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Abstract

We develop the first fully dynamic algorithm that maintains
a decision tree over an arbitrary sequence of insertions and
deletions of labeled examples. Given ε > 0 our algorithm
guarantees that, at every point in time, every node of the de-
cision tree uses a split with Gini gain within an additive ε of
the optimum. For real-valued features the algorithm has an
amortized running time per insertion/deletion of O

(
d log3 n
ε2

)
,

which improves to O
(
d log2 n

ε

)
for binary or categorical fea-

tures, while it uses space O(nd), where n is the maximum
number of examples at any point in time and d is the num-
ber of features. Our algorithm is nearly optimal, as we show
that any algorithm with similar guarantees requires amortized
running time Ω(d) and space Ω̃(nd). We complement our the-
oretical results with an extensive experimental evaluation on
real-world data, showing the effectiveness of our algorithm.

1 Introduction
Decision trees are a cornerstone of machine learning, and
an essential tool in any machine learning library. Given a
feature domain X and a label domain Y , a decision tree is
a function f : X 7→ Y that assigns to each x ∈ X a label
y ∈ Y by traversing a tree T from its root node to a leaf. At
each node of the tree, an example x is evaluated by some
rule that determines which successor should receive x — for
instance, a common rule is a simple threshold on some feature.
Every leaf is associated with a label, which is the result of
the prediction when such a leaf is reached. The problem
of constructing an optimal decision tree is NP-hard w.r.t.
to several natural objective functions (Shalev-Shwartz and
Ben-David 2014). This has led to the introduction of several
heuristic approaches, such as ID3, C4.5, C5.0 and CART,
which have proven very effective and are now considered
state of the art. Typically, those approaches proceed in a
greedy fashion by selecting for each node a feature and a
splitting value (we shall call such a pair a split) that optimize
some measure of improvement such as the Gini gain or the
information gain. This is repeated until a stopping condition
is met, such as the tree reaching a certain height or the number
of examples at every leaf falling below some threshold.
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Recently, there have been significant efforts to adapt ma-
chine learning algorithms to a fully dynamic setting, where
the algorithm is asked to process an arbitrary list of insertions
or deletions. Insertions are typically the result of new data be-
ing collected or revealed, while deletions can be the result of
noise removal, removal of personal data for privacy concerns,
data becoming obsolete, etc. It might not be desirable to make
any assumption on such a list of update operations, which mo-
tivates the design of fully dynamic algorithms. Most works
in fully-dynamic machine learning algorithms have focused
on unsupervised tasks such as clustering (Cohen-Addad et al.
2019; Henzinger and Kale 2020; Bateni et al. 2021; Chan,
Guerqin, and Sozio 2018) or graph mining (Sawlani and
Wang 2020; Bhattacharya et al. 2015; Epasto, Lattanzi, and
Sozio 2015; De Stefani et al. 2017).

For decision trees, however, only incremental algorithms
are known, which handle insertions but not deletions.1
The state of the art in this case is given by Hoeffding
Trees (Domingos and Hulten 2000) and their evolutions such
as EFDT or HAT (see (Manapragada et al. 2022) for a survey).
Not only are these algorithms incapable of handling deletions,
but no good bound on their amortized cost is known, while
guarantees hold only if the insertions are i.i.d. from some
distribution. Our work represents one of the first studies on
fully-dynamic supervised machine learning which has been
mostly unexplored so far, to the best of our knowledge.

Defining what kind of decision tree a dynamic algorithm
should maintain requires some care. The first natural attempt
is to maintain the very same decision tree that the greedy
approaches above (ID3, C4.5, etc.) would produce from the
current set of examples. Thus, at any time, every node should
use a split with maximal gain with respect to the set of exam-
ples held by its subtree. The problem with this goal is that,
at some point, the gains of the best and second-best splits
may differ by just O(1/n) where n is the total number of
examples. In that case,O(1) updates can turn the second-best
split into the best one, possibly forcing a reconstruction of
the whole tree. The same happens if one wants splits within
multiplicative factors of the best one, as the latter may be in
O(1/n). Hence, in those cases it is unclear whether there is
an efficient fully-dynamic algorithm. The next natural goal
is maintaining a tree with ε-optimal splits, that is, within an

1These algorithms are also called online decision tree algorithms
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additive ε of the best ones. We shall call such a decision tree
ε-feasible. Aiming at an ε-feasible tree is reasonable, since
excessively small gains are statistically not significant (a gain
of, say, 10−4 is likely the result of noise) and thus approx-
imating large gains is enough. Indeed, algorithms such as
EFDT or HAT try to maintain precisely an ε-feasible tree.
However, their approach is based on computing exactly the
Gini gains. For real-valued features, doing that for every pos-
sible split would lead to anO(n) amortized cost. Hence, they
resort to a heuristic which comes at the price of worse results.

In this work we develop an efficient fully-dynamic algo-
rithm for maintaining an ε-feasible decision tree. Our first
observation is that, in order to change by an additive term ε
the gain of a given split on a sequence of examples S, one
must make Ω(ε|S|) insertions or deletions. Thus, one could
rebuild a subtree after Θ(ε|S|) updates, without even tracking
the gains, with the number of updates covering the rebuilding
cost. Intuitively speaking, this is one of the arguments we use
in our amortized cost analysis, which is pretty standard. How-
ever, this yields amortized time bounds that are quadratic
in the height h of the tree, because a sequence of updates
can force a “cascade” of rebuilds on Θ(h) subtrees each hav-
ing height Θ(h). We show how to bypass this obstacle and
save a factor of h in the amortized cost with a “proactive”
strategy that rebuilds subtrees slightly larger than necessary.
Through a careful amortized analysis based on a few charg-
ing arguments, this yields our fully-dynamic algorithm for
real-valued features. For categorical features, our algorithm
can be improved via a faster tree reconstruction subroutine.
Moreover, our algorithm can satisfy constraints more general
than just ε-feasibility, including pruning at a certain height
or guaranteeing splits only if enough examples are available.
Finally, we prove that our algorithms are nearly optimal: no
algorithm can beat their time or space usage by more than
poly log(nd) factors, even if one looks at algorithms attain-
ing considerably weaker guarantees. Our contributions can
be summarized as follows:

• We present FUDYADT, a deterministic algorithm for
maintaining an ε-feasible decision tree under an arbitrary
sequence of insertions and deletions. It uses O(nd) space,
while it has O

(
d log3 n
ε2

)
amortized running time for real-

valued features and O
(
d log2 n

ε

)
for categorical ones.

• We prove a lower bound of Ω̃(nd) on the space require-
ments and of Ω(d) on the amortized running time of any
fully dynamic algorithm, even in easier settings. This
makes FUDYADT optimal up to poly log(nd) factors.
• We conduct an extensive experimental evaluation on real-

world data, evaluating FUDYADT’s speed and accuracy
against state-of-the-art tools such as EFDT and HAT.

Related Work. The works closest to ours are those in the
incremental setting. Here, the algorithm receives a stream of
examples from a distribution, and has to perform well when
compared to the offline tree built on the entire sequence. In
this setting, Hoeffding trees (Domingos and Hulten 2000)
emerged as one of the most effective approaches, inspir-
ing several variants, even ones capable of handling concept
drifts (Hulten, Spencer, and Domingos 2001; Gama, Rocha,

and Medas 2003; Manapragada, Webb, and Salehi 2018; Das
et al. 2019; Sun et al. 2020; Haug, Broelemann, and Kas-
neci 2022; Jin and Agrawal 2003; Rutkowski et al. 2013);
see (Manapragada et al. 2022) for a survey. These algorithms
crucially rely on the examples being i.i.d., which allows them
to compute good splits with high probability via concentra-
tion bounds (whence the name). Moreover, those algorithms
cannot handle efficiently real-valued features, since on those
features they would update Θ(n) counters at each time, even
when only insertions are allowed. Our algorithms instead effi-
ciently handle arbitrary sequences of insertions and deletions
of examples with real-valued features.

We observe that there are general techniques to turn of-
fline data structures into dynamic ones, see (Bentley and
Saxe 1980). Those techniques, however, work only for prob-
lems that have a special decomposability property — loosely
speaking, the answer to a query (e.g., find min(X) for some
set X) must be quickly computable from the answers to sub-
queries (e.g., min(A∪B) = min(min(A),min(B))). In our
case, a query corresponds to the label predicted by the tree
for a given x. Unfortunately, our problem is far from decom-
posable and it does not seem solvable via such techniques.

2 Preliminaries
All missing proofs can be found in the full version (Bressan,
Damay, and Sozio 2022). We denote the feature and label
domains respectively by X and Y; by default X = Rd and
Y = {0, 1}. We denote by (x, y) ∈ X ×Y a labeled example,
by xj the value of its j-th feature, and by S a multiset of
labeled examples. We may treat S as a sequence; this will be
clear from the context. We assume examples can be stored
in O(d) bits, while the xj’s can be accessed in time O(1).
We let S[. . .] be the subset of S matching a condition; e.g.
S[xj ≤ t] = {(x, y) ∈ S : xj ≤ t}. A split is a pair
(j, t) ∈ [d]×R. We use the bold font for vectors (e.g. xxx). We
use Gini gain to measure split quality.
Definition 2.1. The Gini index of S is g(S) = 2 pS(1− pS),
where pS = 1

|S|
∑

(x,y)∈S y. The Gini gain of (j, t) on S is:

G(S, j, t) = g(S)−
(
|S−|
|S|

g(S−) +
|S+|
|S|

g(S+)

)
(1)

where S− = S[xj ≤ t] and S+ = S[xj > t]. When |S| = 0
we define g(S) = 0 andG(S, j, t) = 0 for all (j, t) ∈ [d]×R.

For all j ∈ [d] let G(S, j) = maxt∈RG(S, j, t). Hence,
arg maxj G(S, j) is a feature with maximum Gini gain over
S. Finally, we let G(S) = maxj∈[d]G(S, j).

We rely on the following smoothness properties of the
Gini index and the Gini gain. Given two multisets/sequences
S, S′, their edit distance 4(S, S′) is the minimum number
of insertions and deletions to obtain S′ from S, and their
relative edit distance is4∗(S, S′) = 4(S,S′)

max(|S|,|S′|) .

Lemma 2.2. Let S, S′ be multisets of labeled examples.
1. |G(S, j, t)−G(S′, j, t)| ≤ 124∗(S, S′), ∀(j, t) ∈ [d]×R
2. |g(S)− g(S′)| ≤ 2.54∗(S, S′).
Decision trees. A decision tree is a triple (T,Σ, L), where
T = (V,A) is a directed binary tree rooted at r(T ), and Σ
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and L are functions that assign splits to internal nodes and
labels to the leaves. More formally Σ = {σv : v ∈ V (T )}
where σv = (jv, tv) ∈ [d]×R for every internal node v of T ,
while L = {Lv : v ∈ V (T )} where Lv ∈ {0, 1} for every
leaf v of T . For any x ∈ X and any internal vertex v of T
let succ(v, x) be the left child of v if xj ≤ t and the right
child of v otherwise, where σv = (j, t). For any v ∈ V (T )
let Pv = (v0, . . . , v`) be the unique path from v0 = r(T ) to
v` = v. For a multiset S, denote by Sv the set of examples
x ∈ S such that succ(vi, x) = vi+1 for all i = 0, . . . , `− 1;
this is the subset of S associated to v. For every x ∈ X let
v(x) be the leaf x is associated to. The labeling given by T
is the function T : X → Y such that T (x) = Lv(x) for every
x ∈ X . We denote by Tv the subtree of T rooted at v and by
(T,Σ, L)v the decision subtree rooted at v.
Algorithms. A fully-dynamic decision tree algorithm A is
defined as follows. The input of A is an update sequence
U of requests of three types: insertion, INS(x, y); deletion,
DEL(x, y); labeling, LAB(x). Each such sequence U induces
an active multiset of labeled examples S obtained by insert-
ing/deleting the examples following the order of the sequence.
Suppose A has processed an update sequence U . We say A
is coherent with a decision tree T if, for every x ∈ X , any
further request LAB(x) makes A output T (x). The query
time of A is the worst-case time it takes to A to output T (x).
Our goal is to construct a fully dynamic algorithm A that has
low query time and, at every point in time, is coherent with a
decision tree T that is εεε-feasible with respect to the current
active set S (see below).

3 A Fully Dynamic Decision Tree Algorithm
This section presents FUDYADT (Fully Dynamic Amortized
Decision Tree). As argued in Section 1, one of our goals is to
ensure that every node of the tree uses a split whose gain is
within an additive ε of the maximum. FUDYADT satisfies a
stricter guarantee, called εεε-feasibility, which allows to also
prune the tree at some height or at leaves with few examples.

Definition 3.1. Let k, h ∈ N, and let εεε = (α, β) where
α, β ∈ (0, 1]. A decision tree (T,Σ, L) is εεε-feasible, with
pruning thresholds (k, h), w.r.t. a multiset S of labeled exam-
ples if for every v ∈ V (T ):

1. if |Sv| ≤ k or g(Sv) = 0 or depthT (v) = h then v is a
leaf, else if g(Sv) ≥ α then v is an internal node

2. if σv = (j, a) thenG(Sv, j, a) ≥ G(Sv, j
′, a′)−β for all

(j′, a′) ∈ [d]× R
3. if v is a leaf then Lv is a majority label of Sv

For any fixed pruning thresholds k, h we say that a fully
dynamic algorithm A is εεε-feasible if, at any point in time, A
is coherent with a decision tree (T,Σ, L) that is εεε-feasible
with respect to the current active set. When k = 1 and h =∞
and α = β, εεε-feasibility reduces to the following condition:
if g(Sv) = 0 then v is a leaf, and if g(Sv) ≥ α then v is
internal and use an α-optimal split. This is the ε-optimality
condition of Section 1 used by incremental algorithms such
as Hoeffding trees and EFDT. We prove:

Theorem 3.2. Let X = Rd, let k, h be positive integers, let
α, β ∈ (0, 1], and let 0 < ε < min

(
1
k+1 ,

α
5 ,

β
12.5

)
. There is

Algorithm 1 FUDYADT.UPDATE

1: procedure UPDATE((T,Σ, L), (x, y), o)
2: Pvκ` ← vκ1 , . . . , vκ` with vκ1 = r(T ), vκ` = v(x)

3: update Dvκ`
and DL

vκ`
according to (x, y), o

4: Lvκ` ← any majority label in DL
vκ`

5: for i = 1, . . . , ` do
6: c(vκi)← c(vκi) + 1
7: if c(vκi) > ε · s(vκi) then
8: ŝ← 2dlog s(vκi )e
9: j ← min{j′ ∈ {0, . . . , i} : s(vκj′ ) ≤ ŝ}

10: (T ′,Σ′, L′)← BUILD(Svκj , i)
11: (T,Σ, L)vκj ← (T ′,Σ′, L′)
12: return

a deterministic (α, β)-feasible fully dynamic decision tree
algorithm with pruning thresholds k, h that has query time
O(h∗), uses space O(nd), and has amortized running time
per update O

(
dh∗ log2 n

ε

)
= O

(
d log3 n
ε2

)
, where h∗ ≤ h and

n are respectively the maximum height of the tree and the
maximum size of the active set at any time.

Theorem 3.2 can be improved for categorical features, that
is, when X = Ad for some fixed finite set A; this includes
the case of binary features, A = {0, 1}.
Theorem 3.3. IfX = Ad for a finite setA then the amortized
time bound of Theorem 3.2 can be improved to O

(
d log2 n

ε

)
.

The rest of this section describes FUDYADT and proves
Theorem 3.2, except for the εεε-feasibility part, which is proven
in the full version, as is Theorem 3.3. Before moving on, let
us give some intuition on FUDYADT. The algorithm con-
sists of the two routines UPDATE and BUILD below. Those
routines maintain a decision tree T , and, for each leaf v of
T , dictionaries Dv and DL

v storing respectively the multiset
Sv associated to v and the frequency histogram of the labels
of Sv. At every insertion or deletion of an example (x, v),
UPDATE computes the leaf v = v(x) where x ends up, and
updates Dv and DL

v consequently, see line 3. Then, UPDATE
checks if any subtree should be rebuilt. To this end, for every
vertex u ∈ V (T ) it maintains two counters, s(u) and c(u),
storing respectively the size of the multiset on which the sub-
tree Tu was rebuilt the last time and the number of updates
that reached u since that time. As soon as c(u) > ε · s(u)
for some u ∈ V (T ), UPDATE invokes BUILD to rebuild an
appropriately chosen supertree of Tu.

Let us move to the bounds of Theorem 3.2. Proving those
bounds requires some care in charging the cost of rebuilding
the subtrees to the update requests. To this end, we need the
following two simple results proven in the full version. From
now on, by “time t” we mean the t-th invocation of UPDATE.
Lemma 3.4. Let (T,Σ, L) be the result of t ≥ 0 invocations
of UPDATE. Then (1− ε) · st(v) ≤ |Stv| ≤ (1 + ε) · st(v) for
every v ∈ V (T ), where st(v) is the value of s(v) at time t.
Lemma 3.5. Let (T,Σ, L) be a decision tree built on a se-
quence S. If every v ∈ V (T ) uses a split with gain at least
γ > 0 w.r.t. Sv , then T has height O (log |S| / γ).
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Algorithm 2 FUDYADT.BUILD

1: procedure BUILD(S, η)
2: r ← new vertex, c(r)← 0, s(r)← |S|
3: if |S| ≤ k or g(S) ≤ α

2 or η = h then
4: store S in a dynamic dictionary Dr

5: and its labels in a dynamic dictionary DL
r

6: (T,Σ, L)← decision tree with T = ({r}, ∅)
7: Lr ← any majority label in DL

r
8: else if g(S) > α

2 then
9: (j, a)← arg max{G(S, ι̂, â) : (ι̂, â) ∈ [d]×R}

10: T1 ← BUILD(S[xj ≤ a], η + 1)
11: T2 ← BUILD(S[xj > a], η + 1)
12: (T,Σ, L)← decision tree with root r, T1, T2 as

left, right subtrees, and split σr = (j, a)

13: return (T,Σ, L)

We can now prove:

Lemma 3.6. BUILD and UPDATE can be implemented so
that any T invocations of UPDATE take time

O

(
T · d · h · (log n)2

ε

)
= O

(
T · d · (log n)3

ε2

)
(2)

Proof. First we describe the data structures and the time
taken by the basic operations of BUILD and UPDATE. Using
a self-balancing tree for Dv we ensure search, insert, update,
and deletion in time O(d logN), and enumeration in time
O(dN) — recall that every element takesO(d) bits — where
N is the number of distinct entries in the data structure. The
same for DL

v , which has at most 2 distinct entries. Thus the
block at line 3 of BUILD(S, i) runs in time O(d|S| log |S|).

If instead the condition at line 3 fails, then BUILD must
compute (j, a). To this end one proceeds as follows. First,
for each j ∈ [d] one computes the projection S|j of S on the
j-th feature (keeping the label as well). Then one sorts S|j
according to the feature values in time O(|S| log |S|). Next,
one scans S|j and finds the threshold t∗ for which a split on
j yields maximum gain in time O(|S|). To this end one just
needs to keep label counts for the subsequence formed by the
first i examples in S|j , so that the gain a split at that point
would yield can be computed in time O(1) from the counts
of the first (i − 1) examples. Summarizing, one can com-
pute the optimal split (j, a) in time O(d|S| log |S|). Since
|S[xj ≤ a]|+ |S[xj > a]| = |S|, it follows that BUILD(S, i)
always runs in time O(d|S| log |S|(h + log |S|)), which is
in O(d|S| log n(h + log n)) since |S| ≤ n by definition of
n. For UPDATE, computing vκ1

, . . . , vκ` takes time O(h),
while performing any INS or DEL operation on Svκ` takes
time O(d log |St|) = O(d log n). Finally, computing the in-
put Svκj of BUILD takes timeO(|Svκj |) by visiting Tvκj and
listing the data structures at its leaves.

Now, we bound the total time taken by T succes-
sive invocations of UPDATE. Let B = {t ∈ [T ] :
BUILD is invoked at time t}. For every t ∈ B let b(t) be
such that vb(t) is the vertex vκj on which BUILD is invoked.

The total running time cost(T ) of the T invocations satisfies:

cost(T ) ≤
T∑
t=1

O(h+ d log n)

+
∑
t∈B

O
(

(h+ log n) · log n · d · |Stvb(t) |
)

(3)

The first term contributes O(T (h+d log n)). We now bound
the second term. For every t ∈ B consider the t-th execution
of UPDATE. Let st(v) be the value of s(v) right before BUILD
is invoked, and vi(t) be the vertex that satisfies the condition
at line 7 of UPDATE. Note that vi(t) is by construction a
descendant of vb(t). Finally, for v ∈ {vb(t), vi(t)} let ct(v)
and st(v) be the values of c(v) and s(v) right after line 6 is
executed with vκi = v. Then:∑

t∈B
|Stvb(t) | ≤ 2 ·

∑
t∈B

st(vb(t)) (4)

≤ 4 ·
∑
t∈B

st(vi(t)) (5)

≤ 4

ε
·
∑
t∈B

ct(vi(t)) (6)

≤ 4

ε
·
∑
t∈B

ct(vb(t)) (7)

where (4) follows from Lemma 3.4 noting that ε ≤ 1, (5)
and (6) follow respectively from lines 8-9 and line 7 of UP-
DATE, and (7) follows from the fact that ct(v) ≤ ct(u) if v is
a descendant of u. Now observe that at every time t at most
h counters c(v) are increased by one unit; therefore,∑

t∈B
ct(vb(t)) ≤ |B| · h ≤ T · h (8)

We conclude that
∑
t∈B |Stvb(t) | ≤ T

4h
ε . Plugging this bound

in (3) and noting that the second sum dominates, we obtain:

cost(T ) = O

(
T · (h+ log n) · log n · d · h

ε

)
(9)

Next we prove a second bound on cost(T ); the final bound
comes from taking the minimum.

Consider the t-th execution of UPDATE, let (x, y) the ex-
ample that is inserted or removed, and recall that Pv(x) is the
path from the root of the tree to the leaf v(x) determined by x.
Let Ct = {vk1 , . . . , vkM } be the set of all vertices of Pv(x)

such that BUILD(Stivki
, i) is executed at some time ti ≥ t.

If Ct 6= ∅ then we call Ct a charging set. We wish to
bound the maximum size of Ct, which might be seen as the
number of BUILD operations performed per update. We shall
prove the following two properties:

P1: ∀t ∈ [T ], |Ct| ≤ dlog(n)e
P2: ∀t ∈ B, ct(vb(t)) ≤

∑t
τ=1 1vb(t)∈Cτ

We start with P1. We argue that there cannot be distinct nodes
vki and vkj in Ct such that dlog sτ (vki)e = dlog sτ (vkj )e
for any τ ∈ [ti, tj ]. Suppose τ = ti; vki cannot be an ancestor
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of vkj , for otherwise vkj would not be connected to the root
node at time tj and BUILD(S

tj
vkj
, j) would not be executed. If

vkj is an ancestor of vki , UPDATE would not have performed
BUILD(Stivki

, i) at time ti, in that, there is at least one other
node (vkj ) which is closer to the root and that would have
been selected instead (line 9 of UPDATE). The claim holds
for every τ , as sτ (vkj ) = sti(vkj ), for every τ ∈ [ti, tj ].
Therefore |Ct| ≤ dlog ne.

For P2 we proceed as follows. Let t0 < t be such that
c(vb(t)) is set to 0 by BUILD (i.e., the point in time when
vb(t) was created by BUILD, line 2), and let q = ct(vb(t)). By
construction of UPDATE, there are q distinct times t0 + 1 ≤
τ1 < · · · < τq ≤ t such that, for every i ∈ [q], we have
cτi(vb(t)) = cτi−1(vb(t)) + 1 and vb(t) ∈ Cτi , proving P2.

We obtain the following chain of inequalities:∑
t∈B

ct(vb(t)) ≤
∑
t∈B

t∑
τ=1

1vb(t)∈Cτ ≤
∑
t∈B
|Cτ | (10)

where the inequalities follow respectively from P2 and from
the fact that vb(t) 6= vb(t′) for t 6= t′. Using P1 and B ⊆ [T ],
we conclude that

∑
t∈B c

t(vb(t)) = O(T · log n). Plugging
this bound into (3) yields:

cost(T ) = O

(
T · (h+ log n) · log n · d · log n

ε

)
(11)

Taking the minimum of (9) and (11) yields that cost(T ) is in

O
(
T · (h+ log n) · log n · d · min(h, log n)

ε

)
(12)

As (x+y) min(x, y) ≤ 2xy for x, y ≥ 0 we conclude that
cost(T ) = O

(
T dh(log n)2/ε

)
. Noting that h ∈ O

(
logn
ε

)
by Lemma 3.5 concludes the proof.

4 Lower Bounds
This section proves lower bounds on the space and amortized
running time used by any fully dynamic algorithm for our
problem. These bounds hold even under significant relax-
ations of both the input access model and the constraints of
Section 3. Notably, they hold for randomized algorithms that
can fail with constant probability under inputs provided by
oblivious adversaries.

To state our bounds we need some more definitions. A
label y is εεε-feasible for x ∈ X w.r.t. S if there is a decision
tree (T,Σ, L) that is εεε-feasible w.r.t. S such that T (x) = y.
Note that there might be multiple εεε-feasible labels for x. A
decision tree algorithm A is weakly (εεε, δ)-feasible w.r.t. S if
for every x ∈ X there is a decision tree (Tx,Σx, Lx) that is
εεε-feasible w.r.t. S and such that Pr(AS(x) = Tx(x)) ≥ δ.
Note that (εεε, δ)-feasibility is much weaker than εεε-feasibility:
not only it allows the algorithm to fail, but it does not even
require it to be coherent with any given εεε-feasible tree.
Theorem 4.1. Let k∗, h∗ ≥ 1, and let εεε = (α, β) with 0 ≤
α ≤ 1 and 0 ≤ β < 1

24 . Any weakly (εεε, 3
4 )-feasible fully

dynamic algorithm with pruning thresholds k∗, h∗ uses space
Ω
(

n·d
k·log n

)
, where d is the number of features and n is the

maximum size of the active set at any point in time.

Proof. We reduce from the following classic two-party com-
munication problem called INDEX. Alice is given a string
x ∈ {0, 1}N and Bob is given an integer i ∈ [N ]. Alice is
allowed to send one messageM ∈ {0, 1}∗ to Bob, which,
after receivingM, outputs a single bit. The goal of Bob is to
output precisely xi. It is well known that for Bob to succeed
with probability greater than 3

4 we must have |M| = Ω(N),
see (Henzinger and Kale 2020).

We reduce INDEX to the construction of an (εεε, 3
4 )-feasible

fully dynamic algorithm. For some positive integers N,D,
Alice is given an arbitrary string in {0, 1}ND representing a
matrix A ∈ {0, 1}N×D. Bob is given a pair (κ, `) ∈ [N ] ×
[D] and must output Aκ`. By the lower bound above, Alice
must send to Bob Ω(ND) bits in order for Bob to succeed
with probability greater than 3

4 .
The reduction is as follows. Let k = k∗. First, Alice

computes the following sequence S of |S| = N · D · 2k
examples. Let D̄ := dlog(N + D) + 1e, and for all i ∈
[N + D] let bbbi ∈ {0, 1}D̄ be the binary representation of
i. For simplicity and w.l.g. we assume k to be an even
integer. For every i ∈ [N + D] Alice constructs 2k ex-
amples (xxx1

i , y
1
i ), . . . , (xxx2k

i , y
2k
i ) with X = {0, 1}D+D̄ and

Y = {0, 1}, as follows. For every i ∈ [N + D] and every
h ∈ [2k], the last D̄ bits of xxxhi correspond to the string bbbi
(i.e., xhij = bij for all j ∈ [D + 1, D + D̄]), and yhi = 1h>k.
The remaining bits of xxxhi are defined as follows. If i ∈ [N ],
then for all j ∈ [D]:

xhij :=

{
1−Aij , h ∈ [k];

Aij , h ∈ [k + 1, 2k];

while if i ∈ [N + 1, N + D], then for all j ∈ [D] and
h ∈ [2k]:

xhij :=

{
1, j ∈ [D] \ {i−N}, h mod 2 = 0;

0, otherwise;

Let A be any (εεε, 3
4 )-feasible fully dynamic algorithm with

β < 1
24 . Alice asks A to add every element of S, then she

sends a snapshot of its memory to Bob, which resumes the
execution of A. Next, Bob asks A to perform DEL(xxx, y) for
every y ∈ {0, 1} and every xxx ∈ {0, 1}D+D̄ terminating with
the D̄-bits binary string bbbi, for all i ∈ [N +D] \ {κ,N + `}.
Finally, Bob asks A to label 111, and outputs the answer.

First, we claim that Bob outputs Aκ`. To prove this, note
that the active set received by A is:

Ŝ =
{

(xxxhκ, y
h
κ) : h ∈ [k]

}
∪
{

(xxxhN+`, y
h
N+`) : h ∈ [k]

}
We prove that any decision tree that is εεε-feasible with respect
to Ŝ labels the example 111 with Aκ`. To this end we show that
in any such tree, (i) the root splits on feature `, (ii) the child
v of the root corresponding to feature ` equal to 1 is a leaf
with label Aκ`. For (i), we prove that Ŝ does not meet any
stopping condition, and that j is the only β-optimal feature.
The claim on the stopping condition is immediate. For the
optimality of `, we claim that:

G(Ŝ, j) =


1/6, j = `
1/8, j ∈ [D] \ {`}
0, otherwise

(13)
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To begin, note that g(Ŝ) = 1
2 . Let Ŝ1 and Ŝ2 be the two

subsequences obtained by splitting Ŝ on j. When j ∈ `, Ŝ1

contains k examples with identical labels, so g(Ŝ1) = 0,
while Ŝ2 contains 3k examples of which 2k have identical la-
bel, so g(Ŝ2) = 4

9 . Thus G(Ŝ, `) = 1
2 −

(
1
4 · 0 + 3

4 ·
4
9

)
= 1

6 .
When j ∈ [D] \ {`}, both Ŝ1 and Ŝ2 contain k examples
of
{

(xxxhκ, y
h
κ) : h ∈ [k]

}
with identical label, as well as k ex-

amples of
{

(xxxhN+`, y
h
N+`) : h ∈ [k]

}
with k

2 labels to 0 and
k
2 labels to 1. Thus, in both Ŝ1 and Ŝ2 one label occurs
precisely on a fraction 3

4 of the examples. Hence g(Ŝ1) =

g(Ŝ2) = 2 · 3
4 ·

1
4 = 3

8 , and G(Ŝ, j) = 1
8 . In every other

case, either Ŝ1 = Ŝ, or Ŝ1 =
{

(xxxhκ, y
h
κ) : h ∈ [2k]

}
and

Ŝ2 =
{

(xxxhN+`, y
h
N+`) : h ∈ [2k]

}
, which implies g(Ŝ1) =

g(Ŝ2) = 1
2 and G(Ŝ, j) = 0. Since β < 1

24 = 1
6 −

1
8 , we

conclude that ` is the only β-optimal feature, as desired.
For (ii), note that the subsequence of Ŝ having the `-th

feature set to 1 has all labels equal to Aκ`. This implies that
the corresponding child v of the root is a leaf, since it meets
at least one of the stopping conditions, and that it assigns
label Aκ`. This proves that Bob returns Aκ`.

To prove the space lower bound, note that S consists of
n = 2k(N +D) examples, each of which can be encoded in
d = D + D̄ = O(D + log(D + N)) bits. For D = O(N),
this yields n = O(kN) and d = O(D logN) and therefore
ND = Ω

(
nd

k logn

)
. Recalling that Alice must send Ω(ND)

bits to Bob concludes the proof.

We conclude this section with a lower bound on the run-
ning time of any fully dynamic algorithm. Clearly, if the
model requires the algorithm to read every labeled example
(x, y) upon arrival, then a lower bound of Ω(nd) is trivial.
However, we show that an Ω(nd) bounds holds even if we
do not require the algorithm to read the examples; instead, at
any point in time we allow the algorithm to access in time
O(1) the j-th feature of any example in the current active set.
We call this the matrix access model. Again, we prove the
bound for weakly (εεε, δ)-feasible algorithms.

Theorem 4.2. Let k, h ≥ 1 and α, β ∈ [0, 1
2 ). For arbitrarily

large n and d there exist sequences of n INS and DEL oper-
ations over {0, 1}d × {0, 1} such that, in the matrix access
model, any weakly (εεε, 2/3)-feasible fully dynamic algorithm
has expected running time Ω(nd).

5 Experiments
We compare FUDYADT against two state-of-the-art algo-
rithms for incremental decision tree learning, EFDT (Man-
apragada, Webb, and Salehi 2018) and HAT (Bifet and
Gavaldà 2009), using the MOA software (Bifet et al. 2010).
Similarly to FUDYADT, EFDT and HAT aim at keeping
ε-optimal splits, which they do with high probability when
the examples are i.i.d. from a distribution. Due to space lim-
itations, the results for HAT and other experiments can be
found in the full version of the paper (Bressan, Damay, and
Sozio 2022).

Settings. We implemented FUDYADT in C++ 2. We con-
ducted all experiments on an Ubuntu 20.04.2 LTS server
equipped with 144 Intel(R) Xeon(R) Gold 6154 @ 3.00GHz
CPUs and 264 GB of RAM. We observe that the algorithms
have not been implemented in the same programming lan-
guage, which limits the relevance of the runtime comparison.
Datasets. Our datasets are shown in Table 1. We have chosen
them among standard datasets for classification; some of
them, such as INSECTS, feature the so-called concept drift.
Not all datasets have binary labels. For the INSECTS datasets,
we assigned label 1 to the union of male classes. For every
other dataset, we assigned label 1 to the majority class.
Input models. We consider three input models. Let
(x1, y1), . . . , (xT , yT ) be the sequence of examples as given
by the dataset at hand (typically in chronological order). The
simplest model is when only insertions are allowed aka in-
cremental model. Formally, at every t ∈ [T ] the algorithm re-
ceives INS(xt, yt). This model is supported by all algorithms
(FUDYADT, EDFT, HAT), hence we use it to compare them
against each other. The next two models involve deletions
and thus are supported only by FUDYADT. The first one is
the sliding window model (SW): given an integer W ≥ 1
for all t ∈ [T ] the algorithm receives INS(xt, yt), preceded
by DEL(xt−W+1, yt−W+1) if t ≥W . The second one is the
random update model (RU): for all t ∈ [T ], with probability
1/2 the algorithm receives INS(xt, yt) and with probability
1/2 it receives DEL(x, y) where (x, y) is chosen uniformly at
random from the active set St.
Metrics. As is customary in the literature, we evaluate how
well each algorithm predicts the label of the next example
before “seeing” it. Formally, if (xt, yt) is the t-th example
appearing in the input sequence, then we compute ŷt =
LAB(xt) before the algorithm sees (xt, yt). We then compute
the F1-score of the label sequence ŷyy = (ŷt)t≥1 against the
ground-truth yyy = (yt)t≥1,

F1(yyy, ŷyy) =
2 · P (yyy, ŷyy) ·R(yyy, ŷyy)

P (yyy, ŷyy) +R(yyy, ŷyy)
(14)

where P (yyy, ŷyy) and P (yyy, ŷyy) are respectively the precision and
recall of ŷyy against yyy. The F1-score is in [0, 1] with higher
values denoting better results.
Parameters. For FUDYADT, we let α = 0, β = 0 k = 1,
h ∈ {5, 10}, and we manually set ε ∈ [0, 2]. Note that it
breaks the condition of theorem 3.2. It allows us to test the
effect of ε without fine-tuning of the other parameters. The
parameters of EFDT and HAT are set to the original values
specified by the authors; we only vary the so-called grace
period in {100, 500, 1000} to find the value yielding highest
F1-score. For the SW model we use W ∈ {100, 1000}. In
all our experiments, we first build a decision tree for the
first W examples, then we apply the models above to the
remaining sequence. Several parameter configurations show
similar trends. We only report the most interesting results.
FUDYADT versus EFDT. We compare the F1-scores of
EFDT and FUDYADT when allowed the same amortized
time. To this end we tuned FUDYADT’s ε to make its run-
ning time very close to (and never exceeding) that of EFDT.

2https://github.com/GDamay/dynamic-tree
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d # of examples 1-class

Electricity 8 45 311 UP
Forest Covertype 54 581 011 2
INSECTS v1-v5 33 24 150 – 79 986 *-male
KDDCUP99 41 494 021 smurf.
NOAA Weather 8 18 159 1
Poker 10 829 201 0

Table 1: Datasets statistics.

EFDT FUDYADT
RT F1 RT F1 ε

Electricity 1.65 83.64 1.53 90.33 0.15
Forest Covertype 42.47 83.64 42.37 90.33 0.29
INSECTS v1 4.85 88.96 4.51 92.17 1.00
INSECTS v2 3.13 87.40 3.09 92.53 0.92
INSECTS v3 7.54 92.51 7.43 94.76 1.00
INSECTS v4 6.30 91.15 6.02 91.91 0.95
INSECTS v5 6.84 89.85 6.77 93.34 1.00
KDDCUP99 17.72 97.98 17.43 99.91 0.17
NOAA Weather 0.73 80.78 0.73 81.43 0.36
Poker 16.26 79.69 16.14 86.07 1.03

Table 2: Running time in seconds (labeled RT) and F1-score
(labeled F1) of EFDT and FUDYADT in the incremental
model. The last column shows the value of ε in UPDATE.

The results are shown in Table 2; remarkably, FUDYADT out-
performs consistently EFDT in terms of F1-score. One of the
possible reasons is that FUDYADT can guarantee to be rela-
tively close to the optimal Gini gain, even without computing
it explicitly. In contrast, EFDT resorts to an approximation
which might be relatively poor, given that maintaining an
optimal Gini gain is expensive.
FUDYADT on SW and RU. Next, we studied the perfor-
mance of FUDYADT in the SW and RU models (recall that
EFDT/HAT do not work here). For the SW model, we set
h = 10, k = 1, α = 0, and W = 100 for Electricity and
W = 1000 otherwise. Figure 1 shows the F1 score as a
function of ε (subfigures a-c) and the average time per up-
date in milliseconds in logarithmic scale as a function of ε
(subfigures d-f). The smaller ε is, the more often subtrees
are recomputed, yielding a higher F1 score and amortized
running time. This behavior is clear in the Electricity and
Poker datasets, where from ε = 0 to ε = 1 the F1 score
decreases by roughly 0.1 and the running time increases by
three orders of magnitude. A good tradeoff could be ε = 0.1,
where the F1-score is close to that of ε = 0 but with an amor-
tized running time per update smaller by orders of magnitude
(≈ 0.5ms). For INSECTS the F1-score is much more stable.
All other datasets and parameter settings yielded very similar
qualitative behaviors. Figure 2 shows the average running
time for the RU model, showing similar trends to Figure 1.

6 Conclusions and Future Work
We developed the first fully dynamic algorithm for main-
taining ε-feasible decision trees, while we proved it to be
nearly optimal in terms of space and amortized time. Our

Figure 1: Performance of FUDYADT in the SW model on
the Electricity, INSECTS and Poker datasets (top to bottom),
in terms of F1-score (left) and amortized milliseconds per
update (right) as a function of ε.

Figure 2: Amortized running time per update (in millisec-
onds) of FUDYADT in the RU model on the Electricity (left)
and INSECTS (right) datasets. The Poker dataset yields simi-
lar results.

work shows that many well-known decision tree algorithms,
whether offline like CART or incremental like EDFT, can
be made fully dynamic with a small loss in the quality of
the decision tree and a small overhead in the amortized run-
ning time. Our work leaves open the natural question of
whether these results can be strengthened from amortized to
worst-case. We believe this is an exciting direction for future
research in fully-dynamic supervised machine learning.
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