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Abstract

With the increasing use of deep neural networks (DNN) in
time series classification (TSC), recent work reveals the threat
of adversarial attack, where the adversary can construct ad-
versarial examples to cause model mistakes. However, exist-
ing research on the adversarial attack of TSC typically adopts
an unrealistic white-box setting with model details transpar-
ent to the adversary. In this work, we study a more rigor-
ous black-box setting with attack detection applied, which
restricts gradient access and requires the adversarial exam-
ple to be also stealthy. Theoretical analyses reveal that the
key lies in: estimating black-box gradient with diversity and
non-convexity of TSC models resolved, and restricting the
ℓ0 norm of the perturbation to construct adversarial samples.
Towards this end, we propose a new framework named Black-
TreeS, which solves the hard optimization issue for adversar-
ial example construction with two simple yet effective mod-
ules. In particular, we propose a tree search strategy to find
influential positions in a sequence, and independently esti-
mate the black-box gradients for these positions. Extensive
experiments on three real-world TSC datasets and five DNN
based models validate the effectiveness of BlackTreeS, e.g.,
it improves the attack success rate from 19.3% to 27.3%, and
decreases the detection success rate from 90.9% to 6.8% for
LSTM on the UWave dataset.

1 Introduction
Time series classification has become one of the central
themes of modern data mining with the increase in tem-
poral data availability. It aims to classify sequential data
into different categories (Yang and Wu 2006; Esling and
Agon 2012; Gupta et al. 2020), e.g., forecasting the direc-
tion of stock market movement (Zhan et al. 2018) or detect-
ing whether an electronic health record is anomalous (Che
et al. 2017). DNNs such as convolutional neural networks
(CNN) (Cui, Chen, and Chen 2016), recurrent neural net-
works (RNN) (Smirnov and Nguifo 2018) and self-attention
network (Zerveas et al. 2021) shows superior performance
on TSC. This is because DNN can capture complex temporal
patterns with the aid of its deep non-linear structure (Gam-
boa 2017; Wang, Yan, and Oates 2017). However, DNN is
also vulnerable to adversarial attacks (Goodfellow, Shlens,
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and Szegedy 2014). The adversary can construct adversarial
examples by adding small perturbations on a natural exam-
ple, leading to wrong prediction and severe loss (e.g., ap-
proval on risky loan applications and evasion of network
flow anomaly detection) (Cartella et al. 2021).

Existing work on investigating the adversarial attack on
TSC models (Karim, Majumdar, and Darabi 2020) focuses
on the construction of confusing adversarial examples. For
instance, the work (Fawaz et al. 2019) proposes to cre-
ate adversarial examples by the fast gradient sign method
(FGSM). Despite achieving a high attack success rate, ex-
isting researches mainly have two limitations. On one hand,
they typically adopt a white-box setting, which assumes the
leakage of model details, including the model structure and
parameters, to adversaries (Meng et al. 2019). This assump-
tion is unrealistic in TSC applications where adversaries
can only access model prediction (Gupta et al. 2020). On
the other hand, the existing research largely emphasizes the
attack success rate but ignores attack stealthiness, leading
to easily identifiable adversarial examples (Belkhouja and
Doppa 2020). For instance, a simple auto-encoder can filter
out more than 95% adversarial examples (Wang et al. 2020).

In light of these limitations, we investigate a more rigor-
ous black-box setting with two constraints on the construc-
tion of adversarial examples: (1) using only model predic-
tions; and (2) evading the common attack detection. Despite
the success of black-box attacks in other applications (Dong
et al. 2019; Wei, Yan, and Li 2022), e.g., the substitute model
and score-based approaches in image classification (Guo
et al. 2019), they cannot satisfy the two constraints in TSC.
The reasons are twofold: (1) diversity and non-convexity of
TSC models, on one side, the target model can be a CNN,
RNN or self-attention model (Vaswani et al. 2017) with
largely different classification behaviors, making it difficult
to train a substitute model that mimics the behaviors of the
target one. On the other hand, through theoretical and em-
pirical study, we find that the non-convexity of RNN and
self-attention model often makes the score-based black-box
gradient approximation inaccurate. (2) The low-dimensional
data manifold: sequential data typically lies in a low di-
mensional manifold (Rodrigues, Congedo, and Jutten 2018),
making it sensitive to minor feature changes. That is, a very
small perturbation will push the sequence far away from the
natural example manifold (see Fig. 1), resulting in the de-
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tection of adversarial examples. Therefore, it is non-trivial
to keep adversarial examples stealthy.

In this work, we propose a novel framework called Black-
TreeS, which consists of two new modules to tackle the
challenges above, respectively. To construct effective adver-
sarial examples, we devise an independent approximation
module to accurately approximate the black-box gradient
of each input position. The module overcomes the estima-
tion errors of conventional gradient approximation methods
caused by the non-convexity of TSC models. Furthermore,
we theoretically reveal the relation between the ℓ0 norm of
perturbations and the natural example manifold and propose
to minimize the number of manipulated positions in the se-
quence. To deal with the extra complexity brought by the ℓ0
penalty, we propose a tree position search module to fetch
influential positions. Owing to the logarithmic property, the
module well caps the number of model prediction queries,
which is essential in practice1.

Through the experimental results on three real-world ap-
plications and five DNN based classifiers (one self-attention,
two RNN and two CNN models), we validate the effective-
ness and stealthiness of our attack. The BlackTreeS largely
outperforms the existing black-box attack techniques that
are directly applied to TSC w.r.t the attack success rate.
Meanwhile, the stealthiness is also certificated where the
detection success rate is reduced from 100.0% to 6.8% for
RNN-based classifiers in some cases. In summary, the main
contributions of this work are:
• We study a new black-box setting for the attack on TSC

and proposed a new framework BlackTreeS to construct
effective and stealthy adversarial examples.

• We design the independent approximation and tree posi-
tion search modules to precisely estimate black-box gra-
dients and query-efficiently optimize the ℓ0 norm.

• We conduct extensive experiments on three applications
and five DNN models of TSC, validating the effectiveness
and stealthiness of our attack.

2 Technical Background
Time Series Classification. This work focuses on real-
valued time series data due to its wide applications (Yang
and Wu 2006; Esling and Agon 2012; Gupta et al. 2020)
such as recognizing the abnormal network traffic flow
(Hayes and Danezis 2016) and predicting extreme events
in climate data (Ding et al. 2019). Suppose there are N la-
beled sequences D = {X(i), y(i)}Ni=1, where X(i) ∈ RT×M

and y(i) denote the input sequence and label respectively.
At each timestamp t ∈ [1, T ], x(i)

t describes the tempo-
ral feature, the daily climate data. The goal of TSC is to
learn the mapping between the sequence X(i) and its label
y(i), a classifier fθ where θ denotes model parameters. Ow-
ing to the deep and non-linear structure, DNN can recog-
nize the complex temporal pattern embedded in X (Gamboa
2017; Wang, Yan, and Oates 2017). There are three repre-
sentative structures of DNN based TSC models: CNN (Cui,

1Practical TSC services typically adopt rate-limiting and may
also charge by frequency.

Chen, and Chen 2016), RNN (Smirnov and Nguifo 2018)
and self-attention network (Zerveas et al. 2021), which are
all selected as the target models of this work.

Adversarial Attack on TSC Models. The goal of the ad-
versarial attack is to construct an adversarial example from
a natural one that can cause a targeted classification ỹ. As
to perform adversarial attack on TSC (Rathore et al. 2020),
given a natural example X , the target is to optimize a pertur-
bation δ ∈ RT×M , which is typically formulated as:

min
δ

L(θ;X + δ, ỹ), s.t. ∥δ∥∞ ≤ ϵ, (1)

where L(θ;X+δ, ỹ) is the loss function of the classifier, the
cross-entropy loss between fθ(X + δ) and ỹ; ∥δ∥∞ is the
infinity norm of the perturbation, which restricts the max-
imum value of δ to be smaller than a threshold ϵ. Similar
to the optimization of DNN parameters, the key to calculat-
ing the optimal perturbation lies in the gradient of the input
∇XL(θ;X, ỹ). For instance, the FGSM algorithm (Good-
fellow, Shlens, and Szegedy 2014) directly takes the sign of
∇XL(θ;X, ỹ) to create the perturbation, while the PGD al-
gorithm applies an iterative framework (Madry et al. 2017).
Existing researches investigate the adversarial attack on TSC
models under a white-box setting, where the gradient is as-
sumed to be accessible to the adversary.

Black-Box Adversarial Attack. A more realistic black-
box setting has been studied in other tasks such as image
classification (Guo et al. 2019) and video recognition (Wei
et al. 2020), where the adversary only knows the predic-
tion fθ(X). As a real-world example in TSC, the victim
DNN could be an RNN on a lending platform that classi-
fies the transaction history to judge loan application. An at-
tacker could manipulate its recent records to obtain a loan
approval by several queries. Under this setting, the challenge
is the black-box estimation of the gradient ∇XL(θ;X, ỹ).
Two typical approaches of gradient estimation are substitute
model and score-based methods.
• Substitute Model: these approaches mimic the target

model with a local substitute model f̂θ, which is trained
by regarding the prediction fθ(X) as labels. They can use
the substitute model to obtain the approximated gradients
∇XL(θ;X, ỹ), and transfer the created adversarial exam-
ple X̃ to the black-box model (Papernot et al. 2017; Liu
et al. 2016).

• Score-Based Methods: these approaches estimate the
gradient by numerical approximation:

∇XL(θ;X, ỹ) ≈ 1

B

B∑
b=1

[r(X + η(b))− r(X)] · [η(b)]−1,

(2)
where η(b) ∈ RT×M are small perturbations, and the

loss calculation are repeated B times. Different algorithms
generate the perturbation with different strategies. For in-
stance, the NES (Ilyas et al. 2018) samples η(b) by β · η̃,
where η̃ is sampled from Gaussian distribution. The SPSA
samples η̃ from Rademacher distribution (Uesato et al.
2018) and the AutoZOOM samples η̃ from unit Euclidean
sphere (Chen et al. 2017; Tu et al. 2019).
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3 Problem Analysis
3.1 Black-Box Gradient Estimation
For launching an effective adversarial attack, a seemingly
reasonable solution for estimating black-box gradients in
TSC is to directly apply the existing substitute model or
score-based methods. We thus conduct a pilot study on the
UWave dataset (see Sec. 5 for settings), where the perfor-
mance of these methods is unsatisfactory. In particular, the
attack success rate (ASR) of the substitute model is only
2.3%, which means the estimation of gradients is inaccu-
rate. The main reason lies in the diversity of the classifier,
which largely increases the difficulty of mimicking its be-
havior. Score-based methods achieve higher ASR than the
substitute model in most cases. However, their performance
suffers a significant drop when the target model is changed
from CNN (ASR = 100%) to RNN (ASR = 18%) or self-
attention model (ASR = 67%). To construct effective adver-
sarial examples in TSC, we have to first answer the question:
why do current score-based methods fail for RNN and self-
attention models?

To shed light on the root reason for the problem, we focus
on the non-convex optimization based on the black-box gra-
dient estimation. Then we develop the following theorem:
Theorem 1. Suppose the non-convex and Lipschitz continu-
ous function r(x) : RD → R is optimized with the gradients
estimated by Eq. 2, and also suppose the maximal norm of
the gradients is ∥∇xr∥∗. Then we have,

r(x(I))− r(x(0)) ≤
√
6α
8

∑I−1
l=0

(
D+4
2

√
3α
2 ∥∇xr∥∗ − ∥∇r(x(l))∥

)
,

(3)
where x(l) is the variable at l-th iteration, α is the step size,
and I is the number of the iteration.

The detailed proof is provided in Appendix A. As we can
see from the theorem, the upper bound of the optimization
error is mainly determined by two factors: the ∥∇xr∥∗ and
the dimension D. When the r(x) is the adversarial attack
goal given a trained neural network, we could leverage The-
orem 1 to analyze the attack effectiveness of Eq. 2. Specifi-
cally, CNN often has a low ∥∇xr∥∗ since the widely used
convolutional operation and ReLU activation function of-
ten behave in a linear pattern (Virmaux and Scaman 2018).
However, RNN and self-attention models often encounter a
larger ∥∇xr∥∗ due to the numerous non-linear operations
such as the tanh, softmax and the product term between
variables (e.g., x1 · x2) (Erichson et al. 2020), which of-
ten leads to the problem of gradient explosion (Pascanu,
Mikolov, and Bengio 2013; Nguyen and Salazar 2019),

ht = (1− σ(Wz · [ht−1, xt]))⊙ ht−1 (RNN)
ht = Attention(xt; [x1, · · · , xT ]) (Self-attention)

Therefore, the commonly used black-box gradient estima-
tion methods often lead to a larger upper bound when we
leverage them to generate adversarial examples.

3.2 Low-Dimensional Manifold
The second difficulty is that the detection of adversarial ex-
amples is much easier in TSC as compared to other applica-
tions such as image classification. Simple defense strategies,

Figure 1: The demonstration of the natural example mani-
fold. Better viewed in color.

e.g., leveraging the auto-encoder to compute the reconstruc-
tion error and regard sequences with large errors as adver-
sarial examples (Wang et al. 2020), can successfully detect
95% adversarial examples in some TSC tasks. We postulate
the reason is the distinct property of time series data and an-
alyze it based on the data manifold (Dey 2006).

Natural Example Manifold. Given a set of sequences
X ∈ RT×M , and let D = T ×M , the sequences with spe-
cific temporal patterns lie in a natural example manifold Md

with dimension of d, where d ≪ D. This is because the val-
ues that consist of a sequence are not arbitrarily determined,
or it will lead to noise-like data with no semantic meanings.
Instead, they actually live on a d-dimensional subspace. The
successful detection of adversarial examples is that they of-
ten run out of the natural example manifold (Wang et al.
2020). Formally, the percentage of the manifold Md cov-
ered by the space of adversarial examples is proportional
to ( 2π

D−d )
d/2 (Khoury and Hadfield-Menell 2018)2, where

a smaller d leads to less coverage. Given that the dimen-
sion d in TSC is much smaller than other modals of data
such as images or sentences (Rodrigues, Congedo, and Jut-
ten 2018), which commonly possess more semantic infor-
mation (Pless and Souvenir 2009), the adversarial examples
are more likely to be far from the natural example manifold
in this problem. Existing methods propose to leverage the
auto-encoder to learn the natural example manifold, there-
fore the adversarial examples can be easily detected. In a
word, it is essential to restrict adversarial examples within
the natural example manifold to enhance their stealthiness.

4 Our Approach
We propose a framework called Black-box Adversarial
Attack by Tree Search (BlackTreeS) for the effectiveness
and stealthiness of black-box adversarial attack on TSC.

4.1 ℓ0 Normalization
We first consider how to create adversarial examples that lie
on the natural example manifold. Formally, suppose M ⊂
RD is a d-dimensional manifold embedded in RD, X ∈ M
is a sample lie on the manifold and δ is the perturbation
on X . Then the goal is to make the adversarial example
X̃ = X + δ lie on M. To this end, we pay attention to
the tangent space at X , which is the set of vectors along the
manifold starting from X . Suppose the basis of the tangent

2For details of the statement, please refer to Appendix B.
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Figure 2: The tree position search.

space is denoted as vk ∈ RD, k = 1, · · · , d, that is, any
vector in the tangent space could be represented by the lin-
ear combination of basis. To let X̃ lie on the manifold, we
propose to minimize the following objective function,

min
δ

d∑
k=1

∥δ∥2 · cos⟨δ, vk⟩ s.t. ∥δ∥∞ ≤ ϵ. (4)

where the cos⟨δ, vk⟩ represents the angle between δ and vk.
For a detailed analysis of Eq. 4 please refer to Appendix B.
Intuitively, the objective function reveals that, when the an-
gle between δ and the tangent space or the ℓ2-norm of δ is
large, the X + δ will run out of the manifold. This explains
why we often leverage the ℓ2-norm to calculate the recon-
struction error in the auto-encoder (Wang et al. 2020).

Since each sample has a different basis vector vk and the
attack is conducted under the black-box setting, it is diffi-
cult to obtain vk in our problem. To address the issue, one
practical solution is to minimize the ∥δ∥2 during the attack.
As such, the generated adversarial example will be close to
the manifold with a large probability. However, we find that
∥δ∥2 should be extremely small to evade the detector in prac-
tice, e.g., on the UWave dataset, the ∥δ∥2 should be smaller
than 0.08. That means, if we manipulate all positions in the
sequence, the averaged value of the perturbation at each po-
sition will be smaller than 1e−4. In such a condition, the at-
tack effectiveness will largely drop, e.g., the attack success
rate decreases from 48.7% to 18.5% on the UWave dataset
after we add ℓ2 constraints on Eq. 1.

In this work, we propose to minimize the ℓ0-norm of δ to
reduce the ℓ2-norm indirectly, i.e., we only modify a small
part of positions instead of all positions. For instance, if we
only manipulate 1/50 of the positions, the averaged magni-
tude of the perturbations could raise to 0.005, which could
largely increase the attack effectiveness. Since the ∥δ∥∞ and
the ∥δ∥2 are small enough, the detector hardly could recog-
nize the generated adversarial examples in most cases. We
thus formulate the attack goal as,

min
δ

L(θ;X + δ, ỹ) + λ∥δ∥0, s.t. ∥δ∥∞ ≤ ϵ. (5)

4.2 Independent Approximation
In order to better estimate the black-box gradients for non-
convex cases, we should consider the independent approx-
imation, which estimates the gradient for each dimension

of the input independently (Lax and Terrell 2020). The in-
dependent approximation is widely used in non-convex op-
timization, e.g., the automatic differentiation (Abadi et al.
2016). To demonstrate the effectiveness of the independent
approximation, we construct a naive case for better un-
derstanding. Suppose a non-convex objective function r :
R2 → R with the definition f(x) = x1 · x2. Apparently, the
gradient of the function is ∇xr(x) = [x2, x1], while apply-
ing existing joint approximation approaches,

∇xr(x) ≈ lim
η→0

r(x+ η · e)− r(x)

η
· e = (x2 − x1) · e,

(6)

where e = [1,−1] is the vector in R2, which satisfies the
requirement such as the unit sphere in AutoZOOM and the
Rademacher distribution in SPSA. Although increasing the
number of sampled e and η could reduce the estimation bias,
the bias is still larger compared with linear cases. On the
other side, if we set e = [1, 0] for estimating the first dimen-
sion, i.e., the independent approximation, we could obtain
the correct estimation of the gradients in this case. Back to
our problem, we first approximate the partial derivative as
follows, for feature xtm of TSC in X ,

∂L(θ;X, ỹ)

∂xtm
≈ r(X + η · etm)− r(X)

η
, (7)

where etm is an one-hot vector with the only non-zero entry
at index (t,m). As such, we could leverage the independent
approximation to conduct the optimization in Eq. 5. Never-
theless, there still remains two problems:
• It is extremely difficult to optimize the loss mainly be-

cause the ℓ0 penalty could break the chain rule of the
derivation when we estimate the gradients.

• Besides, the independent approximation raises the con-
cern of limited queries, i.e., we need to independently
estimate the gradients for T × M times, which requires
numerous queries and is unaffordable in black-box attack
scenarios (Papernot et al. 2017; Bhagoji et al. 2018).

4.3 Tree Position Search
To address the issue above, we first develop an incremental
strategy that could minimize the attack goal with ℓ0 normal-
ization. That is, at each iteration during the generation of X̃ ,
we perform attacks to K more positions within a sequence.
If the attack is not successful, we further increase K posi-
tions to attack during next iteration. Then the problem left
is how to choose K positions at each iteration to efficiently
perform the attack. A straightforward thought is to estimate
the gradient at each position with the independent approxi-
mation and select those with K-largest gradients. Neverthe-
less, as we have discussed, it will raise the concern of limited
queries. We thus focus on measuring the importance of xtm

in a black-box setting without brute-force search.
Towards this end, we develop a new tree position search

algorithm, which iteratively narrows down the scope of im-
portant positions. As shown in Fig. 2, we first divide the
whole sequence into several large regions and select regions
with top-K significance scores as candidates. Then we di-
vide each candidate region into smaller regions and calcu-
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Algorithm 1: The proposed BlackTreeS.

Input: Classifier fθ, sequence X and target label ỹ.
Output: Adversarial example X̃ .

1: Set X̃ = X .
2: repeat
3: Find K most important positions by tree search.
4: Calculate ∂L(θ;X̃,ỹ)

∂xtm
for important positions t.

5: Form G(X̃) by concatenating ∂L(θ;X̃,ỹ)
∂xtm

.
6: Update the adversarial example:

X̃ = X̃ + α · clip(G(X̃),−ϵ, ϵ).

7: Predict the label ŷ = fθ(X̃).
8: if ŷ = ỹ or ∥G(X)∥2 ≤ τ or ∥X̃ −X∥0 > ϵ0 then
9: Stop the attack.

10: until Convergence

late the significance scores for these smaller regions. After
that, we form the new candidate set by selecting the top-K
smaller regions. The search continues until the size of the
candidate regions shrinks to one position, i.e., the leaf of the
search tree. In this way, we select K positions that contribute
most to the target label with queries in O(KD logD T ),
which is much smaller than the brute-force search. To mea-
sure the significance of a region, we propose a regional ap-
proximation procedure, formally,

st1:t2(X) =

∣∣∣∣r(X + η · et1:t2)− r(X)

η

∣∣∣∣ , (8)

where t1 and t2 denote the range of the region; et1:t2 is the
vector that etm = 1 for t ∈ [t1, t2] and etm = 0 for the oth-
ers. The significance score reflects the relative importance of
a region. For instance, if s0:t is larger than st:T , it indicates
that the part within range [0, t] is more important when the
classifier predicts the sequence as the target label ỹ.

Different from the joint approximation (i.e., Eq. 2), we
only manipulate part of the input to approximate gradients of
a local region. Although this measurement also suffers from
inaccurate estimation, the accuracy could increase along
with the top-down search. The main reason lies in Theo-
rem 1. Specifically, a smaller region indicates a smaller D
in the theorem, leading smaller estimation error. As such,
we would obtain a better approximation. In other words, it
is more of a coarse to fine process. We also validate the ac-
curacy of region approximation in Sec. 5.

4.4 The Comprehensive Framework
With the two proposed modules, at the l-th iteration of the
adversarial example generation, we first estimate the impor-
tant positions of X̃(l). Then we apply the independent ap-
proximation to calculate the gradients of important positions
and leverage them to update the adversarial example, i.e.,
X̃(l+1). Note that if there is no important position, i.e., the
st1:t2(X̃

(l)) is small for all regions, or the ∥X̃(l)−X∥0 is too
large, or the X̃(l) could successfully achieve the attack goal,

we will stop the update and output the adversarial example
at current iteration. Algorithm 1 in Appendix C summarizes
the overall framework. Compared with existing score-based
black-box attacks,
• We propose to only manipulate important positions to gen-

erate adversarial examples by the proposed tree position
search. Such design helps us to generate adversarial ex-
amples that lie on the natural example manifold.

• Instead of approximating the gradients by adding pertur-
bations the whole inputs, we propose to independently
estimate the gradients of each important position, which
could increase the accuracy of the approximated gradients.

5 Experiment
Experimental Setting. We conduct the experiments on
three time series classification datasets: Uwave, Climate and
Eye. For the victim models, we implement five representa-
tive classifiers including two RNN models (LSTM and Bi-
RNN), two CNN models (vanilla CNN and TCN) and one
self-attention model (DynamicConv) as the target classifier.
We compare the proposed BlackTreeS with six adversarial
attack approaches. The first two methods are existing white-
box adversarial attacks on TSC: the FGSM (Fawaz et al.
2019) and the PGD (Oregi et al. 2018). The others are the
state-of-the-art black-box adversarial attack techniques for
other applications: the substitute model, NES, SPSA and
AutoZOOM. The effectiveness of the attack is measured by
the attack success rate (ASR) (Rathore et al. 2020), i.e., the
probability of forcing the target classifier to predict the ex-
pected label ỹ. For the baseline defense strategies, we im-
plement the auto-encoder based defense strategy proposed
(Wang et al. 2020), which is proved to the state-of-the-art
defense strategy compared with others such as adversarial
training. The stealthiness of the attack is measured by the
defense success rate (DSR), i.e., the probability of adversar-
ial examples being detected by the defense strategy.

For all DNN based classifiers, the hidden size and the
learning rate are set as 20 and 0.005 respectively. The op-
timizer of RNN is the RMSProp, while the optimizer of
the CNN and self-attention model is the Adam (Diederik,
Jimmy et al. 2015). For the BlackTreeS, the K is 20 and
the maximal size of perturbed positions is 100. We adopt a
quadtree to perform the tree search strategy. For ϵ, the de-
fault value is set as 0.3, which is widely used in previous
adversarial attacks on TSC models (Oregi et al. 2018). For
these parameters, we have also tried various values in the
experiment. The popularity size in the NES, SPSA and Au-
toZOOM is set as 100. All the experiments are conducted
on a machine with a 20-core CPU, 256GBs of memory and
5 NVIDIA RTX 2080Ti GPUs. For more details such as the
description of the datasets please refer to Appendix C.

5.1 The Effectiveness of the Adversarial Attack
In this subsection, we mainly focus on the effectiveness of
our proposed method. We present the main results of the
Uwave dataset in Table 1. Firstly, we can see that the qual-
ity of the gradients largely influences the attack effective-
ness. As we can see from the comparison between NES and
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Attack
Methods

BiRNN LSTM CNN TCN DynamicConv Avg
ASR↑ DSR↓ ASR↑ DSR↓ ASR↑ DSR↓ ASR↑ DSR↓ ASR↑ DSR↓ ASR↑ DSR↓

FGSM 15.9% 25.0% 11.4% 37.5% 43.2% 95.5% 23.9% 90.9% 35.2% 94.3% 25.9% 68.6%
PGD 22.7% 20.5% 21.6% 27.3% 58.0% 95.5% 47.7% 72.7% 58.0% 83.0% 41.6% 59.8%

Substitute 2.3% 100.0% 6.8% 100.0% 33.0% 98.9% 5.7% 100.0% 6.8% 100.0% 10.9% 99.8%

NES 1.1% 100.0% 5.7% 100.0% 17.1% 100.0% 4.6% 100.0% 5.7% 100.0% 6.8% 100.0%
SPSA 14.8% 100.0% 19.3% 100.0% 98.9% 100.0% 40.9% 100.0% 51.1% 100.0% 45.0% 100.0%

AutoZOOM 18.2% 90.9% 19.3% 90.9% 100.0% 100.0% 56.8% 80.7% 67.1% 96.6% 52.3% 91.8%

BlackTreeS 26.1% 9.1% 27.3% 6.8% 100.0% 5.7% 60.2% 21.6% 73.9% 28.4% 57.5% 14.3%

Table 1: Main results of the UWave dataset.

Figure 3: The visualization of SPSA and BlackTreeS attacks on BiRNN, CNN and DynamicConv on the first channel of a
sample in the UWave dataset.

FGSM, although they all adopt the sign operation on the gra-
dients of the input, the gradients in the NES are estimated
under the black-box setting, which consequently reflects in
NES’s much lower ASR than FGSM. Therefore, to perform
an effective black-box attack on TSC, we should improve
the quality of the estimated gradients.

Secondly, as the comparison between existing black-box
adversarial attack techniques shows, the substitute model
based black-box attack fails to perform an effective attack
on various target classifiers. For instance, the ASR is 2.3%
for Bi-RNN, and the averaged ASR is only 10.9% for the
UWave dataset. As we have discussed in Sec. 3.1, the sub-
stitute model is unable to mimic the behavior of the black-
box TSC model due to the diversity. On the other side, the
score-based methods often show better performance over the
substitute model. For instance, the averaged ASR of the Au-
toZOOM could reach 52.3% on the UWave. Despite the im-
provement of SPSA and AutoZOOM when the target classi-
fier is CNN, e.g., the ASRs are 98.9% and 100% respec-
tively, their performance become poor when facing with
RNN-based models, e.g., the ASRs are 14.8% and 18.2%
for Bi-RNN and LSTM respectively. Recall the analysis in
Sec. 3.1, the failure mainly comes from the non-linear oper-
ations in the classifier, making it difficult to approximate the
correct black-box gradients. Compared with existing black-
box adversarial attack techniques, our proposed BlackTreeS
shows superior performance on all datasets. Furthermore,
we find that the ASRs on RNN-based classifiers are greatly
improved. For instance, we improve the ASRs of Bi-RNN

from 18.2% to 26.1% on UWave, which states that our inde-
pendent approximation could obtain better gradients when
there exist non-convex terms in the classifier.

5.2 The Stealthiness of the Adversarial Attack
We validate the stealthiness of the proposed BlackTreeS by
the DSR in Table 1 as well. As the results demonstrates, the
BlackTreeS shows the lowest DSR over nearly all models
even if it has the highest ASR. For instance, for the Uwave
dataset, the averaged DSR is only 14.3%, while the best re-
sult of current black-box attack techniques is 91.8%. Such
improvement mainly comes from the ℓ0 penalty during the
attack, where we only select important positions to create
the adversarial sequences. Moreover, we find that the DSRs
of TCN and DynamicConv are often higher than RNN-based
approaches for the BlackTreeS. We infer the main reason is
that these two approaches pay attention to more positions
in the sequence (Zerveas et al. 2021). As a consequence,
our approach has to attack more positions to achieve higher
ASR. Nevertheless, the DSR is still much lower than exist-
ing approaches. To further study the perturbations generated
by BlackTreeS, we visualize the adversarial examples gener-
ated by our method and the SPSA. From Fig. 3, we find that
the BlackTreeS is able to find important positions within a
data sequence regarding the classifier. For instance, for the
Bi-RNN, our method tries to attack the positions at the head
and the tail. For CNN and DynamicConv, our method pays
attention to middle positions. In addition, the BlackTreeS
also manipulates fewer positions compared with other exist-
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Approximation BiRNN CNN DynamicConv
ACC RMSE ACC RMSE ACC RMSE

Independent 96.1% 0.060 92.2% 0.388 96.4% 0.091
Region 87.8% - 81.1% - 84.1% -
Joint 76.4% 0.138 75.4% 0.891 75.3% 0.414

Table 2: The accuracy of selecting the top 50 most signifi-
cant gradient positions, and the averaged RMSEs between
approximated and ground truth gradients on the UWave
dataset.

Attack Methods UWave Climate Eye
ASR DSR ASR DSR ASR DSR

BlackTreeS 57.5% 14.3% 70.3% 21.0% 93.8% 22.0%
BlackTreeS-RP 27.5% 49.8% 50.3% 55.0% 82.3% 53.5%

Table 3: Comparison of average ASR and DSR between our
proposed BlackTreeS with tree position search and with ran-
dom position selection (suffixed with RP) for attacking.

ing attacks, which helps it better evade potential detection.

5.3 Ablation Study
We further explore the effect of each component in our
method. First, to demonstrate the effectiveness of our pro-
posed independent approximation and the region approxi-
mation (BlackTreeS), we conduct a case study on the UWave
dataset. The results are shown in Table 2. The results show
that the estimation error (RMSE) is much lower for indepen-
dent approximation compared with the joint approximation
(SPSA). Besides, the region approximation is also relatively
accurate in selecting top-K positions, e.g., the ACC is over
80% for all three models. Second, to evaluate the effective-
ness of our proposed tree position search algorithm, we sub-
stitute the original position search module with random po-
sition selection and compare their performance difference on
all three datasets. We keep the BlackTreeS with random po-
sition selection attack the same number of positions as the
original one, and they share the same gradient approxima-
tion procedure. The average ASR and DSR across all mod-
els are shown in Table 3, where BlackTreeS-RP denotes the
random position selection variant. The results demonstrate
that our proposed BlackTreeS consistently achieves higher
ASRs and lower DSRs than BlackTreeS-RP among all three
datasets, which indicates the effectiveness of the tree posi-
tion search. For more results such as the influence of hyper-
parameters and query count please refer to Appendix C.

6 Related Work
Time series classification (TSC) is a crucial task in mod-
ern data mining, which aims to classify sequential data
into different categories (Yang and Wu 2006; Esling and
Agon 2012; Gupta et al. 2020). Specifically, multivariate
time series classification has wide applications such as stock
trend prediction (Ding et al. 2019), network flow recognition
(Hayes and Danezis 2016) and medical data analysis (Che

et al. 2017). Recently, deep neural network (DNN) shows
superior performance on this task (Gamboa 2017; Wang,
Yan, and Oates 2017). For instance, CNN is proposed to
capture the local temporal pattern by the convolution opera-
tion (Cui, Chen, and Chen 2016), RNN is proposed to model
the temporal dependency (Smirnov and Nguifo 2018), and
self-attention model is proposed to find similar positions in
the input (Zerveas et al. 2021). More details can be found
in the survey (Gupta et al. 2020). Despite their effective-
ness, recent studies have found that DNNs are vulnerable to
adversarial attacks. Several attacks and defenses have been
proposed accordingly. For instance, (Fawaz et al. 2019) and
(Oregi et al. 2018) propose to leverage the FGSM and PGD
respectively to create adversarial examples for TSC models
(Fawaz et al. 2019; Oregi et al. 2018), while (Wang et al.
2020) and (Belkhouja and Doppa 2020) propose to detect
adversarial examples by the auto-encoder model and the ad-
versarial training framework respectively (Wang et al. 2020;
Belkhouja and Doppa 2020). In a word, current adversarial
attacks on TSC models strongly rely on accurate gradients
ensured by the white-box attack setting, which makes them
less practical for real-world scenarios. Besides, the adver-
sarial examples generated by existing attack methods could
often be easily detected by the defense strategy.

Under the black-box setting, attackers can only obtain the
input and output of the model instead of the whole model
(Ilyas et al. 2018; Narodytska and Kasiviswanathan 2017;
Guo et al. 2019). Existing work on black-box adversarial
attacks mainly leverages two kinds of approaches: substi-
tute model and score-based approaches. The first split of ap-
proaches aims to mimic the target model by several queries
and transfer the generated adversarial examples to the tar-
get model (Ilyas et al. 2018). The second split of approaches
aims to estimate the gradients of inputs with numerical ap-
proximations such as NES (Wierstra et al. 2014; Ilyas et al.
2017), SPSA (Spall et al. 1992) and AutoZoom (Chen et al.
2017). Since these approaches do not require the details
of the target model, they could be applied in various real-
world applications. To further study the vulnerability of TSC
models in real-world applications, we need to investigate a
stealthy black-box adversarial attack for this task.

7 Conclusion
In this work, we are the first to reveal the threat of ef-
fective and stealthy black-box adversarial attacks on DNN
based time series classification. We highlight the difference
between TSC and other applications during the black-box
adversarial attack. To deal with the challenges of the low-
dimensional manifolds and non-convex classifiers, we pro-
pose a novel framework called BlackTreeS. Our study sheds
light on the threat of adversarial attacks when we apply the
DNN based TSC models in real-world scenarios. In the fu-
ture, we consider to extend our work to more kinds of se-
quential data such as discrete value based sequences and
sentences. Second, we may further study the failure of joint
approximation with more theoretical analysis. Lastly, we
tend to leverage the BlackTreeS to discover potential threats
of adversarial attacks in current commercial DNN based
TSC services.
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A Black-box Non-Convex Optimization
Convex optimization is widely used for analyzing the con-
vergence of the learning (Diederik, Jimmy et al. 2015), the
main assumptions such as the L-strongly convex could be
satisfied when we analyze the convolutional neural network
(Diederik, Jimmy et al. 2015). The main reason lies in that
the convolutional operation and ReLU activation function
often act in a linear pattern (Virmaux and Scaman 2018).
However, as we have discussed, owing to the numerous
non-linear operations and product terms in RNN and self-
attention models, they often show strong non-convexity.
Therefore, in this work, we pay attention to the analysis
based on non-convex optimization, specifically,
Theorem. 3.1. Suppose a non-convex and Lipschitz contin-
uous function r(x) : RD → R is optimized with the gradi-
ents in Eq. 3. Also suppose the maximal norm of the gradi-
ents is ∥∇xr∥∗. Then we have,

r(x(I))− r(x(0)) ≤
√
6α
8

∑I−1
l=0

(
D+4
2

√
3α
2 ∥∇xr∥∗ − ∥∇r(x(l))∥

)
where x(l) is the variable at lth iteration in the SGD, I is the
step of the iteration and α is the learning rate.

Proof. We first define the Gaussian approximation of a func-
tion, formally,

fα(X) =
1

κ

∫
f(x+ αu)e−

1
2∥u∥

2

du (9)

where α is the approximated coefficient, i.e., the learning
rate used in the optimization. Then we suppose that,

∥∇r(x1)−∇r(x2)∥ ≤ ∥∇xr∥∗∥x1 − x2∥ (10)
for any x1 and x2. As pointed out by previous researches
(Nesterov and Spokoiny 2017), the following condition
holds if we adopt the black-box optimization such as the one
used in SPSA,

Eη[rα(x
(I))] ≤ fα−

∥∇fα(x
(l))∥2

8D̃∥∇xr∥∗
+
3α2∥∇xr∥∗D̃

32
, (11)

where D̃ = D + 4. By summing up through all l and taking
expectation on η,

Eη[rη(x
(I+1))− rη(x

(0))]

≤
3α2I∥∇xr∥2∗(D + 4)2 − 8

∑I−1
l=0 ∥∇r(x(l))∥2

32(D + 4)∥∇xr∥∗

≤

∑I−1
l=0

(
D+4
2

√
3α
2 ∥∇xr∥∗ + ∥∇r(x(l))∥

)
4(D + 4)∥∇xr∥∗

·
(D + 4

2

√
3α

2
∥∇xr∥∗ − ∥∇r(x(l))∥

)
≤ 1

4(D + 4)∥∇xr∥∗

I−1∑
l=0

√
3α

2
(D + 4)∥∇xr∥∗

·
(D + 4

2

√
3α

2
∥∇xr∥∗ − ∥∇r(x(l))∥

)
≤
√
6α

8

I−1∑
l=0

(D + 4

2

√
3α

2
∥∇xr∥∗ − ∥∇r(x(l))∥

)
(12)

Figure 4: The tangent space and tangent vector around X .

Considering that D+4
2

√
3α
2 > 1 for most cases and

∥∇xr∥∗ > ∥∇r(x(l))∥, the major factor that determines the
upper bound are two-folds: (1) the dimension D and (2) the
maximal norm of the gradient.

B The Manifold of Natural Examples
We present more details for the statement in Sec. 3.2. As
we have discussed, previous work (Khoury and Hadfield-
Menell 2018) proves the following theorem,
Lemma 1. Let M ⊂ RD be a d-dimensional manifold em-
bedded in RD with finite volume. Let X ⊂ M be a finite set
of points sampled from M. Suppose that ϵ is smaller than the
reach of M’s medial axis defined in (Dey 2006), we have

vol(Xϵ ∩Mϵ)

volMϵ
≤

π
d
2Γ(D−d

2 + 1)

Γ(D2 + 1)
· ϵd

volM
, (13)

where vol is the volume of the set and

Mϵ = {x ∈ RD : inf
z∈M

∥x− z∥2 ≤ ϵ}

Xϵ = {x ∈ RD : inf
z∈X

∥x− z∥2 ≤ ϵ}. (14)

Owing to the approximation,

Γ(D−d
2 + 1)

Γ(D2 + 1)
≈

( 2

D − d

) d
2

. (15)

This theorem states that, if we add perturbations on the train-
ing point to construct Xϵ, the ratio between the volume of
the Xϵ ∩Mϵ and the volume of the manifold Mϵ is propor-

tional to
(

2
D−d

) d
2

. Since
(

2
D−d

) d
2

is a increasing function,
Xϵ ∩Mϵ would be much smaller than Mϵ if d were small,
which means that the adversarial examples would easily be
far from the natural example manifold even if the ℓ2 norm is
smaller than ϵ.

C The Tangent Vector of Manifold
We further present the claim of ℓ0 normalization in Sec. 4.2
as follows. Let M ⊂ RD be a d-dimensional manifold em-
bedded in RD with finite volume, and a smooth real-valued
function defined on the manifold f : M → R, e.g., the
loss function of the targeted attack. For a variable X ∈ M,
the ∇Mf(X) is the gradient along the manifold at point X ,
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which is different from the gradient in the Euclidean space
∇RDf(X).

To generate adversarial examples X̃ that lie on the mani-
fold, we need to optimize the X̃ by the gradients ∇Mf(X),
in other words, the X̃ − X should be similar to ∇Mf(X).
However, the main challenges are: (1) the manifold M is
extremely difficult to be described in a closed form (Dey,
Ranjan, and Wang 2010), and (2) the function f is unknown
to the attacker under the black-box setting. To address the
issues, we introduce the concept of tangent space. Formally,
suppose X ∈ M and a linear mapping VX , i.e., a vector in
RD, satisfy the condition Vp(f · g) = f(X) · [Vpg] + g(X) ·
[Vpf ] for any smooth function f, g : M → R. The set of all
VX ∈ RD, i.e., the tangent vectors, that satisfy the condi-
tion is called the tangent space at X . Intuitively, the tangent
vector indicates the direction along the manifold at point X ,
e.g., the gradient ∇Mf(X). Furthermore, according to the
rank theorem, since the dimension of M is d, then the ba-
sis of tangent space could be represented by vk ∈ RD for
k = 1, · · · , d. That is, any tangent vector is a linear com-
bination of the vk. As such, in order to force X̃ − X to be
close to the tangent space, we could minimize the following
objective function minδ

∑d
k=1 ∥δ∥2 · cos⟨δ⃗, vk⟩ (Li et al.

2020), where ∥δ∥∞ ≤ ϵ.
On one side, the objective function describes the angle

between the vector δ and the tangent space, where the vector
is in the tangent space if the angle is 0. On the other side,
when the angle is not 0, the objective function describes the
length of the projection of δ on the tangent space, as shown
in Fig. 4. As such, larger values represent that the vector
will be far away from the manifold. Several approaches are
proposed to estimate the basis vectors vk, e.g., dimensional
reduction methods (Papaioannou et al. 2021) or functional
approximation (Qi et al. 2018), which require the full dataset
to characterize the data manifold. However, in the black-box
attack scenarios, it is difficult to obtain the training data and
the victim model, making it difficult to estimate the basis
vectors for each target sample.

In this work, we present a simple way that could conduct
the optimization, i.e., minimizing the ℓ2 penalty term, which
could minimize the projected length between the vector δ
and the tangent space. On the other side, the Eq. 10 also
explains why current defense strategies leverage the ℓ2 dis-
tance between the reconstructed input and the original input
to detect adversarial examples (Wang et al. 2020). However,
we find that the attack effectiveness is limited if we restrict
the ℓ2 to be small values. We infer the main reason is that the
averaged perturbations will be extremely small in this case.
To address the issue, we propose to minimize the ℓ0 norm, as
such, the perturbations on each position will be sufficient to
cause the wrong prediction. Theoretically, the model could
learn such property if we only leverage the ℓ2 penalty, i.e.,
only attacking important positions to improve the attack ef-
fectiveness, however, due to the inaccurate gradient estima-
tion under the black-box setting and the local-optima caused
by the optimization method, it is difficult to automatically
find such attack strategy. In a word, the ℓ0 penalty will help
the model achieve better effectiveness while the stealthiness

Dataset T D Category Train Set Test Set

UWave 315 3 8 352 88
Climate 200 1 3 320 80

Eye 200 14 2 320 80

Table 4: Dataset description.
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Figure 5: The average ASR and DSR across all five classifi-
cation models of BlackTreeS under different K on Climate
(top), UWave (middle) and Eye (bottom).

is still held in our problem.

D More Empirical Results
We study the influence of hyper-parameters in our method,
the number of important positions K. We tried different set-
tings on the three datasets and present the results in Figure
5. As we can see from the results, our method is not sensi-
tive to the choice of K. For instance, on the Eye dataset, the
DSR is still below 27% when K = 70, and the ASR is over
65% even if K = 10. Owing to the dynamic tree position
search, when the number of positions is not enough to per-
form successful attacks on the classifier, our model would
turn to the sub-important positions in the next tree position
search. Therefore, smaller K does not influence the ASR a
lot when K > 10. On the other side, our method would stop
when there do not exist important positions over the thresh-
old τ , which reflects that a larger K does not cause a larger
DSR in our framework. Therefore our attack strategy is not
sensitive to the choice of hyper-parameters in most cases.
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