)

j }M+L−1
j=1 contains L−1 positive examples and M nega-

tive examples sampled from augmented views of other nodes.
By performing the proposed structural contrastive learning

based on multi-scale augmentations of the input graph, the en-
coder network fθ(·) not only encourages accurate node-wise
discrimination but also captures multi-scale global structural
knowledge during the learning process. The resulted node
representations H can be computed by feeding the mixed-
order propagated features X̄ to the encoder network as:

H = fθ(X̄) = ReLU(X̄Θ), X̄ =
1

L

L∑
l=0

TlX. (4)

This enables the learned node representations to preserve
both local and global structure information compared with
directly using TLX (Xu et al. 2018; Feng et al. 2020).

3.2 Semantic Contrastive Learning
Despite the structural contrastive learning algorithm can pro-
vide better node-wise discrimination by exploiting the global
structural knowledge based on the multi-scale propagated
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features, it has the same limitation as existing GCL efforts –
cannot explicitly encode the semantic structure of the input
graph. To further capture the semantic global knowledge,
we propose a semantic contrastive learning algorithm that
encourages the intra-cluster compactness and inter-cluster
separability in the semantic latent space.

Since the prior knowledge of node clusters is unknown,
we propose to iteratively infer the clusters among nodes and
the corresponding prototypes based on the learned node rep-
resentations, and perform semantic contrastive learning to
promote those nodes that are semantically similar clustering
around their corresponding cluster prototypes.

We denote the cluster prototype representation via a matrix
C ∈ RK×D′

, where K is the number of prototypes inferred
from the data. We use ck to denote the k-th row of C, which
is the representation of the k-th prototype in the latent space.
The prototype assignments or pseudo labels of nodes are de-
noted by Z = {zi}ni=1, where zi ∈ {1, ...,K} is the pseudo
label of node vi.
Bayesian Non-parametric Prototype Inference. A key
function of our semantic contrastive learning algorithm is
to infer highly representative cluster prototypes. However,
the optimal number of clusters is unknown under the setting
of unsupervised node representation learning. To bridge the
gap, we propose a Bayesian non-parametric prototype infer-
ence algorithm to approximate the optimal number of clusters
and simultaneously compute the cluster prototypes. Specifi-
cally, we build a Dirichlet Process Mixture Model (DPMM)
and assume the distribution of node representations is a mix-
ture of Gaussians, in which each component is used to model
the prototype of a cluster. Note that the components share
the same fixed covariance matrix σI. The DPMM model is
defined as:

G ∼ DP(G0, α), ϕi ∼ G, hi ∼ N (ϕi, σI), (5)
where G is a Gaussian distribution drawn from the Dirichlet
process DP(G0, α), and α is the concentration parameter for
DP(G0, α). ϕi is the mean of the Gaussian sampled for node
representation hi. G0 is the prior over means of the Gaussians.
We take G0 to be a zero-mean Gaussian N (0, ρI), where ρI
is the covariance matrix.

Next, we use a collapsed Gibbs sampler (Resnik and
Hardisty 2010) to infer the Gaussian components. The Gibbs
sampler iteratively samples pseudo labels for the nodes given
the means of the Gaussian components and samples the
means of the Gaussian components given the pseudo labels of
the nodes. Following (Kulis and Jordan 2011), such a process
is almost equivalent to K-Means when the variance of the
Gaussian components σ → 0. The almost zero variance elim-
inates the need to estimate the variance σ, thus making the
inference efficient. Let K̃ denote the number of inferred pro-
totypes at the current iteration step, the prototype assignment
update can be formulated as:

zi = argmin
k

{dik} ,

dik =

{
||hi − ck||2 for k = 1, ..., K̃

ξ for k = K̃ + 1,

(6)

where dik is the distance to determine the pseudo labels
of node representation hi. ξ is the margin to initialize a

new prototype. With the formulation in Equation (6), a node
will be assigned to the prototype modeled by the Gaussian
component corresponding to the closest mean of Gaussian,
unless the squared Euclidean distance to the closest mean
is greater than ξ. In this case, we initialize a new prototype
with such node representation. After obtaining the pseudo
labels, the cluster prototype representations can be computed
by: ck =

∑
zi=k hi/

∑
zi=k 1, for k = 1, ..., K̃.

Note that we iteratively update prototype assignments and
prototype representations till convergence, and we set the
number of prototypes K to be the number of inferred proto-
types K̃. Afterward, we refine the cluster prototypes using
label propagation, and the algorithm details can be found in
the Appendix of our extended version1 due to the space limit.
Semantic Contrastive Objective. After obtaining the pro-
totype assignments Z and prototype representations C, our
semantic contrastive objective aims to consolidate the seman-
tic structure (i.e., intra-cluster compactness and inter-cluster
separability) of the learned node representation H by updat-
ing the encoder parameter θ. To this end, we maximize the
likelihood of each node in the graph given θ and C:

Q(θ) =
N∑

n=1

log p(hi|θ,C)

=

N∑
n=1

log

K∑
k=1

p(hi, k|θ,C),

(7)

where p is the probability density function. Directly opti-
mizing log-likelihood Q(θ) is intractable as the labels of
nodes are unknown. Instead, we optimize the variational
lower bound of Q(θ), given by:

Q(θ) ≥
N∑
i=1

K∑
k=1

p(k|hi) log
p(hi, k|θ,C)

p(k|hi)

=
N∑
i=1

K∑
k=1

p(k|hi) log p(hi, k|θ,C)

−
N∑
i=1

K∑
k=1

p(k|hi) log p(k|hi).

(8)

Note that we can drop the second term of the right-hand side
of Equation (8) as it is a constant. To maximize the remaining
part, we can estimate p(k|hi) by p(k|hi,θ,C) = 1{k=zi},
as we assign hi to cluster zi given C in our DPMM model.
Thus, we can maximize Q(θ) by minimizing the following
loss function:

Lsem = −
N∑
i=1

log p(hi, zi|θ,C). (9)

Under the assumption of a uniform prior distribu-
tion of node representation, we have p(hi, zi|θ,C) ∝
p(zi|hi,θ,C). Since the distribution of node representa-
tion around each prototype generated by the DPMM is
an isotropic Gaussian, we can estimate p(k|hi,θ,C) by

1https://arxiv.org/abs/2202.08480
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exp(||hi − czi ||2/σ2)/
∑K

i=1 exp(||hi − ck||2/σ2). After
applying ℓ2 normalization on the representation of nodes and
prototypes, we can estimate p(zi|hi,θ,C) by:

p(zi|hi,θ,C) =
exp(hi · czi/τ2)∑K
k=1 exp(hi · ck/τ2)

, (10)

where czi is the representations of zi-th prototype. The tem-
perature parameter τ2 ∝ σ2 is related to the concentration
of node representation around each prototype, and σ is the
variance of the Gaussians in the DPMM model defined by
Equation (5). For the simplicity of training, we directly take
τ2 as a hyperparameter. Taking Equation (10) into Equa-
tion (9), we can maximize Q(θ) by minimizing the following
loss function:

Lsem = −
N∑
i=1

log
exp(hi · czi/τ2)∑K
k=1 exp(hi · ck/τ2)

. (11)

3.3 Model Learning
Given the proposed S3-CL learning framework, our goal is to
learn expressive node representations that preserve both valu-
able structural and semantic knowledge without any semantic
labels. In this section, we will introduce the overall loss func-
tion, and also the optimization of the proposed framework
with regard to the network parameters, prototype assignments,
and prototype representations.
Overall Loss. To train our model in an end-to-end fashion
and learn the encoder fθ(·), we jointly optimize both the
structural and semantic contrastive learning losses. The over-
all objective function is defined as:

L = γLstr + (1− γ)Lsem, (12)

where we aim to minimize L during training, and γ is a
balancing parameter to control the contribution of each con-
trastive learning loss. For the sake of the stability of the train-
ing of the encoder, we apply our Bayesian non-parametric
prototype inference algorithm on the node representations
computed by a momentum encoder (He et al. 2020).

Notably, in semantic contrastive learning, the computed
pseudo labels Z can be utilized in the negative example
sampling process in our structural contrastive learning to
avoid sampling bias issues (Chuang et al. 2020). We select
negative samples in Equation (3) for each node from nodes
assigned to different prototypes.
Model Optimization via EM. Specifically, we adopt EM
algorithm to alternately estimate the posterior distribution
p(zi|xi,θ,C) and optimize the network parameters θ. We
describe the details for the E-step and M-step applied in our
methods as follows:
• E-step. In this step, we fix the network parameter θ, and

estimate the prototypes C and the prototype assignment
Z with our proposed Bayesian non-parametric prototype
inference algorithm.

• M-step. Given the posterior distribution computed by the E-
step, we aim to maximize the expectation of log-likelihood
Q(θ), by directly optimizing the semantic contrastive loss
function Lsem. In order to perform structural and semantic
contrastive learning at the same time, we instead optimize
a joint overall loss function as formulated in Equation (12).

Algorithm 1: The learning algorithm of S3-CL.
Input: Attribute matrix X; adjacency matrix A;

propagation step L
Output: Pretrained encoder network fθ(·)

1 Initialize encoder parameter θ and θ′

2 while not converge do
3 Compute node representations of different augmented

views {H(l)}Ll=1 and {U(l)}Ll=1

4 Compute the prototype representations C and prototype
assignments Z ▷ E-step Update

5 Calculate loss Lstr and Lsem by Equation (3) and
Equation (11), respectively

6 L = γLstr + (1− γ)Lsem

7 Update θ by minimizing L ▷ M-step Update
8 Update momentum encoder θ′

9 return the encoder network fθ(·)

Algorithm 1 outlines the learning process of the proposed
framework. After the self-supervised pre-training is done, the
pre-trained encoder can be directly used to generate node
representations for various downstream tasks.

4 Experiments
4.1 Experimental Settings
Evaluation Datasets. In our experiments, we evaluate S3-
CL on six public benchmark datasets that are widely used
for node representation learning, including Cora (Sen et al.
2008), Citeseer (Sen et al. 2008), Pubmed (Namata et al.
2012), Amazon-P (Shchur et al. 2018), Coauthor CS (Shchur
et al. 2018) and ogbn-arxiv (Hu et al. 2020). Cora, Citeseer,
and Pubmed are the three most widely used citation networks.
Amazon-P is a co-purchase graph and Coauthor CS is a co-
authorship graph. The ogbn-arxiv is a large-scale citation
graph benchmark dataset.
Compared Methods. To demonstrate the effectiveness of our
proposed method, six state-of-the-art graph self-supervised
learning methods are compared in our experiments, including
DGI (Veličković et al. 2019), MVGRL (Hassani and Khasah-
madi 2020), GMI (Peng et al. 2020), GRACE (Zhu et al.
2020a), MERIT (Jin et al. 2021), and SUGRL (Mo et al.
2022). As we consider node classification as our downstream
task, we also include five representative supervised node clas-
sification methods, namely MLP (Veličković et al. 2019),
LP (Zhu, Ghahramani, and Lafferty 2003), GCN (Kipf and
Welling 2017), GAT (Veličković et al. 2018), and SGC (Wu
et al. 2019), as baselines for the evaluation on the node clas-
sification task. To evaluate the model performance for node
clustering, we compare S3-CL against methods including K-
Means (Lloyd 1982), GAE (Kipf and Welling 2016), adversar-
ially regularized GAE (ARGA) and VGAE (ARVGA) (Pan
et al. 2018), GALA (Park et al. 2019), DGI, DBGAN (Zheng
et al. 2020), MVGRL, MERIT, and SUGRL.

4.2 Evaluation Results
Node Classification. To evaluate the trained encoder net-
work, we adopt a linear evaluation protocol by training a
separate logistic regression classifier on top of the learned
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Methods Cora Citeseer Pubmed Amazon-P Coauthor CS ogbn-arxiv
SUPERVISED

MLP 55.2± 0.4 46.5± 0.5 71.4± 0.3 78.5± 0.2 76.5± 0.3 55.5± 0.2
LP (Zhu, Ghahramani, and Lafferty 2003) 68.0± 0.5 45.3± 0.6 63.0± 0.3 75.4± 0.0 74.3± 0.0 68.3± 0.0
GCN (Kipf and Welling 2017) 81.7± 0.4 70.5± 0.3 79.4± 0.4 87.3± 1.0 91.8± 0.1 71.7± 0.3
GAT (Veličković et al. 2018) 83.0± 0.7 72.5± 0.7 79.0± 0.3 86.2± 1.5 90.5± 0.7 73.2 ± 0.2
SGC (Wu et al. 2019) 81.5± 0.2 73.1± 0.1 79.7± 0.4 88.3± 1.1 91.5± 0.3 69.8± 0.2

SELF-SUPERVISED + FINE-TUNING
DGI (Veličković et al. 2019) 81.7± 0.6 71.5± 0.7 77.3± 0.6 83.1± 0.3 90.0± 0.3 67.1± 0.4
GMI (Peng et al. 2020) 82.7± 0.2 73.0± 0.3 80.1± 0.2 85.1± 0.0 91.0± 0.0 69.6± 0.3
MVGRL (Hassani and Khasahmadi 2020) 82.9± 0.7 72.6± 0.7 79.4± 0.3 87.3± 0.1 91.3± 0.1 71.3± 0.2
GRACE (Zhu et al. 2020a) 80.0± 0.4 71.7± 0.6 79.5± 1.1 81.8± 0.8 90.1± 0.8 71.1± 0.2
MERIT (Jin et al. 2021) 83.1± 0.6 74.0± 0.7 80.1± 0.4 88.8± 0.4 92.4± 0.4 71.7± 0.1
SUGRL (Mo et al. 2022) 83.4± 0.5 73.0± 0.5 81.9 ± 0.5 88.5± 0.2 92.2± 0.5 69.3± 0.2
S3-CL (ours) 84.5 ± 0.4 74.6 ± 0.4 80.8± 0.3 89.0 ± 0.5 93.1 ± 0.4 72.8± 0.3

Table 1: Node classification performance comparison on benchmark datasets.

Methods Cora Citeseer Pubmed
ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-Means 49.2 32.1 22.9 54.0 30.5 27.8 59.5 31.5 28.1
GAE (Kipf and Welling 2016) 59.6 42.9 34.7 40.8 17.6 12.4 67.2 27.7 27.9
ARGA (Pan et al. 2018) 64.0 44.9 35.2 57.3 35.0 34.1 66.8 30.5 29.5
ARVGA (Pan et al. 2018) 64.0 45.0 37.4 54.4 26.1 24.5 69.0 29.0 30.6
GALA (Park et al. 2019) 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.7 32.1
DGI (Veličković et al. 2019) 55.4 41.1 32.7 51.4 31.5 32.6 58.9 27.7 31.5
DBGAN (Zheng et al. 2020) 74.8 56.0 54.0 67.0 40.7 41.4 69.4 32.4 32.7
MVGRL (Hassani and Khasahmadi 2020) 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3
MERIT (Jin et al. 2021) 73.6 57.1 52.8 68.9 43.9 44.1 69.5 34.7 32.8
SUGRL (Mo et al. 2022) 73.9 58.5 53.0 70.5 45.8 47.0 69.5 35.0 33.4
S3-CL (ours) 75.1 60.7 56.6 71.2 46.3 48.5 71.3 36.0 34.7

Table 2: Node clustering performance comparison on benchmark datasets.

node representations. We follow the evaluation protocols in
previous works (Veličković et al. 2019; Hu et al. 2020) for
node classification. The mean classification accuracy with
standard deviation on the test nodes after 10 runs of training is
reported. To avoid the out-of-memory issue when evaluating
MVGRL, GRACE, and MERIT on the ogbn-arxiv dataset,
we subsample 512 nodes as negative samples for each node
during the self-supervised learning phase.

The node classification results of different methods are
reported in Table 1. We can clearly see that S3-CL outper-
forms the state-of-the-art self-supervised node representation
learning methods across the five public benchmarks. Such
superiority mainly stems from two factors: (i) our approach
S3-CL grants each node access to information of nodes in
a larger neighborhood; (ii) S3-CL infers the semantic infor-
mation of nodes, and enforces intra-cluster compactness and
inter-cluster separability on the node representation. With the
help of this extra information, node representations generated
by S3-CL are more informative and distinctive. Without ac-
cess to labels, S3-CL even outperforms supervised methods
like SGC and GAT.
Node Clustering. To evaluate the quality of the node repre-
sentations learned by different methods, we conduct exper-
iments on node clustering. We follow the same evaluation
protocol as in (Hassani and Khasahmadi 2020). K-Means is
applied on the learned node representation to get clustering

results. We use accuracy (ACC), normalized mutual informa-
tion (NMI), and adjusted rand index (ARI) to measure the
performance of clustering. We report the averaged clustering
results over 10 times of execution.

The clustering results are displayed in Table 2. It is ob-
served that our approach achieves remarkable performance
gain over compared methods. For example, the NMI on Cora
is improved by 2.2% against the previous SOTA method
SUGRL. Such improvement greatly attributes to the fact that
S3-CL explores the semantic information of nodes instead
of enforcing node-wise discrimination alone as other GCL
methods. Thus, the node representation learned by S3-CL
works well for clustering algorithms.
Node Classification with Few Labels. We further evaluate
the impact of label rate on the downstream node classification
task. Specifically, we evaluate all self-supervised learning
methods from Table 1 under different low-resource settings.
The results in Figure 2 show that our proposed framework
S3-CL can still outperform existing methods given a lower
label rate. It validates that the node representations learned
by our approach S3-CL can encode valuable structural and
semantic knowledge from the input graph. As a result, the
node representations can be effectively used for the node
classification task even with an extremely small label ratio.
Effect of Feature Propagation. Next, we investigate the
effect of multi-scale feature propagation in the structural
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Figure 2: Node classification results with limited training labels.
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Figure 3: Node clustering results of GCL methods with various propagation steps (L).

contrastive learning by altering the propagation steps L. A
larger L allows message-passing within a larger neighbor-
hood for learning the node representations. To demonstrate
the power of our approach in utilizing structural global knowl-
edge, we compare S3-CL against GRACE, MVGRL, MERIT,
and SUGRL with different numbers of layers L. The node
clustering accuracy of different methods is shown in Figure 3.
By increasing the propagation steps (number of layers), we
can clearly observe that existing unsupervised GCL methods
severely degrade due to the oversmoothing issue. In contrast,
S3-CL consistently achieves improved performance by mak-
ing use of information in a larger neighborhood for node
representation learning.
Ablation Study. To validate the effectiveness of the structural
contrastive learning and semantic contrastive learning in S3-
CL, we conduct an ablation study on Citesser, Cora, and
Pubmed with two variants of S3-CL, each of which has one
of the contrastive learning components removed. The node
classification results are shown in Table 3. We can observe
that the performance of S3-CL degrades when any of the
components are removed. Our S3-CL using all components
achieves the best performance as the structural and semantic
contrastive components complement each other. Hence, the
effectiveness of each component is verified.

Method Citeseer Cora Pubmed

w/o structural 73.1±0.2 83.3±0.3 80.0± 0.3
w/o semantic 71.9±0.4 82.2±0.5 79.3± 0.2
S3-CL 74.6±0.4 84.5±0.4 80.8±0.3

Table 3: Ablation study on contrastive components.

Representation Visualization. To visually show the superior
quality of the node representations learned by S3-CL, we use

t-SNE to visualize and compare the learned node represen-
tations between S3-CL and the best-performing baseline on
Citeseer, i.e., SUGRL. The visualization results are shown in
Figure 4, where each dot represents the representation of a
node, and the color of the dot denotes its ground-truth label.
From the figure, we can observe that though some classes can
be identified by SUGRL, the boundaries between different
classes are unclear. Our proposed model is able to enforce
better intra-cluster compactness and inter-cluster separability.

(a) SUGRL (b) S3-CL

Figure 4: Representation visualization on the Citeseer dataset.

5 Conclusion
In this paper, we propose a new GCL framework named S3-
CL, which can effectively capture the global knowledge from
both structural and semantic perspectives for unsupervised
node representation learning. By jointly optimizing the struc-
tural and semantic contrastive learning losses, we can build
the encoder network with simple neural networks to learn
expressive node representations for different downstream
tasks without using any human-annotated labels. We conduct
extensive experiments and demonstrate that S3-CL can out-
perform the state-of-the-art unsupervised GCL counterparts
on multiple benchmark graph datasets.
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Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2019. Deep Graph Infomax. In ICLR.
Wang, J.; Ding, K.; Hong, L.; Liu, H.; and Caverlee, J. 2020.
Next-item recommendation with sequential hypergraphs. In
SIGIR.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying graph convolutional networks.
In ICML.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs with
jumping knowledge networks. In ICML.

7385



You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph contrastive learning with augmentations. In
NeurIPS.
Zhang, C.; Ding, K.; Li, J.; Zhang, X.; Ye, Y.; Chawla, N. V.;
and Liu, H. 2022. Few-Shot Learning on Graphs: A Survey.
In IJCAI.
Zheng, S.; Zhu, Z.; Zhang, X.; Liu, Z.; Cheng, J.; and Zhao,
Y. 2020. Distribution-induced bidirectional generative adver-
sarial network for graph representation learning. In CVPR.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic func-
tions. In ICML.
Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; and Wang, L. 2020a.
Deep Graph Contrastive Representation Learning. In ICML
Workshop.
Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; and Wang, L. 2020b.
Graph Contrastive Learning with Adaptive Augmentation. In
TheWebConf.

7386


