
Practical Parallel Algorithms for Submodular Maximization Subject to a
Knapsack Constraint with Nearly Optimal Adaptivity

Shuang Cui1, Kai Han2 *, Jing Tang3, He Huang2 ∗, Xueying Li4, Aakas Zhiyuli4

1 School of Computer Science and Technology / Suzhou Research Institute, University of Science and Technology of China
2 School of Computer Science and Technology, Soochow University

3 The Hong Kong University of Science and Technology (Guangzhou)
The Hong Kong University of Science and Technology

4 Alibaba Group
lakers@mail.ustc.edu.cn, hankai@suda.edu.cn, jingtang@ust.hk, huangh@suda.edu.cn,

xiaoming.lxy@alibaba-inc.com, aakas.lzy@alibaba-inc.com

Abstract

Submodular maximization has wide applications in ma-
chine learning and data mining, where massive datasets have
brought the great need for designing efficient and paralleliz-
able algorithms. One measure of the parallelizability of a sub-
modular maximization algorithm is its adaptivity complex-
ity, which indicates the number of sequential rounds where a
polynomial number of queries to the objective function can
be executed in parallel. In this paper, we study the problem of
non-monotone submodular maximization subject to a knap-
sack constraint, and propose the first combinatorial algorithm
achieving an (8+ ϵ)-approximation under O(log n) adaptive
complexity, which is optimal up to a factor of O(log log n).
Moreover, under slightly larger adaptivity, we also propose
approximation algorithms with nearly optimal query com-
plexity of Õ(n), while achieving better approximation ratios.
We show that our algorithms can also be applied to the spe-
cial case of submodular maximization subject to a cardinality
constraint, and achieve performance bounds comparable with
those of state-of-the-art algorithms. Finally, the effectiveness
of our approach is demonstrated by extensive experiments on
real-world applications.

1 Introduction
Submodular maximization has extensive applications such
as influence maximization (Kempe, Kleinberg, and Tardos
2003; Chen et al. 2021), exemplar-based clustering (Gomes
and Krause 2010), crowdsourcing (Singla, Tschiatschek,
and Krause 2016) and sensor placement (Iyer and Bilmes
2013; Sallam et al. 2020), so it has been widely studied un-
der various constraints such as cardinality, knapsack, ma-
troid constraint. Many algorithms in this area adopt greedy
search strategies (e.g., continuous greedy algorithms in (Ca-
linescu et al. 2011)), but may have large query complexity to
achieve a good approximation ratio, where query complexity
refers to the number of evaluations to the objective function.
In practice, evaluating the objective function may be time-
consuming (Dueck and Frey 2007; Das and Kempe 2008;

*Corresponding author: Kai Han <hankai@suda.edu.cn> and
He Huang <huangh@suda.edu.cn>.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kazemi, Zadimoghaddam, and Karbasi 2018), this situation
is further exacerbated by the proliferation of “big data”, for
which simply reducing query complexity is often insuffi-
cient to get efficient algorithms. Thus, parallelization has re-
ceived increased attention for submodular maximization.

Unfortunately, traditional greedy algorithms for submod-
ular maximization are inherently sequential and adaptive,
which makes them unsuitable for being parallelized. Some
efforts have been devoted to designing distributed submod-
ular maximization algorithms using parallel models such as
MapReduce (Mirzasoleiman et al. 2013; Kumar et al. 2013;
Barbosa et al. 2015; Mirzasoleiman et al. 2016; Epasto, Mir-
rokni, and Zadimoghaddam 2017; Kazemi et al. 2021), but
these algorithms can still be highly adaptive, as they usually
run sequential greedy algorithms on each machine. Recently,
Balkanski and Singer (2018) proposed submodular maxi-
mization algorithms with low adaptive complexity (a.k.a.
“adaptivity”), where only a sub-linear number of adaptive
rounds are incurred and polynomially-many queries can be
executed in parallel in each adaptive round. Subsequently, a
lot of studies have appeared to design low-adaptivity algo-
rithms; many of them concentrate on the submodular maxi-
mization with a cardinality constraint (SMC) problem (e.g.,
(Kazemi et al. 2019; Fahrbach, Mirrokni, and Zadimoghad-
dam 2019b; Balkanski, Rubinstein, and Singer 2019a)).

Besides the SMC problem, one of the most fundamen-
tal problems in submodular optimizations is the problem
of submodular maximization subject to a knapsack con-
straint (SKP), which has applications both for monotone
and non-monotone submodular functions (Kulik, Shachnai,
and Tamir 2009; Lee et al. 2010; Badanidiyuru and Vondrák
2014). Especially the non-monotone SKP problem has many
real-world applications such as revenue maximation (Han
et al. 2021; Amanatidis et al. 2020, 2021), movie rec-
ommendation (Amanatidis et al. 2020, 2021) and image
summarization (Han et al. 2021). Surprisingly, although
the SKP problem has been extensively studied since the
1980s (Wolsey 1982), there exist only few studies on design-
ing low-adaptivity algorithms for it. In particular, Chekuri
and Quanrud (2019b) provide a (e

e−1 + ϵ)-approximation
in O(log n) adaptive rounds for monotone SKP, while (Ene,

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7261

Nguyen, and Vladu 2019) present a (e + ϵ)-approximation
in O(log2 n) adaptive rounds for non-monotone SKP. How-
ever, both Chekuri and Quanrud (2019b) and Ene, Nguyen,
and Vladu (2019) assume oracle access to the multilinear
extension of a submodular function and its gradient, which
incurs high query complexity for estimating multilinear ex-
tensions accurately, making their algorithms impractical in
real applications (Amanatidis et al. 2020, 2021). Very re-
cently, Amanatidis et al. (2021) study the non-monotone
SKP problem and present the first parallelizable algorithm
dubbed ParKnapsack with O(log n) adaptivity or Õ(n)1

query complexity, but their approximation ratio of 9.465+ ϵ
might not hold. Therefore, it still remains as an open prob-
lem to find a parallelizable algorithm achieving provable ap-
proximation ratios for the non-monotone SKP problem with
nearly optimal adaptivity of O(log n), or with nearly opti-
mal query complexity of Õ(n). Note that reducing adaptiv-
ity from O(log2 n) to O(log n) has been considered signif-
icant on parallel submodular maximization (Fahrbach, Mir-
rokni, and Zadimoghaddam 2019a; Ene and Nguyen 2020;
Amanatidis et al. 2021), as this greatly reduces the number
of parallel rounds in practical implementation.
Contributions. In this paper, we close the gap mentioned
above by presenting two algorithms dubbed ParSKP1 and
ParSKP2 for the non-monotone SKP, achieving the follow-
ing performance bounds:

• ParSKP1 gives an (8+ ϵ)-approximation, while achiev-
ing O(log n) adaptivity under O(n2 log2 n) query
complexity, or achieving O(log2 n) adaptivity under
O(n log3 n) query complexity.

• ParSKP2 gives a (5 + 2
√
2 + ϵ)-approximation, while

achieving O(log2 n) adaptivity under O(n2 log2 n)
query complexity, or achieving O(log3 n) adaptivity un-
der O(n log3 n) query complexity.

Moreover, as the SMC problem is a special case of SKP,
our algorithms can be directly used to address the non-
monotone SMC problem, for which the approximation ra-
tio of ParSKP2 can be tightened to 4 + ϵ under the
same complexities listed above. Therefore, ParSKP1 and
ParSKP2 also achieve performance bounds comparable
to those of the existing parallelizable algorithms for non-
monotone SMC, as discussed in the next section.

We conduct extensive experiments using several appli-
cations including revenue maximization, movie recommen-
dation and image summarization. The experimental results
show that our algorithms can achieve better utility using sig-
nificantly fewer adaptive rounds than the existing studies.
Challenges and Techniques. Naively, it seems that slightly
adjusting the low-adaptivity algorithms for the monotone
submodular maximization problems can address their non-
monotone variants. However, we find that the techniques de-
veloped under the monotone setting heavily rely on mono-
tonicity, which may incur subtle issues when applying to
the non-monotone scenarios. To overcome this challenge,

1Throughout the paper, we use the Õ notation to suppress poly-
logarithmic factors.

our ParSKP1 algorithm adopts a very different framework
by using a more sophisticated filtering procedure dubbed
Probe where multiple solutions are created in different ways
given an ideal threshold, which can provide theoretical guar-
antees correctly. Moreover, our ParSKP2 algorithm adopts
another framework where there is no need to guess an ideal
threshold, but we use decreasing thresholds and introduce a
“random batch selection” operation to bypass the difficulties
caused by non-monotonicity.

2 Related Work
In the following, we review several lines of related studies,
and list the performance bounds of some representative ones
in Table 1. The traditional SKP problem has been exten-
sively studied, both for monotone and non-monotone sub-
modular functions (e.g., (Sviridenko 2004; Kulik, Shachnai,
and Tamir 2013; Gupta et al. 2010; Ene and Nguyen
2019a; Yaroslavtsev, Zhou, and Avdiukhin 2020)). For non-
monotone SKP, Buchbinder and Feldman (2019) achieve
the best-known approximation ratio of 2.60, while some
other studies (Mirzasoleiman, Badanidiyuru, and Karbasi
2016; Amanatidis et al. 2020; Han et al. 2021) provide
faster algorithms with weaker approximation ratios. How-
ever, all these algorithms have super-linear adaptive com-
plexity unsuitable for parallelization. Balkanski and Singer
(2018) initiate the study on designing low-adaptivity al-
gorithms for the monotone SMC problem, and also prove
that no algorithms can achieve a constant approximation
ratio in O(log n/ log log n) adaptive rounds. Subsequently,
a lot of parallelizable algorithms have appeared for mono-
tone SMC (Ene and Nguyen 2019b; Balkanski, Rubinstein,
and Singer 2019b; Chekuri and Quanrud 2019a; Breuer,
Balkanski, and Singer 2020; Chen, Dey, and Kuhnle 2021).
For the non-monotone SMC problem, Chekuri and Quan-
rud (2019a) and Balkanski, Breuer, and Singer (2018) pro-
pose parallelizable algorithms with 5.83 + ϵ and 2e + ϵ
approximation ratios, respectively, both under O(log2 n)
adaptivity, while Ene and Nguyen (2020) achieve an im-
proved ratio of e + ϵ under O(log n) adaptivity. How-
ever, all these studies use multilinear extensions and have
high query complexity (larger than Ω(nk2)). Fahrbach, Mir-
rokni, and Zadimoghaddam (2019a) aim to reduce both
adaptivity and query complexity, but achieving a relatively
large ratio of 25.64. Kuhnle (2021) claims a (5.18 + ϵ)-
approximation with O(log2 n) adaptivity. However, Chen
and Kuhnle (2022) claim that both (Fahrbach, Mirrokni, and
Zadimoghaddam 2019a) and (Kuhnle 2021) have non-trivial
errors and they propose a new adaptive algorithm with an ap-
proximation ratio of (5.18+ϵ). Even so, our ParSKP2 algo-
rithm still achieves a better approximation ratio than (Chen
and Kuhnle 2022) for the SMC problem. Compared to SMC,
there are relatively few studies on designing low-adaptivity
algorithms for SKP. Chekuri and Quanrud (2019b) pro-
vide a (1 − 1/e − ϵ)-approximation in O(log n) adaptive
rounds for monotone SKP. For non-monotone SKP, Ene,
Nguyen, and Vladu (2019) provide an (e+ϵ)-approximation
with O(log2 n) adaptivity, based on a continuous optimiza-
tion approach using multi-linear extension. However, a large

7262

Constraint Reference Ratio Adaptivity Queries

Knapsack (Ene, Nguyen, and Vladu 2019) e+ ϵ O(log2 n) Õ(nk2)
(Amanatidis et al. 2021) 9.465 + ϵ O(logn) || O(log2 n) Õ(n2) || Õ(n)

ParSKP1(ALG. 3) 8 + ϵ O(logn) || O(log n log k) Õ(nk) || Õ(n)

ParSKP2(ALG. 5) 5 + 2
√
2 + ϵ O(log2 n) || O(log2 n log k) Õ(nk) || Õ(n)

Cardinality (Chekuri and Quanrud 2019a) 3 + 2
√
2 + ϵ O(log2 n) Õ(nk4)

(Balkanski, Breuer, and Singer 2018) 2e+ ϵ O(log2 n) Õ(nk2)
(Ene and Nguyen 2020) e+ ϵ O(logn) Õ(nk2)

(Fahrbach, Mirrokni, and Zadimoghaddam 2019a) 25.641 + ϵ O(logn) Õ(n)

ParSKP1(ALG. 3) 8 + ϵ O(logn) || O(log n log k) Õ(nk) || Õ(n)

ParSKP2(ALG. 5) 4 + ϵ O(log2 n) || O(log2 n log k) Õ(nk) || Õ(n)
1 Bold font indicates the best result(s) in each setting, k is the largest cardinality of any feasible solution.

Table 1: Low-adaptivity algorithms for non-monotone submodular maximization.

number of Ω(nk2 log2 n) function valuations are needed in
(Ene, Nguyen, and Vladu 2019) for simulating a query to the
multilinear extension of a submodular function or its gradi-
ent with sufficient accuracy, as described in (Fahrbach, Mir-
rokni, and Zadimoghaddam 2019a). Observing this, Ama-
natidis et al. (2021) provide the first combinatorial algo-
rithm with nearly optimal adaptivity of O(log n), or with
O(log2 n) adaptivity under nearly optimal query complex-
ity of Õ(n). Unfortunately, their approximation ratio might
not hold due to subtle issues in their performance analysis.

3 Preliminaries
Given a ground setN with |N | = n, a function f : 2N 7→ R
is called submodular if it satisfies: ∀X,Y ⊆ N : f(X) +
f(Y) ≥ f(X ∪ Y) + f(X ∩ Y). In this paper, we con-
sider a non-monotone and non-negative submodular func-
tion that satisfies ∀X ⊆ N : f(X) ≥ 0 but may not sat-
isfy ∀X ⊆ Y ⊆ N : f(X) ≤ f(Y). We assume that
each element u ∈ N has a cost c(u) > 0 and there is a
budget B > 0. Without loss of generality, we also assume
∀u ∈ N : c(u) ≤ B. The submodular maximization with a
knapsack constraint problem (SKP) aims to find an optimal
solution O to the problem: max{f(S) : S ⊆ N ∧ c(S) ≤
B}, where c(S) ≜

∑
u∈S c(u). For convenience, we define

OPT = f(O), and use k to denote the maximum cardinal-
ity of any feasible solution to the SKP problem, and use w
to denote an element with maximum cost in O.

Suppose that f(S) can be returned by an oracle query for
any given S ⊆ N , the query complexity of any algorithm
ALG denotes the number of oracle queries to f(·) incurred
in ALG , and its adaptive complexity denotes the number of
adaptive rounds of ALG , where O(poly(n)) oracle queries
are allowed in each adaptive round, but all these queries can
only depend on the results of previous adaptive rounds. We
assume that there exists an algorithm USM(X) addressing
the unconstrained submodular maximization (USM) prob-
lem of max{f(Y) : Y ⊆ X} for any X ⊆ N , and assume
that it achieves the following performance bounds:

Theorem 1 (Theorem A.1 in the full version of (Chen, Feld-
man, and Karbasi 2019)). For every constant ϵ > 0, there

is an algorithm without using multi-linear extension that
achieves a (2+ϵ)-approximation for USM usingO(1ϵ log

1
ϵ)

adaptive rounds with O(n
ϵ4 log

3 1
ϵ) query complexity.

For convenience, for any u ∈ N and any X ⊆ N , we use
fX(·) to denote the function defined as fX(Y) = f(X ∪
Y) for any Y ⊆ N ; and we use f(u | X) to denote the
“marginal gain” of u with respect to X , i.e., f(u | X) =
f(X ∪ {u}) − f(X); we also call f(u | X)/c(u) as the
“marginal density” of u with respect to X .

4 Approximation Algorithms
In this section, we propose our ParSKP1 and ParSKP2 al-
gorithms. Both of them call a procedure RandBatch in-
spired by (Balkanski, Rubinstein, and Singer 2019b; Ama-
natidis et al. 2021) using the “adaptive sequencing” method,
but they achieve better performance bounds than (Amana-
tidis et al. 2021) by introducing a “random batch selection”
method in adaptive sequencing, and by adopting very dif-
ferent methods for generating candidate solutions. For clar-
ity, we first introduce RandBatch (Sec. 4.1), then introduce
ParSKP1 (Sec. 4.2) and ParSKP2 (Sec. 4.3), respectively.

4.1 The RandBatch Procedure
The RandBatch procedure (Algorithm 1) takes as input a
threshold ρ, candidate element set I , submodular function
f(·), cost function c(·), a number M to control the adaptiv-
ity, and p, ϵ ∈ (0, 1]. It runs in iterations to find a solution
set A, and maintains a set L of “valuable elements” in I that
have not been considered throughout the procedure, where
any element is called a valuable element w.r.t. A if it can
be added into A with marginal density no less than ρ un-
der the budget constraint (Line 2). In each iteration, Rand-
Batch first neglects f(·) and calls a simple function Get-
SEQ (Algorithm 2) to get a random sequence of elements
(v1, . . . , vd) from L without violating the budget constraint
(Line 4), and then finds a subsequence Vt∗ = (v1, . . . , vt∗)
with “good quality” by considering f(·) (Lines 5–11), where
t∗ = min{t1, t2} will be explained shortly. After that, it in-
vokes a “random batch selection” operation by adding Vt∗

into A with probability of p and abandoning Vt∗ with proba-
bility of 1−p (Line 12). All the elements in Vt∗ are recorded

7263

into U no matter they are accepted or abandoned. Then
RandBatch enters a new iteration and repeats the above
process with an updated L (Line 15). RandBatch uses a
variable count to control its adaptive complexity (Line 14),
and returns (A,U,L) either when L = ∅ or count = M .
Note that RandBatch returns L ̸= ∅ only if count = M .

Algorithm 1: RandBatch(ρ, I,M, p, ϵ, f(·), c(·))
1 A← ∅; U ← ∅; count← 0;
2 L← {u ∈ I : f(u|A)

c(u) ≥ ρ ∧ c(A ∪ {u}) ≤ B};
3 while L ̸= ∅ ∧ count < M do
4 {v1, v2, . . . , vd} ← GetSEQ(A,L, c(·));
5 foreach i ∈ {0, 1, . . . , d} do
6 Vi ← {v1, v2, . . . , vi}; Gi ← A ∪ Vi;
7 E+

i ←{u ∈ L : f(u|Gi)
c(u) ≥ρ∧c(Gi∪{u})≤B};

8 E−
i ← {u ∈ L : f(u | Gi) < 0};

9 Di ← {vj : j ∈ [i] ∧ f(vj | A ∪ Vj−1) < 0};
10 Find t1 ← mini≤d{c(E+

i) ≤ (1− ϵ)c(L)}, t2 ←
mini≤d{ϵ

∑
u∈E+

i
f(u | Gi) ≤

∑
u∈E−

i
|f(u |

Gi)|+
∑

vj∈Di
|f(vj | A ∪ Vj−1)|};

11 t∗ ← min{t1, t2}; U ← U ∪ {Vt∗};
12 with probability p do
13 A← A ∪ Vt∗ ;
14 if t2 < t1 then count← count+ 1;

15 L← {u ∈ L\U : f(u|A)
c(u) ≥ ρ∧c(A∪{u}) ≤ B};

16 return (A,U,L)

Algorithm 2: GetSEQ(A, I, c(·))
1 V ← ∅;
2 while I ̸= ∅ do
3 Randomly permute I into {v1, . . . , v|I|};
4 s← maxi≤|I|{c(A ∪ V ∪ {v1, . . . , vi}) ≤ B};
5 V ← V ∪ {v1, . . . , vs};
6 I ← {u : u ∈ I \ V ∧ c(A ∪ V ∪ {u}) ≤ B};
7 return V ;

As mentioned above, RandBatch uses t∗ = min{t1, t2}
to control the quality of the elements in Vt∗ , where t1, t2 de-
pend on E+

i , E−
i and Di defined in Lines 7-9. Intuitively, the

setting of t1 (Line 10) ensures that the total cost of valuable
elements w.r.t. A ∪ Vt1 (i.e., elements in E+

t1) is sufficiently
small, and the setting of t2 (Line 10) ensures that the total
marginal gain of valuable elements w.r.t. A ∪ Vt1 (i.e., ele-
ments in E+

t2) is sufficiently small. Through the selection of
Vt∗ , RandBatch strikes a balance between solution quality
and adaptive complexity, as shown by the following lemma:

Lemma 1. The sets A and L output by RandBatch(ρ,
I,M, f(·), c(·), p, ϵ) satisfy E[f(A)] ≥ (1 − ϵ)2ρ · E[c(A)]
and ϵ ·M ·

∑
u∈L f(u | A) ≤ OPT for any I ⊆ N .

The complexity of RandBatch (shown in Lemma 2) can
be proved by using the fact that, when A enlarges, either
c(L) is decreased by a 1− ϵ factor, or count is increased by
1 (Line 14).

Lemma 2. RandBatch has O((1ϵ log(|I| · β(I)) +M)/p)
adaptivity, and its query complexity is O(|I| · k) times of
its adaptive complexity, where β(I) ≜ maxu,v∈I

c(u)
c(v) . If

we use binary search in Line 10, then RandBatch has
O((1ϵ log(|I| · β(I)) + M) · (log k)/p) adaptivity, and its
query complexity is O(|I|) times of its adaptivity.

4.2 The ParSKP1 Algorithm
Our ParSKP1 algorithm is shown in Algorithm 3. In
ParSKP1, the ground set N is partitioned into two disjoint
subsets N1 and N2, where N1 contains every element in N
with a sufficiently large cost (i.e., larger than ϵ ·B/n). So we
have c(N2) ≤ ϵ ·B. A major building block of ParSKP1 is
the function Probe (shown in Algorithm 4). For clarity, we
first elaborate Probe in the following.

Algorithm 3: ParSKP1(α, ϵ, f(·), c(·))
1 N1 ← {u ∈ N : c(u) > ϵB/n}; N2 ← N \N1;
2 u∗ ← argmaxu∈N f(u); S ← USM(N2);
3 S ← argmaxX∈{S,{u∗}} f(X);

4 ρmin ← αf(u∗)
B ; ρmax ← n2·αf(u∗)

ϵB ;
5 Z ← {(1−ϵ)−z : z ∈ Z∧(1− ϵ)−z ∈ [ρmin, ρmax]};
6 foreach ρ ∈ Z in parallel do
7 for i← 1 to ⌈log1−ϵ ϵ⌉ in parallel do
8 T ← Probe(ρ,N1,N2, ϵ, f(·), c(·));
9 S ← argmaxX∈{S,T} f(X);

10 return S;

Algorithm 4: Probe(ρ,N1,N2, ϵ, f(·), c(·))
1 T ← ∅; M ← ⌈ϵ−2⌉; p← 1; I ← N1;
2 (A1, U1, L1)← RandBatch(ρ, I,M, p, ϵ, f(·), c(·));
3 I ← N1 \A1;
4 (A2, U2, L2)← RandBatch(ρ, I,M, p, ϵ, f(·), c(·));
5 for i← 1 to 2 do
6 ei ← argmaxu∈N1∧c(Ai∪{u})≤B f(Ai ∪ {u});
7 T ← argmaxX∈{T,Ai,Ai∪{ei}} f(X);

8 if c(N2 ∪A1) ≤ B then
9 A3 ← USM(N2 ∪A1);

10 T ← argmaxX∈{T,A3} f(X);

11 return T ;

Given an input threshold ρ and N1,N2, Probe first calls
RandBatch with p = 1 using N1 as the ground set to
find a candidate solution A1 (Line 2), and then calls Rand-
Batch again using N1 \ A1 as the ground set to find an-
other candidate solution A2 (Line 4). So A1 and A2 are dis-
joint subsets ofN1. The reason for calling RandBatch with
only the elements in N1 is that the adaptive complexity of
RandBatch can be bounded only when the costs of con-
sidered elements have a lower bound (due to Lemma 2).
Then, Probe tries to “boost” the utilities of A1 and A2 by
augmenting them with a single element in N1, neglecting
the threshold ρ (Line 6). After that, another candidate solu-
tion set A3 is found by calling an unconstrained submodular
maximization algorithm if c(N2 ∪ A1) ≤ B (Line 9). Fi-

7264

nally, Probe returns the candidate solution with maximum
function value found so far.

In Lemma 3, we show Probe can achieve a provable ap-
proximation ratio under some special cases:
Lemma 3. If the threshold ρ input into Algorithm 4 is no
more than ρ∗ ≜ αf(O)

B−c(w) and Algorithm 4 finds A1 and
A2 satisfying ∀i ∈ {1, 2} : c(Ai) < B − max{ϵB, c(w)},
where w is the element in O with the maximum cost, then
Algorithm 4 returns a solution T satisfying f(T) ≥ (1 −
2ϵ)(1− 2α− 2ϵ)OPT/(4− 4ϵ).

Proof. According to the assumption of the lemma, we must
have c(A1 ∪ N2) ≤ B due to c(N2) ≤ ϵ · B, so Line 9
of Probe must be executed. If w /∈ N1, then we must have
O ⊆ N2 and hence 2f(T) ≥ 2f(A3) ≥ (1 − 2ϵ)f(O) due
to Line 9 of Algorithm 4 (Theorem 1), which completes the
proof. Therefore, we assume w ∈ N1 in the following.

Note that N1 ∩ N2 = ∅, A1 ∩ A2 = ∅ and A1, A2 ⊆ N1.
So we can use submodularity of f(·) to get:
f(O) ≤ f(O ∩N1 \A1) + f((O ∩A1) ∪ (O ∩N2))

≤ f(A2 ∪ (O ∩N1 \A1)) + f(A1 ∪ (O ∩N1))
+ f((O ∩A1) ∪ (O ∩N2)). (1)

Next, we try to bound the three additive factors in the RHS
of Eqn. (1). For the third additive factor, we have
(1− 2ϵ)f((O∩A1)∪ (O∩N2)) ≤ 2f(A3) ≤ 2f(T), (2)

due to Line 9 of Algorithm 4. Besides, we can get
f(A1 ∪ (O ∩N1))

≤ f(A1 ∪ {w}) +
∑

u∈Q
f(u | A1 ∪ {w})

≤ f(T) +
∑

u∈Q
f(u | A1)

≤ f(T) +
∑
u∈L1

f(u | A1) +
∑

u∈Q\L1

f(u | A1), (3)

where Q = O∩N1\(A1∪{w}), and L1 is the set returned
by RandBatch in Line 2 of Probe, and the second inequal-
ity is due to the the submodularity of f(·) and Lines 5–7 of
Algorithm 4. Furthermore, note that each u ∈ Q \ L1 satis-
fies c(A1∪{u}) ≤ B according to the assumption of current
lemma, so we should have f(u|A1)

c(u) < ρ, because otherwise
u should be in either A1 or L1 due to the design of Rand-
Batch. Using this and c(Q) ≤ B − c(w), we get∑

u∈Q\L1

f(u | A1) ≤ ρ·c(Q) ≤ ρ∗c(Q) ≤ α·f(O). (4)

Besides, we can use Lemma 1 to get
∑

u∈L1
f(u | A1) ≤

ϵ · f(O) due to M = ⌈ϵ−2⌉. Combining this with Eqn. (3)
and Eqn. (4) yields

f(A1 ∪ (O ∩N1)) ≤ f(T) + (α+ ϵ) · f(O). (5)
Using similar reasoning as above, we can also get

f(A2 ∪ (O ∩N1 \A1)) ≤ f(T) + (α+ ϵ) · f(O). (6)
The lemma then follows by combining Eqns. (1)–(6).

There are still two obstacles for using Lemma 3 to find the
approximation ratio of ParSKP1: the first problem is that ρ∗
is unknown, and the second problem is that c(A1) and c(A2)
may not satisfy the condition in Lemma 3. In the following,
we roughly explain how ParSKP1 is designed to overcome
these hurdles.

For the first problem mentioned above, it can be proved
that ρ∗ ∈ [ρmin, ρmax] if B − c(w) > ϵB/n, where ρmin

and ρmax are defined in Line 4 of ParSKP1. Therefore,
ParSKP1 tests multiple values of ρ in Z (Line 5) to en-
sure that one of them lies in [(1 − ϵ)ρ∗, ρ∗]. One the other
side, if B− c(w) ≤ ϵB/n, then we have O \{w} ⊆ N2 and
hence USM(N2) in Line 2 of ParSKP1 can be used to find
a ratio. To address the second problem mentioned above,
ParSKP1 repeatedly runs Probe for a sufficiently large
number of times (Lines 7–9). Therefore, if both E[c(A1)]
and E[c(A2)] are sufficiently small, then it can be proved
that at least one run of Probe satisfies the condition in
Lemma 3 with high probability. On the other side, if either
E[c(A1)] or E[c(A2)] is sufficiently large, then we can di-
rectly use Lemma 1 to prove that Probe also satisfies a de-
sired approximation ratio (in expectation). By combining all
these ideas and choosing an appropriate α, we get:
Theorem 2. ParSKP1 can return a solution S satisfying
E[f(S)] ≥ (1/8− ϵ)OPT by setting α = 1/4.

Note that the complexity of ParSKP1 is dominated by
Lines 6–9, where Probe is run for multiple times in parallel.
Therefore, leveraging Lemma 2, we can also get:
Theorem 3. The adaptive complexity and query complexity
of ParSKP1 are O(log n) and O(nk log2 n) respectively,
or O(log n log k) and O(n log2 n log k) respectively.

4.3 The ParSKP2 Algorithm
In this section, we introduce ParSKP2 (as shown in Algo-
rithm 5), which achieves a better approximation ratio than
ParSKP1 under logarithmically larger adaptive complexity,
but still can achieve nearly linear query complexity.

Algorithm 5: ParSKP2(p, ϵ, f(·), c(·))
1 N ′

1 ← {u ∈ N : c(u) > B
n }; N

′
2 ← N \N ′

1;
2 u∗

1 ← argmaxu∈N ′
1

f(u)
c(u) ; u∗

2 ← argmaxu∈N f(u);

3 T ← ∅; I ← N ′
1;M ←

⌈ log1−ϵ
ϵ
n+2

ϵ2

⌉
;ρmax ← f(u∗

1)
c(u∗

1)
;

4 H ← USM(N ′
2); ℓ←

⌈
log1−ϵ

ϵ·c(u∗
1)

B

⌉
+ 1;

5 for i← 1 to ℓ do
6 ρi ← ρmax · (1− ϵ)i−1;
7 (Ai, Ui, Li)←

RandBatch(ρi, I,M, p, ϵ, fT (·), cT (·));
8 T ← T ∪Ai; I ← I \ (Ui ∪ Li);
9 return S ← argmaxX∈{T,H,{u∗

2}} f(X);

Similar to ParSKP1, ParSKP2 also partitions the ground
set N into two subsets N ′

1 and N ′
2 (Line 1), where N ′

1
contains elements with sufficiently large costs, and then
calls RandBatch to find an approximate solution T using
N ′

1 as the ground set. However, instead of creating sev-
eral candidate solutions using a single threshold (as that
in ParSKP1), ParSKP2 calls RandBatch using ℓ non-
increasing thresholds ρ1, . . . , ρℓ to find ℓ sequences of el-
ements (i.e., A1, . . . , Aℓ), and then splices them together to
get T (Lines 5–8). Note that the elements in Uj and Lj re-
turned by RandBatch (for every j ∈ [i]) are all neglected
when seeking for Ai+1 (Line 8), which is useful for the per-
formance analysis presented shortly. The final solution S re-
turned by ParSKP2 is the best one among T , USM(N ′

2),

7265

and the single element in N with maximum objective func-
tion value (Line 9).

Now we begin to analyze the performance of ParSKP2.
Note that we have f(S) ≥ (1/2 − ϵ)f(O ∩ N ′

2) due to
Line 4 of ParSKP2. So we will concentrate on how to
bound f(O ∩ N ′

1). For notational simplicity, we assume
O ⊆ N ′

1 in the sequel and remove this assumption in Theo-
rem 4, which provides the approximation ratio of ParSKP2.

Compared to ParSKP1, a key difference of ParSKP2 is
that it calls RandBatch with p < 1 to introduce additional
randomness, which makes its performance analysis more in-
volved. We first introduce some definitions useful in our
analysis. When ParSKP2 finishes, let U = ∪ℓi=1Ui,L =
∪ℓi=1Li, Osmall = {u : u ∈ O \ (U ∪L)∧ f(u | T)/c(u) ≤
ρℓ} and Obig = O\(Osmall∪U∪L∪{w}). So each element
u ∈ Obig must satisfy f(u|T)

c(u) ≥ ρℓ and c(T ∪ {u}) > B.
With the above definitions, we introduce a random map-

ping Υ(·) for performance analysis, whose intuition is to
map the elements in Obig to those in T , such that the util-
ity loss caused by excluding Obig from T can be bounded.
Suppose that the elements sequentially added into U are
{u1, . . . , uh}. The mapping Υ(·) is constructed by the fol-
lowing process. Initially we set Υ(u) = ∅ for all u ∈ N .
Then we set Υ(u) = {u} for all u ∈ U ∩ O \ T . After that,
we check u1, u2, . . . , uh sequentially. For each i ∈ [h], if
ui ∈ T \ O and c({u1, . . . , ui−1} ∩ T) ≤ B − c(w), then
we remove several elements with smallest costs in Obig until
their total costs reaches c(ui) or Obig becomes empty, and
then add these elements into Υ(ui). As such, Υ(ui) may
contain “fractional elements” with their costs being only
partial of their original ones, but their densities remain un-
changed. With the mapping Υ(·) constructed as above, we
can get the following lemma:

Lemma 4. For any u ∈ ∪ℓi=1Ui, let ρ(u) denote the thresh-
old used by ParSKP2 when u is considered to be added into
T , and define ρ(u) = 0 for all other u ∈ N . Given any u ∈
N with Υ(u) ̸= ∅, we have ∀v ∈ Υ(u) : f(v|T)

c(v) ≤
ρ(u)
(1−ϵ) .

Lemma 4 can be roughly explained as follows. According
to the construction rule of Υ(·), each element v ∈ Υ(u)
can also be added into T without violating the budget B
when u is added into T , so the reason for v /∈ T is that its
marginal density is relatively small compared to that of u.
Using Lemma 4, we can further get the following lemma:

Lemma 5. When Algorithm 5 finishes, we have f(T ∪O) ≤∑
u∈N

ρ(u)c(Υ(u))
1−ϵ + (2 + ϵ)f(S) + ϵf(O).

Proof. When Algorithm 5 finishes, the set O \T can be par-
titioned into several disjoint subsets: Osmall ,L∩O, Obig∪R
(where R ≜ O∩U\T), and {w} (if w /∈ Osmall∪L∪R∪T).
By submodularity, we have
f(O ∪ T)− f(T) ≤ f(Osmall | T) + f(Obig ∪R | T)

+f(L ∩O | T) + f(w). (7)
Besides, using Lemma 1 and submodularity, we have

f(L ∩O | T) ≤
∑ℓ

i=1
f(Li ∩O | ∪i−1

j=1Ai)

≤ ϵ−1 · ℓf(O)/M ≤ ϵf(O), (8)

where the last inequality is due to ℓ ≤ log1−ϵ
ϵ
n + 2 and

M ≥ log1−ϵ
ϵ
n+2

ϵ2 according to Lines 3–4 of Algorithm 5.
According to the definition of Osmall , we have

f(Osmall | T) ≤ ρℓB ≤ ϵf(u∗
1) ≤ ϵf(S). (9)

Recall that each element u ∈ Obig must satisfy c(T ∪
{u}) > B. So when c(T) ≤ B − c(w), we must have
Obig = ∅ and hence ∀u ∈ T \ O : Υ(u) = ∅. If c(T) >
B − c(w), then the construction rule of Υ(·) guarantees
∪u∈T\OΥ(u) = Obig . Besides, we always have ∀u ∈
R : Υ(u) = {u} and ∀u /∈ (T \ O) ∪ R : Υ(u) = ∅ ac-
cording to the construction of Υ(·). Therefore, we always
have Obig ∪R = ∪u∈NΥ(u) and hence

f(Obig ∪R | T) ≤ f(∪u∈NΥ(u) | T)

≤
∑
u∈N

∑
v∈Υ(u)

f(v | T) ≤
∑
u∈N

ρ(u) · c(Υ(u))

1− ϵ
,(10)

where the second and third inequalities are due to sub-
modularity and Lemma 4, respectively. Finally, note that
f(T) + f(w) ≤ 2f(S) due to Line 9 of Algorithm 5. Com-
bining this with equations (7)–(10) completes the proof.

Note that both ρ(u) and Υ(u) are random for any u ∈ N ,
and the randomness is caused by both Line 12 of Algo-
rithm 1 and the random selection in the GetSEQ function.
So we study their expectation and get the following lemma:

Lemma 6. By the construction rule of Υ(·), we have∑
u∈N E[ρ(u)·c(Υ(u))] ≤ max{1, 1−p

p }/(1−ϵ)
2·E[f(S)].

Using Lemmas 4–6, we get the performance bounds of
ParSKP2 as follows:

Theorem 4. The ParSKP2 algorithm can return a solution
S satisfying E[f(S)] ≥ (1

5+2
√
2
− ϵ)OPT by setting p =

√
2 − 1. The adaptive complexity and query complexity of

ParSKP2 are O(log2 n) and O(nk log2 n) respectively, or
O(log2 n log k) and O(n log2 n log k) respectively.

5 Extensions for Cardinality Constraint
As cardinality constraint is a special case of knapsack con-
straint, our ParSKP1 and ParSKP2 algorithms can be di-
rectly applied to the non-monotone SMC problem, for which
the performance bounds shown in Theorem 2 and Theorem 4
still hold. Interestingly, by a more careful analysis, we find
that ParSKP2 actually achieves a better approximation ra-
tio for the SMC problem, while its complexities remain the
same. This result is shown in Theorem 5. We roughly ex-
plain the reason as follows. In the SKP problem, it is possi-
ble that an element u with large marginal density cannot be
added into the candidate solution T even if c(T) < B, due
to c(T ∪ {u}) > B. Therefore, we have to handle this case
in our analysis for ParSKP2 by considering w as a special
element. However, such a case never happens in the SMC
problem due to the uniform costs, so the approximation ra-
tio of ParSKP2 can be tightened.

Theorem 5. For the non-monotone SMC problem,
ParSKP2 can return a solution S satisfying E[f(S)] ≥
(1/4 − ϵ)OPT by setting p = 1/2, under the same adap-
tivity and query complexity as those shown in Theorem 4.

7266

6 Performance Evaluation

In this section, we compare our algorithms with sev-
eral state-of-the-art practical algorithms for non-monotone
SKP on the objective function value (i.e., utility) and
adaptivity. Specifically, we implement five algorithms: (1)
ParSKP1 (Algorithm 3); (2) ParSKP2 (Algorithm 5); (3)
ParKnapsack (Amanatidis et al. 2021);(4) SampleGreedy
(Amanatidis et al. 2020), implemented using lazy evalua-
tion (Minoux 1978); (5) SmkRanAcc (Han et al. 2021).
Note that both SampleGreedy and SmkRanAcc are non-
parallel algorithms with super-linear adaptivity, so we use
these two baselines only to see how other algorithms can
approach them. For all the algorithms tested, the accuracy
parameter ϵ is set to 0.1. Each randomized algorithm is ex-
ecuted independently for 10 times, and the average result is
reported. For the fairness of comparison, we follow (Ama-
natidis et al. 2021) to use the algorithm in (Feige, Mirrokni,
and Vondrak 2011) achieving 4-approximation and O(1)
adaptivity for the USM algorithm. All experiments are run
on a Linux server with Intel Xeon Gold 6126 @ 2.60GHz
CPU and 256GB memorory. The implemented algorithms
are evaluated in the following three real-world applications.
Revenue Maximization. The goal of revenue maximiza-
tion (Amanatidis et al. 2020, 2021; Han et al. 2021) is to
select a subset of users (i.e., nodes) in a social network to
advertise a product in order to maximize the revenue. Given
a network G = (N , E) where each edge (u, v) ∈ E is as-
signed a weight wu,v randomly sampled from the contin-
uous uniform distribution U(0, 1), the revenue of any sub-
set S ⊆ N is defined as f(S) =

∑
v∈N\S

√∑
u∈S wu,v ,

and the cost of any node u ∈ N is defined as c(u) =

h
(√∑

(u,v)∈E wu,v

)
, where h(x) = 1 − e−µx is the expo-

nential cumulative distribution function and µ is set to 0.2.
Following (Amanatidis et al. 2020, 2021; Han et al. 2021),
we consider the top 5,000 communities of the YouTube net-
work (Leskovec and Krevl 2014) to construct G, and the
resultant graph contains 39,841 nodes and 224,235 edges.
Movie Recommendation. Personalized movie recommen-
dation (Mirzasoleiman, Badanidiyuru, and Karbasi 2016;
Feldman, Harshaw, and Karbasi 2017; Haba et al. 2020;
Amanatidis et al. 2020, 2021) aims to recommend a list of
high-quality and diverse movies to a user according to the
ratings from similar users. We use the popular MovieLens
dataset containing 1,793 movies with adventure, animation
and fantasy genres (Haba et al. 2020). Given a set of N
movies, each movie u ∈ N is associated with a 25 dimen-
sional feature vector qu calculated from user ratings. Fol-
lowing (Mirzasoleiman, Badanidiyuru, and Karbasi 2016;
Haba et al. 2020), the utility of any S ⊆ N is defined as
f(S) =

∑
u∈S

∑
v∈N su,v −

∑
u∈S

∑
v∈S su,v , where we

use su,v = e−λdist(qu,qv) to measure the similarity between
movies u and v; dist(qu, qv) is the euclidean distance be-
tween qu and qv; and λ is set to 2. Following (Haba et al.
2020), we also define the cost c(u) of any movie u to be pro-
portional to 10− ru, where ru denotes the rating of movie u
(ranging from 0 to 10), and the costs of all movies are nor-
malized such that the average movie cost is 1. Thus, movies

with higher ratings have smaller costs.
Image Summarization. This application is also used
in (Mirzasoleiman, Badanidiyuru, and Karbasi 2016; Han
et al. 2021). The experimental settings are similar to those
of these work and hence are omitted due to the space limit.

 (a) Revenue Maximization (d) Revenue Maximization

 (b) Movie Recommendation (e) Movie Recommendation

 (c) Image Summarization (f) Image Summarization

0.7

0.8

0.9

1

0.001 0.004 0.007 0.15

U
ti
li
ty

Budget

0

1

2

3

0.001 0.004 0.007 0.01

A
d
a
p
ti
v
it
y

x
1
e
3

Budget

0.92

0.96

1

0.06 0.09 0.12 0.15

U
ti
li
ty

Budget

0

0.25

0.5

0.75

1

0.06 0.09 0.12 0.15

A
d
a
p
ti
v
it
y

x
1
e
4

Budget

0.98

0.99

1

0.01 0.04 0.07 0.1

U
ti
li
ty

Budget

0

0.25

0.5

0.75

1

0.01 0.04 0.07 0.1

A
d
a
p
ti
v
it
y

x
1
e
4

Budget

Figure 1: The plots in the left column compare the objec-
tive function value of the solutions returned by different al-
gorithms, where the objective function value is normalized
by the best utility achieved by implemented algorithms. The
plots in the right column compare the adaptive rounds used
by different algorithms. The budget values are given as a
fraction of the total cost of all elements in the groundset.

Experimental Results. In Fig. 1(a)–(c), we compare the
implemented algorithms on utility, and the results show
ParSKP1 can even achieve better utility compared to non-
parallel algorithms SampleGreedy and SmkRanAcc, with
the average performance gains of 5% and 3%, respectively.
Besides, the utility performance of ParSKP2 is slightly
weaker than SampleGreedy and SmkRanAcc (with an
average performance loss of 4%). Fig. 1(a)–(c) also shows
that ParSKP1 and ParSKP2 achieve significantly (up to
35.74% times) better utility than ParKnapsack, which is
the only existing adaptive algorithm for non-monotone SKP
problem with sub-linear adaptivity and practical query com-
plexity. In Fig. 1(d)–(f), we compare the implemented algo-
rithms on adaptivity, and the results show that ParSKP1 and
ParSKP2 generally outperform all the baselines. Specifi-
cally, ParSKP1 and ParSKP2 incur 3–92 times fewer adap-
tive rounds than SmkRanAcc, and 2–54 times fewer adap-
tive rounds than SampleGreedy, which demonstrates the
effectiveness of our approach.

7267

Acknowledgments
Kai Han’s work is partially supported by the National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 62172384, and the Alibaba Group through Alibaba
Innovative Research Program. He Huang’s work is par-
tially supported by National Natural Science Foundation of
China (NSFC) under Grant No. U20A20182 and Grant No.
61873177. The work of Shuang Cui is done under the guid-
ance of his supervisor: Kai Han.

References
Amanatidis, G.; Fusco, F.; Lazos, P.; Leonardi, S.; and Reiff-
enhäuser, R. 2020. Fast adaptive non-monotone submodular
maximization subject to a knapsack constraint. In Advances
in Neural Information Processing Systems (NeurIPS).
Amanatidis, G.; Fusco, F.; Lazos, P.; Leonardi, S.; Spac-
camela, A. M.; and Reiffenhäuser, R. 2021. Submodular
Maximization subject to a Knapsack Constraint: Combina-
torial Algorithms with Near-optimal Adaptive Complexity.
In International Conference on Machine Learning (ICML),
231–242.
Badanidiyuru, A.; and Vondrák, J. 2014. Fast algorithms for
maximizing submodular functions. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 1497–1514.
Balkanski, E.; Breuer, A.; and Singer, Y. 2018. Non-
monotone submodular maximization in exponentially fewer
iterations. In Advances in Neural Information Processing
Systems (NeurIPS), 2359–2370.
Balkanski, E.; Rubinstein, A.; and Singer, Y. 2019a. An ex-
ponential speedup in parallel running time for submodular
maximization without loss in approximation. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 283–302.
Balkanski, E.; Rubinstein, A.; and Singer, Y. 2019b. An
optimal approximation for submodular maximization under
a matroid constraint in the adaptive complexity model. In
ACM Symposium on the Theory of Computing (STOC), 66–
77.
Balkanski, E.; and Singer, Y. 2018. The adaptive complexity
of maximizing a submodular function. In ACM Symposium
on the Theory of Computing (STOC), 1138–1151.
Barbosa, R.; Ene, A.; Nguyen, H.; and Ward, J. 2015. The
power of randomization: Distributed submodular maximiza-
tion on massive datasets. In International Conference on
Machine Learning (ICML), 1236–1244.
Breuer, A.; Balkanski, E.; and Singer, Y. 2020. The FAST
algorithm for submodular maximization. In International
Conference on Machine Learning (ICML), 1134–1143.
Buchbinder, N.; and Feldman, M. 2019. Constrained
submodular maximization via a nonsymmetric technique.
Mathematics of Operations Research, 44(3): 988–1005.
Calinescu, G.; Chekuri, C.; Pal, M.; and Vondrák, J. 2011.
Maximizing a monotone submodular function subject to a
matroid constraint. SIAM Journal on Computing (SICOMP),
40(6): 1740–1766.
Chekuri, C.; and Quanrud, K. 2019a. Parallelizing greedy
for submodular set function maximization in matroids and

beyond. In ACM Symposium on the Theory of Computing
(STOC), 78–89.
Chekuri, C.; and Quanrud, K. 2019b. Submodular func-
tion maximization in parallel via the multilinear relaxation.
In ACM-SIAM Symposium on Discrete Algorithms (SODA),
303–322.
Chen, L.; Feldman, M.; and Karbasi, A. 2019. Uncon-
strained submodular maximization with constant adaptive
complexity. In ACM Symposium on the Theory of Comput-
ing (STOC), 102–113.
Chen, W.; Sun, X.; Zhang, J.; and Zhang, Z. 2021. Net-
work Inference and Influence Maximization from Samples.
In International Conference on Machine Learning (ICML),
1707–1716.
Chen, Y.; Dey, T.; and Kuhnle, A. 2021. Best of Both
Worlds: Practical and Theoretically Optimal Submodular
Maximization in Parallel. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 34.
Chen, Y.; and Kuhnle, A. 2022. Practical and Parallelizable
Algorithms for Non-Monotone Submodular Maximization
with Size Constraint. arXiv preprint arXiv:2009.01947v4.
Das, A.; and Kempe, D. 2008. Algorithms for subset selec-
tion in linear regression. In ACM Symposium on the Theory
of Computing (STOC), 45–54.
Dueck, D.; and Frey, B. J. 2007. Non-metric affinity prop-
agation for unsupervised image categorization. In Interna-
tional Conference on Computer Vision (ICCV), 1–8.
Ene, A.; and Nguyen, H. 2020. Parallel algorithm for non-
monotone DR-submodular maximization. In International
Conference on Machine Learning (ICML), 2902–2911.
Ene, A.; and Nguyen, H. L. 2019a. A Nearly-Linear Time
Algorithm for Submodular Maximization with a Knapsack
Constraint. In International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 132, 53.
Ene, A.; and Nguyen, H. L. 2019b. Submodular maximiza-
tion with nearly-optimal approximation and adaptivity in
nearly-linear time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 274–282.
Ene, A.; Nguyen, H. L.; and Vladu, A. 2019. Submodu-
lar maximization with matroid and packing constraints in
parallel. In ACM Symposium on the Theory of Computing
(STOC), 90–101.
Epasto, A.; Mirrokni, V.; and Zadimoghaddam, M. 2017.
Bicriteria distributed submodular maximization in a few
rounds. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 25–33.
Fahrbach, M.; Mirrokni, V.; and Zadimoghaddam, M.
2019a. Non-monotone submodular maximization with
nearly optimal adaptivity and query complexity. In Inter-
national Conference on Machine Learning (ICML), 1833–
1842.
Fahrbach, M.; Mirrokni, V.; and Zadimoghaddam, M.
2019b. Submodular maximization with nearly optimal ap-
proximation, adaptivity and query complexity. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), 255–
273.

7268

Feige, U.; Mirrokni, V. S.; and Vondrak, J. 2011. Maximiz-
ing non-monotone submodular functions. SIAM Journal on
Computing (SICOMP), 40(4): 1133–1153.
Feldman, M.; Harshaw, C.; and Karbasi, A. 2017. Greed Is
Good: Near-Optimal Submodular Maximization via Greedy
Optimization. In Conference on Learning Theory (COLT),
758–784.
Gomes, R.; and Krause, A. 2010. Budgeted nonparametric
learning from data streams. In International Conference on
Machine Learning (ICML), 391–398.
Gupta, A.; Roth, A.; Schoenebeck, G.; and Talwar, K. 2010.
Constrained non-monotone submodular maximization: Of-
fline and secretary algorithms. In International Workshop
on Internet and Network Economics (WINE), 246–257.
Haba, R.; Kazemi, E.; Feldman, M.; and Karbasi, A. 2020.
Streaming Submodular Maximization under a k-Set System
Constraint. In International Conference on Machine Learn-
ing (ICML).
Han, K.; Cui, S.; Zhu, T.; Zhang, E.; Wu, B.; Yin, Z.; Xu, T.;
Tang, S.; and Huang, H. 2021. Approximation Algorithms
for Submodular Data Summarization with a Knapsack Con-
straint. Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems (SIGMETRICS), 5(1): 1–31.
Iyer, R. K.; and Bilmes, J. A. 2013. Submodular Opti-
mization with Submodular Cover and Submodular Knap-
sack Constraints. In NIPS, volume 26.
Kazemi, E.; Minaee, S.; Feldman, M.; and Karbasi, A. 2021.
Regularized submodular maximization at scale. In Inter-
national Conference on Machine Learning (ICML), 5356–
5366.
Kazemi, E.; Mitrovic, M.; Zadimoghaddam, M.; Lattanzi,
S.; and Karbasi, A. 2019. Submodular streaming in all
its glory: Tight approximation, minimum memory and low
adaptive complexity. In International Conference on Ma-
chine Learning (ICML), 3311–3320.
Kazemi, E.; Zadimoghaddam, M.; and Karbasi, A. 2018.
Scalable deletion-robust submodular maximization: Data
summarization with privacy and fairness constraints. In
International Conference on Machine Learning (ICML),
2544–2553.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), 137–146.
Kuhnle, A. 2021. Nearly linear-time, parallelizable algo-
rithms for non-monotone submodular maximization. In
AAAI Conference on Artificial Intelligence (AAAI).
Kulik, A.; Shachnai, H.; and Tamir, T. 2009. Maximiz-
ing submodular set functions subject to multiple linear con-
straints. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 545–554.
Kulik, A.; Shachnai, H.; and Tamir, T. 2013. Approxi-
mations for monotone and nonmonotone submodular maxi-
mization with knapsack constraints. Mathematics of Opera-
tions Research, 38(4): 729–739.

Kumar, R.; Moseley, B.; Vassilvitskii, S.; and Vattani, A.
2013. Fast greedy algorithms in mapreduce and streaming.
In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), 1–10.
Lee, J.; Mirrokni, V. S.; Nagarajan, V.; and Sviridenko, M.
2010. Maximizing nonmonotone submodular functions un-
der matroid or knapsack constraints. SIAM Journal on Dis-
crete Mathematics (SIDMA), 23(4): 2053–2078.
Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. https://snap.stanford.
edu/data. Accessed: 2021-12-14.
Minoux, M. 1978. Accelerated greedy algorithms for max-
imizing submodular set functions. In Optimization tech-
niques, 234–243.
Mirzasoleiman, B.; Badanidiyuru, A.; and Karbasi, A. 2016.
Fast constrained submodular maximization: Personalized
data summarization. In International Conference on Ma-
chine Learning (ICML), 1358–1367.
Mirzasoleiman, B.; Karbasi, A.; Sarkar, R.; and Krause, A.
2013. Distributed Submodular Maximization: Identifying
Representative Elements in Massive Data. In NIPS, 2049–
2057.
Mirzasoleiman, B.; Karbasi, A.; Sarkar, R.; and Krause, A.
2016. Distributed submodular maximization. Journal of
Machine Learning Research (JMLR), 17(1): 8330–8373.
Sallam, G.; Zheng, Z.; Wu, J.; and Ji, B. 2020. Robust Se-
quence Submodular Maximization. In Advances in Neural
Information Processing Systems (NeurIPS).
Singla, A.; Tschiatschek, S.; and Krause, A. 2016. Noisy
submodular maximization via adaptive sampling with appli-
cations to crowdsourced image collection summarization. In
AAAI Conference on Artificial Intelligence (AAAI).
Sviridenko, M. 2004. A note on maximizing a submodular
set function subject to a knapsack constraint. Operations
Research Letters, 32(1): 41–43.
Wolsey, L. A. 1982. Maximising real-valued submodular
functions: Primal and dual heuristics for location problems.
Mathematics of Operations Research, 7(3): 410–425.
Yaroslavtsev, G.; Zhou, S.; and Avdiukhin, D. 2020.
“Bring Your Own Greedy”+ Max: Near-Optimal 1/2-
Approximations for Submodular Knapsack. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 3263–3274.

7269

