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Abstract

Recent progress in neural forecasting accelerated improve-
ments in the performance of large-scale forecasting systems.
Yet, long-horizon forecasting remains a very difficult task. Two
common challenges afflicting the task are the volatility of the
predictions and their computational complexity. We introduce
NHITS, a model which addresses both challenges by incor-
porating novel hierarchical interpolation and multi-rate data
sampling techniques. These techniques enable the proposed
method to assemble its predictions sequentially, emphasizing
components with different frequencies and scales while de-
composing the input signal and synthesizing the forecast. We
prove that the hierarchical interpolation technique can effi-
ciently approximate arbitrarily long horizons in the presence
of smoothness. Additionally, we conduct extensive large-scale
dataset experiments from the long-horizon forecasting liter-
ature, demonstrating the advantages of our method over the
state-of-the-art methods, where NHITS provides an average
accuracy improvement of almost 20% over the latest Trans-
former architectures while reducing the computation time by
an order of magnitude (50 times). Our code is available at
https://github.com/Nixtla/neuralforecast.

Introduction
Long-horizon forecasting is critical in many important appli-
cations, including risk management and planning. Notable
examples include power plant maintenance scheduling (Hyn-
dman and Fan 2009) and planning for infrastructure con-
struction (Ziel and Steinert 2018), as well as early warning
systems that help mitigate vulnerabilities due to extreme
weather events (Basher 2006; Field et al. 2012). In healthcare,
predictive monitoring of vital signs enables the detection of
preventable adverse outcomes and application of life-saving
interventions (Churpek, Adhikari, and Edelson 2016).

Recently, neural time series forecasting has progressed in
a few promising directions. First, the architectural evolution
included adopting the attention mechanism and the rise of
Transformer-inspired approaches (Li et al. 2019; Fan et al.
2019; Alaa and van der Schaar 2019; Lim et al. 2021), as
well as the introduction of attention-free architectures com-
posed of deep stacks of fully connected layers (Oreshkin et al.
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(c) Neural Hierarchical Interpolation

Figure 1: (a) The computational costs in time and memory (b)
and mean absolute errors (MAE) of the predictions of a high
capacity fully connected model exhibit evident deterioration
with growing forecast horizons. (c) Specializing a flexible
model’s outputs in the different signal frequencies through
hierarchical interpolation combined with multi-rate input
processing offers a solution.

2020; Olivares et al. 2021a). Both approaches are relatively
easy to scale up in terms of capacity, compared to LSTMs,
and have proven capable of capturing long-range dependen-
cies. The attention-based approaches are generic as they can
explicitly model direct interactions between every pair of
input-output elements. Unsurprisingly, they happen to be the
most computationally expensive. The architectures based on
fully connected stacks implicitly capture input-output rela-
tionships and tend to be more compute-efficient. Second, both
approaches have replaced the recurrent forecast generation
strategy with the multi-step prediction strategy. Aside from
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its convenient bias-variance benefits and robustness (Mar-
cellino, Stock, and Watson 2006; Atiya and Taieb 2016), the
multi-step strategy has enabled the models to efficiently pre-
dict long sequences in a single forward pass (Wen et al. 2017;
Zhou et al. 2020; Lim et al. 2021).

Despite all the recent progress, long-horizon forecasting
remains challenging for neural networks because their un-
bounded expressiveness translates directly into excessive com-
putational complexity and forecast volatility, both of which
become especially pronounced in this context. For instance,
both attention and fully connected layers scale quadratically
in memory and computational cost with respect to the fore-
casting horizon length. Fig. 1 illustrates how forecasting
errors and computation costs inflate dramatically with the
growing forecasting horizon in the case of the fully connected
architecture electricity consumption predictions. Attention-
based predictions show similar behavior.

Neural long-horizon forecasting research has mostly
focused on attention efficiency making self-attention
sparse (Child et al. 2019; Li et al. 2019; Zhou et al. 2020) or
local (Li et al. 2019). In the same vein, attention has been
cleverly redefined through locality-sensitive hashing (Kitaev,
Łukasz Kaiser, and Levskaya 2020) or FFT (Wu et al. 2021).
Although that research has led to incremental improvements
in computing cost and accuracy, the silver bullet long-horizon
forecasting solution is yet to be found. In this paper, we make
a bold step in this direction by developing a novel forecasting
approach that cuts long-horizon compute cost by an order
of magnitude while simultaneously offering 16% accuracy
improvements on a large array of multi-variate forecasting
datasets compared to existing state-of-the-art Transformer-
based techniques. We redefine existing fully-connected
N-BEATS architecture (Oreshkin et al. 2020) by enhancing
its input decomposition via multi-rate data sampling and
its output synthesizer via multi-scale interpolation. Our
extensive experiments show the importance of the proposed
novel architectural components and validate significant
improvements in the accuracy and computational complexity
of the proposed algorithm.

Our contributions are summarized below:

1. Multi-Rate Data Sampling: We incorporate sub-
sampling layers in front of fully-connected blocks, sig-
nificantly reducing the memory footprint and the amount
of computation needed, while maintaining the ability to
model long-range dependencies.

2. Hierarchical Interpolation: We enforce smoothness of
the multi-step predictions by reducing the dimensionality
of neural network’s prediction and matching its time scale
with that of the final output via multi-scale hierarchical
interpolation. This novel technique is not unique to our
proposed model, and can be incorporated into different
architectures.

3. NHITS architecture: A novel way of hierarchically syn-
chronizing the rate of input sampling with the scale of
output interpolation across blocks, which induces each
block to specialize in forecasting its own frequency band
of the time-series signal.

4. State-of-the-art results on six large-scale benchmark
datasets from the long-horizon forecasting literature: elec-
tricity transformer temperature, exchange rate, electric-
ity consumption, San Francisco bay area highway traffic,
weather, and influenza-like illness.

The remainder of this paper is structured as follows. First,
we review the relevant literature. Second, we introduce nota-
tion and describe the methodology. After it, we describe and
analyze our empirical findings. The last section concludes
the paper.

Related Work
Neural forecasting. Over the past few years, deep forecast-
ing methods have become ubiquitous in industrial forecast-
ing systems, with examples in optimal resource allocation
and planning in transportation (Laptev et al. 2017), large e-
commerce retail (Wen et al. 2017; Olivares et al. 2021b; Paria
et al. 2021; Rangapuram et al. 2021), or financial trading
(Sezer, Gudelek, and Ozbayoglu 2020). The evident success
of the methods in recent forecasting competitions (Makri-
dakis, Spiliotis, and Assimakopoulos 2020, 2021) has reno-
vated the interest within the academic community (Benidis
et al. 2020). In the context of multi-variate long-horizon
forecasting, Transformer-based approaches have dominated
the landscape in recent years, including Autoformer (Wu
et al. 2021), an encoder-decoder model with decomposi-
tion capabilities and an approximation to attention based
on Fourier transform, Informer (Zhou et al. 2020), Trans-
former with MLP based multi-step prediction strategy, that
approximates self-attention with sparsity, Reformer (Ki-
taev, Łukasz Kaiser, and Levskaya 2020), Transformer that
approximates attention with locality-sensitive hashing and
LogTrans (Li et al. 2019), Transformer with local/log-
sparse attention.

Multi-step forecasting. Investigations of the bias/variance
trade-off in multi-step forecasting strategies reveal that the
direct strategy, which allocates a different model for each
step, has low bias and high variance, avoiding error accumula-
tion across steps, exhibited by the classical recursive strategy,
but losing in terms of net model parsimony. Conversely, in
the joint forecasting strategy, a single model produces fore-
casts for all steps in one shot, striking the perfect balance
between variance and bias, avoiding error accumulation and
leveraging shared model parameters (Bao, Xiong, and Hu
2014; Atiya and Taieb 2016; Wen et al. 2017).

Multi-rate input sampling. Previous forecasting litera-
ture recognized challenges of extremely long horizon predic-
tions, and proposed mixed data sampling regression (MIDAS;
Ghysels, Sinko, and Valkanov 2007; Armesto, Engemann,
and Owyang 2010) to ameliorate the problem of parame-
ter proliferation while preserving high-frequency temporal
information. MIDAS regressions maintained the classic re-
cursive forecasting strategy of linear auto-regressive models
but defined a parsimonious fashion of feeding the inputs.

Interpolation. Interpolation has been extensively used to
augment the resolution of modeled signals in many fields
such as signal and image processing (Meijering 2002). In
time-series forecasting, its applications range from com-
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Figure 2: NHITS architecture. The model is composed of several MLPs with ReLU nonlinearities. Blocks are connected via
doubly residual stacking principle with the backcast ỹt−L:t,ℓ and forecast ŷt+1:t+H,ℓ outputs of the ℓ-th block. Multi-rate input
pooling, hierarchical interpolation and backcast residual connections together induce the specialization of the additive predictions
in different signal bands, reducing memory footprint and compute time, improving architecture parsimony and accuracy.

pleting unevenly sampled data and noise filters (Chow
and loh Lin 1971; Fernandez 1981; Shukla and Marlin
2019; Rubanova, Chen, and Duvenaud 2019) to fine-grained
quantile-regressions with recurrent networks (Gasthaus et al.
2019). To our knowledge, temporal interpolation has not been
used to induce multi-scale hierarchical time-series forecasts.

NHITS Methodology
In this section, we describe our proposed approach, NHITS,
whose high-level diagram and main principles of operation
are depicted in Fig. 2. Our method extends the Neural Basis
Expansion Analysis approach (N-BEATS; Oreshkin et al.
2020) in several important respects, making it more accurate
and computationally efficient, especially in the context of
long-horizon forecasting. In essence, our approach uses multi-
rate sampling of the input signal and multi-scale synthesis
of the forecast, resulting in a hierarchical construction of
forecast, greatly reducing computational requirements and
improving forecasting accuracy.

Similarly to N-BEATS, NHITS performs local nonlinear
projections onto basis functions across multiple blocks. Each
block consists of a multilayer perceptron (MLP), which learns
to produce coefficients for the backcast and forecast outputs
of its basis. The backcast output is used to clean the inputs of
subsequent blocks, while the forecasts are summed to com-
pose the final prediction. The blocks are grouped in stacks,
each specialized in learning a different characteristic of the
data using a different set of basis functions. The overall net-
work input, yt−L:t, consists of L lags.
NHITS is composed of S stacks, B blocks each. Each

block contains an MLP predicting forward and backward
basis coefficients. The next subsections describe the novel
components of our architecture. Note that in the following,
we skip the stack index s for brevity.

Multi-Rate Signal Sampling
At the input to each block ℓ, we propose to use a MaxPool
layer with kernel size kℓ to help it focus on analyzing compo-
nents of its input with a specific scale. Larger kℓ will tend to
cut more high-frequency/small-time-scale components from
the input of the MLP, forcing the block to focus on analyzing
large scale/low frequency content. We call this multi-rate
signal sampling, referring to the fact that the MLP in each
block faces a different effective input signal sampling rate.
Intuitively, this helps the blocks with larger pooling kernel
size kℓ focus on analyzing large scale components critical for
producing consistent long-horizon forecasts.

Additionally, multi-rate processing reduces the width of
the MLP input for most blocks, limiting the memory footprint
and the amount of computation as well as reducing the num-
ber of learnable parameters and hence alleviating the effects
of overfitting, while maintaining the original receptive field.
Given block ℓ input yt−L:t,ℓ (the input to the first block ℓ = 1
is the network-wide input, yt−L:t,1 ≡ yt−L:t), this operation
can be formalized as follows:

y
(p)
t−L:t,ℓ = MaxPool (yt−L:t,ℓ, kℓ) (1)

Non-Linear Regression
Following subsampling, block ℓ looks at its input and non-
linearly regresses forward θfℓ and backward θbℓ interpolation
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MLP coefficients that learns hidden vector hℓ ∈ RNh , which
is then linearly projected:

hℓ = MLPℓ

(
y
(p)
t−L:t,ℓ

)
θf
ℓ = LINEARf (hℓ) θb

ℓ = LINEARb (hℓ)
(2)

The coefficients are then used to synthesize backcast ỹt−L:t,ℓ

and forecast ŷt+1:t+H,ℓ outputs of the block, via the process
described below.

Hierarchical Interpolation
In most multi-horizon forecasting models, the cardinality
of the neural network prediction equals the dimensionality
of the horizon, H . For example, in N-BEATSi |θf

ℓ | = H;
in Transformer-based models, decoder attention layer cross-
correlates H output embeddings with L encoded input em-
beddings (L tends to grow with growing H). This leads to
quick inflation in compute requirements and unnecessary
explosion in model expressiveness as horizon H increases.

We propose to use temporal interpolation to combat these
issues. We define the dimensionality of the interpolation co-
efficients in terms of the expressiveness ratio rℓ that con-
trols the number of parameters per unit of output time,
|θf

ℓ | = ⌈rℓ H⌉. To recover the original sampling rate and
predict all H points in the horizon, we use temporal interpo-
lation via the interpolation function g:

ŷτ,ℓ = g(τ,θf
ℓ ), ∀τ ∈ {t+ 1, . . . , t+H},

ỹτ,ℓ = g(τ,θb
ℓ), ∀τ ∈ {t− L, . . . , t}.

(3)

Interpolation can vary in smoothness, g ∈ C0, C1, C2. In
Appendix G we explore the nearest neighbor, piece-wise
linear, and cubic alternatives. For concreteness, the linear
interpolator g ∈ C1, along with the time partition T = {t+
1, t+ 1 + 1/rℓ, . . . , t+H − 1/rℓ, t+H}, is defined as

g(τ, θ) = θ[t1] +

(
θ[t2]− θ[t1]

t2 − t1

)
(τ − t1)

t1 = arg min
t∈T :t≤τ

τ − t, t2 = t1 + 1/rℓ.
(4)

The hierarchical interpolation principle is implemented
by distributing expressiveness ratios across blocks in a man-
ner synchronized with multi-rate sampling. Blocks closer to
the input have smaller rℓ and larger kℓ, implying that input
blocks generate low-granularity signals via more aggressive
interpolation, being also forced to look at more aggressively
sub-sampled (and smoothed) signals. The resulting hierarchi-
cal forecast ŷt+1:t+H is assembled by summing the outputs
of all blocks, essentially composing it out of interpolations at
different time-scale hierarchy levels.

Since each block specializes on its own scale of input and
output signal, this induces a clearly structured hierarchy of
interpolation granularity, the intuition conveyed in Fig. 1 and
3. We propose to use exponentially increasing expressive-
ness ratios to handle a wide range of frequency bands while
controlling the number of parameters. Alternatively, each
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Figure 3: NHITS composes its predictions hierarchically
using blocks specializing on different frequencies, through
expressiveness ratios, and interpolation. The coefficients are
locally determined along the horizon, allowing NHITS to
reconstruct non-periodic/stationary signals, beyond constant
Fourier transform.

stack can specialize in modeling a different known cycle of
the time-series (weekly, daily etc.) using a matching rℓ (see
Table A.3). Finally, the backcast residual formed at previous
hierarchy scale is subtracted from the input of the next hier-
archy level to amplify the focus of the next level block on
signals outside of the band that has already been handled by
the previous hierarchy members.

ŷt+1:t+H =
L∑

l=1

ŷt+1:t+H,ℓ

yt−L:t,ℓ+1 = yt−L:t,ℓ − ỹt−L:t,ℓ

Hierarchical interpolation has advantageous theoretical
guarantees. We show in Appendix A, that it can approximate
infinitely/dense horizons. As long as the interpolating
function g is characterized by projections to informed
multi-resolution functions Vw, and the forecast relationships
are smooth.

Neural Basis Approximation Theorem. Let a forecast
mapping be Y(· | yt−L:t) : [0, 1]

L → F , where the forecast
functions F = {Y(τ) : [0, 1] → R} = L2([0, 1]) repre-
senting a infinite/dense horizon, are square integrable. If the
multi-resolution functions Vw = {ϕw,h(τ) = ϕ(2w(τ −
h)) | w ∈ Z, h ∈ 2−w × [0, . . . , 2w]} can arbitrarily approx-
imate L2([0, 1]). And the projection ProjVw

(Y(τ)) varies
smoothly on yt−L:t. Then the forecast mapping Y(· | yt−L:t)
can be arbitrarily approximated by a neural basis expansion
learning a finite number of multi-resolution coefficients θ̂w,h.
That is ∀ϵ > 0,∫

|Y(τ | yt−L:t)−
∑
w,h

θ̂w,h(yt−L:t)ϕw,h(τ)|dτ ≤ ϵ (5)

Examples of multi-resolution functions Vw = {ϕw,h(τ) =
ϕ(2w(τ − h)) | w ∈ Z, h ∈ 2−w × [0, . . . , 2w]} include
piece-wise constants, piece-wise linear functions and splines
with arbitrary approximation capabilities.
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Experimental Results
We follow the experimental settings from (Wu et al. 2021;
Zhou et al. 2020) (NeurIPS 2021 and AAAI 2021 Best Paper
Award). We first describe datasets, baselines and metrics used
for the quantitative evaluation of our model. Table 1 presents
our key results, demonstrating SoTA performance of our
method relative to existing work. We then carefully describe
the details of training and evaluation setups. We conclude the
section by describing ablation studies.

Datasets
All large-scale datasets used in our empirical studies are
publicly available and have been used in neural forecasting
literature, particularly in the context of long-horizon (Lai et al.
2017; Zhou et al. 2019; Li et al. 2019; Wu et al. 2021). Table
A1 summarizes their characteristics. Each set is normalized
with the train data mean and standard deviation.

Electricity Transformer Temperature. The ETTm2

dataset measures an electricity transformer from a region
of a province of China including oil temperature and vari-
ants of load (such as high useful load and high useless load)
from July 2016 to July 2018 at a fifteen minutes frequency.
Exchange-Rate. The Exchange dataset is a collection of
daily exchange rates of eight countries relative to the US
dollar. The countries include Australia, UK, Canada, Switzer-
land, China, Japan, New Zealand and Singapore from 1990 to
2016. Electricity. The ECL dataset reports the fifteen minute
electricity consumption (KWh) of 321 customers from 2012
to 2014. For comparability, we aggregate it hourly. San Fran-
cisco Bay Area Highway Traffic. This TrafficL dataset
was collected by the California Department of Transportation,
it reports road hourly occupancy rates of 862 sensors, from
January 2015 to December 2016. Weather. This Weather
dataset contains the 2020 year of 21 meteorological measure-
ments recorded every 10 minutes from the Weather Station
of the Max Planck Biogeochemistry Institute in Jena, Ger-
many. Influenza-like illness. The ILI dataset reports weekly
recorded influenza-like illness (ILI) patients from Centers for
Disease Control and Prevention of the United States from
2002 to 2021. It is a ratio of ILI patients vs. the week’s total.

Evaluation Setup
We evaluate the accuracy of our approach using mean abso-
lute error (MAE) and mean squared error (MSE) metrics,
which are well-established in the literature (Zhou et al. 2020;
Wu et al. 2021), for varying horizon lengths H:

MSE =
1

H

t+H∑
τ=t

(yτ − ŷτ )
2
, MAE =

1

H

t+H∑
τ=t

|yτ−ŷτ |

(6)
Note that for multivariate datasets, our algorithm produces

forecast for each feature in the dataset and metrics are aver-
aged across dataset features. Since our model is univariate,
each variable is predicted using only its own history, yt−L:t,
as input. Datasets are partitioned into train, validation and
test splits. Train split is used to train model parameters, val-
idation split is used to tune hyperparameters, and test split
is used to compute metrics reported in Table 1. Appendix C

48 96 19
2

33
6

72
0

Horizon [H]

1.5

2.0

2.5

3.0

3.5

C
om

pu
ta

tio
na

l T
im

e
[L

og
10

 S
ca

le
, S

ec
on

ds
]

Autoformer
Informer
Transformer

N-BEATSi
N-BEATSg
NHITS

(a) Time Efficiency

48 96 19
2

33
6

72
0

Horizon [H]

0
10
20
30
40
50
60

Pa
ra

m
et

er
s

[M
ill

io
ns

]

N-BEATSi
N-BEATSg
NHITS

(b) Memory Efficiency

Figure 4: Computational efficiency comparison. NHITS ex-
hibits the best training time compared to Transformer-based
and fully connected models, and smallest memory footprint.

shows partitioning into train, validation and test splits: sev-
enty, ten, and twenty percent of the available observations
respectively, with the exception of ETTm2 that uses twenty
percent as validation.

Key Results
We compare NHITS to the following SoTA multivari-
ate baselines: (1) FEDformer (Zhou et al. 2022), (2)
Autoformer (Wu et al. 2021), (3) Informer (Zhou et al.
2020), (4) Reformer (Kitaev, Łukasz Kaiser, and Levskaya
2020) and (5) LogTrans (Li et al. 2019). Additionally, we
consider the univariate baselines: (6) DilRNN (Chang et al.
2017) and (7) auto-ARIMA (Hyndman and Khandakar 2008).

Forecasting Accuracy. Table 1 summarizes the multivari-
ate forecasting results. NHITS outperforms the best baseline,
with average relative error decrease across datasets and hori-
zons of 14% in MAE and 16% in MSE. NHITS maintains a
comparable performance to other state-of-the-art methods for
the shortest measured horizon (96/24), while for the longest
measured horizon (720/60) decreases multivariate MAE by
11% and MSE by 17%. We complement the key results in
Table 1, with the additional univariate forecasting experi-
ments in Appendix F, again demonstrating state-of-the-art
performance against baselines.

Computational Efficiency. We measure the computational
training time of NHITS, N-BEATS and Transformer-based
methods in the multivariate setting and show compare in Fig-
ure 4. The experiment monitors the whole training process
for the ETTm2 dataset. For the Transformer-based models we
used hyperparameters reported in (Wu et al. 2021). Compared
to the Transformer-based methods, NHITS is 45× faster than
Autoformer. In terms of memory, NHITS has less than
26% of the parameters of the second-best alternative since it
scales linearly with respect to the input’s length. Compared
to the original N-BEATS, our method is 1.26× faster and re-
quires only 54% of the parameters. Finally, while NHITS is
an univariate model, it has global (shared) parameters for all
time-series in the dataset. Just like (Oreshkin et al. 2020), our
experiments (Appendix I) show that NHITS maintains con-
stant parameter/training computational complexity regarding
dataset’s size.
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NHITS N-BEATS FEDformer Autoformer Informer LogTrans DilRNN ARIMA
H. MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2

96 0.176 0.255 0.184 0.263 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.343 0.401 0.225 0.301
192 0.245 0.305 0.273 0.337 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 0.424 0.468 0.298 0.345
336 0.295 0.346 0.309 0.355 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 0.632 1.083 0.370 0.386
720 0.401 0.413 0.411 0.425 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 0.634 0.594 0.478 0.445

E
C
L

96 0.147 0.249 0.145 0.247 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.233 0.927 1.220 0.814
192 0.167 0.269 0.180 0.283 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.265 0.921 1.264 0.842
336 0.186 0.290 0.200 0.308 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.235 0.896 1.311 0.866
720 0.243 0.340 0.266 0.362 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.322 0.890 1.364 0.891

E
x
c
h
a
n
g
e 96 0.092 0.202 0.098 0.206 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 0.383 0.45 0.296 0.214

192 0.208 0.322 0.225 0.329 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 1.123 0.834 1.056 0.326
336 0.301 0.403 0.493 0.482 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 1.612 1.051 2.298 0.467
720 0.798 0.596 1.108 0.804 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.827 1.131 20.666 0.864

T
r
a
f
f
i
c
L 96 0.402 0.282 0.398 0.282 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 0.580 0.308 1.997 0.924

192 0.420 0.297 0.409 0.293 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 0.739 0.383 2.044 0.944
336 0.448 0.313 0.449 0.318 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 0.804 0.419 2.096 0.960
720 0.539 0.353 0.589 0.391 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 0.695 0.372 2.138 0.971

W
e
a
t
h
e
r 96 0.158 0.195 0.167 0.203 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.193 0.245 0.217 0.258

192 0.211 0.247 0.229 0.261 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.255 0.306 0.263 0.299
336 0.274 0.300 0.287 0.304 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.329 0.360 0.330 0.347
720 0.351 0.353 0.368 0.359 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 0.521 0.495 0.425 0.405

I
L
I

24 1.862 0.869 1.879 0.886 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 4.538 1.449 5.554 1.434
36 2.071 0.934 2.210 1.018 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 3.709 1.273 6.940 1.676
48 2.134 0.932 2.440 1.088 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 3.436 1.238 7.192 1.736
60 2.137 0.968 2.547 1.057 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 3.703 1.272 6.648 1.656

Table 1: Main empirical results in long-horizon forecasting setup, lower scores are better. Metrics are averaged over eight runs,
best results are highlighted in bold. In Appendix E we complement the main results with standard deviations.
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Figure 5: ETTm2 and 720 ahead forecasts using NHITS (left panel), NHITS with hierarchical linear interpolation and multi-rate
sampling removed (right panel). The top row shows the original signal and the forecast. The second, third and fourth rows show
the forecast components for each stack. The last row shows the residuals, y − ŷ. In (a), each block shows scale specialization,
unlike (b), in which signals are not interpretable.
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H. NHITS NHITS2 NHITS3 NHITS4 N-BEATSi

96 0.239 0.241 0.237 0.240 0.254
192 0.290 0.299 0.291 0.300 0.307
336 0.338 0.342 0.346 0.352 0.405
720 0.439 0.450 0.454 0.468 0.597

Table 2: Empirical evaluation of long multi-horizon multivari-
ate forecasts for NHITS with/without enhancements. MAE
for predictions averaged over eight runs, and five datasets.

Training and Hyperparameter Optimization
We consider a minimal search space. We tune the kernel size
for multi-rate sampling from Equation (1) and the number of
coefficients from Equation (2), some matching common sea-
sonalities and others exponentially increasing. Additionally,
we tune the random seed to escape underperforming local
minima. Details are reported in Table A3 in Appendix D.

During the hyperparameter optimization phase, we mea-
sure MAE on the validation set and use a Bayesian opti-
mization library (HYPEROPT; Bergstra et al. 2011), with 20
iterations. We use the optimal configuration based on the vali-
dation loss to make predictions on the test set. We refer to the
combination of hyperparameter optimization and test predic-
tion as a run. NHITS is implemented in PyTorch (Paszke et
al. 2019) and trained using ADAM optimizer (Kingma and Ba
2014), MAE loss, batch size 256 and initial learning rate of
1e-3, halved three times across the training procedure. All our
experiments are conducted on a GeForce RTX 2080 GPU.

Ablation Studies
We believe that the advantages of the NHITS architecture are
rooted in its multi-rate hierarchical nature. Fig. 5 shows a
qualitative comparison of NHITS with and without hierarchi-
cal interpolation/multi-rate sampling components. Unlike the
control model, we clearly see NHITS developing the ability
to produce interpretable forecast decomposition providing
valuable information about trends and seasonality in separate
channels. Appendix G presents the decomposition for the
different interpolation techniques.

We support our qualitative conclusion with quantitative
results. We define the following set of alternative models:
NHITS2 only hierarchical interpolation, NHITS3 only multi-
rate sampling, NHITS4 no multi-rate sampling or interpo-
lation (corresponds to the original N-BEATSg (Oreshkin
et al. 2020)), finally N-BEATSi, the interpretable version
of the N-BEATS ((Oreshkin et al. 2020)). Tab. 2 clearly
shows that combining both proposed components results in
the best performance, emphasizing their complementary na-
ture in long-horizon forecasting. We see that the original
N-BEATS is consistently worse, especially the N-BEATSi.
The advantages of multi-rate sampling, and interpolation for
long-horizon forecasting, are not limited to the NHITS archi-
tecture. In Appendix H we demonstrate how adding them to
a DilRNN improves its performance.

Additional ablation studies are reported in Appendix
G. The MaxPool multi-rate sampling wins over Average-

Pool. Linear interpolation wins over nearest neighbor and
cubic. Finally and most importantly, we show that the or-
der in which hierarchical interpolation is implemented mat-
ters significantly. The best configuration is to have the low-
frequency/large-scale components synthesized and removed
from analysis first, followed by more fine-grained modeling
of high-frequency/intermittent signals.

Discussion of Findings
Our results indicate the complementarity and effectiveness of
multi-rate sampling and hierarchical interpolation for long-
horizon time-series forecasting. Table 2 indicates that these
components enforce a useful inductive bias compared to both
the free-form model NHITS4 (plain fully connected archi-
tecture) and the parametric model N-BEATSi (polynomial
trend and sinusoidal seasonality used as basis functions in two
respective stacks). The latter provides a detrimental inductive
bias for long-horizon forecasting. We barely scratched the
surface in the right direction and further progress is possi-
ble using advanced multi-scale processing approaches in the
forecasting context, motivating further research.
NHITS outperforms SoTA baselines and provides an in-

terpretable non-linear decomposition. Fig. 1 and 5 showcase
NHITS perfectly specializing and reconstructing latent har-
monic signals from synthetic and real data respectively. This
novel interpretable decomposition can provide insights to
users, improving their confidence in high-stakes applications
like healthcare. Finally, NHITS hierarchical interpolation is
connected to Wavelet’s multi-resolution analysis (Daubechies
1992). Replacing the interpolation functions with orthogonal
Wavelet spaces is a possible research line.

Our study questions the effectiveness of existing long-
horizon multi-variate forecasting approaches, as all of them
are substantially outperformed by our univariate algorithm.
If these approaches underperform due to overfitting problems
at the level of marginals, the integration of our approach with
Transformer-inspired architectures is a promising research
direction as Appendix F results suggest. However, there is
a chance that existing approaches underperform due to their
inability to integrate information from multiple variables,
which clearly hints at possibly untapped research potential.
Whichever is the case, we believe our results provide a strong
guidance signal and a valuable baseline for future research in
the area of long-horizon multivariate forecasting.

Conclusions
We proposed a novel neural forecasting algorithm NHITS
that combines two complementary techniques, multi-rate in-
put sampling, and hierarchical interpolation, to produce dras-
tically improved, interpretable, and computationally efficient
long-horizon time-series predictions. Our model, operating
in the univariate regime and accepting only the predicted
time-series history, significantly outperforms all previous
Transformer-based multi-variate models using an order of
magnitude less computation. This sets a new baseline for all
ensuing multivariate work on six popular datasets and moti-
vates research to effectively use information across variables.
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