Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm

Qinbo Bai¹, Armit Singh Bedi², Vaneet Aggarwal¹

¹ Purdue University
² University of Maryland
bai113@purdue.edu, University of Maryland, vaneet@purdue.edu

Abstract

We consider the problem of constrained Markov decision process (CMDP) in continuous state actions spaces where the goal is to maximize the expected cumulative reward subject to some constraints. We propose a novel Conservative Natural Policy Gradient Primal Dual Algorithm (CNPGPD) to achieve zero constraint violation while achieving state of the art convergence results for the objective function. For general policy parametrization, we prove convergence of value function to global optimal up to an approximation error due to restricted policy class. We improve the sample complexity of existing constrained NPGPD algorithm. To the best of our knowledge, this is the first work to establish zero constraint violation with Natural policy gradient style algorithms for infinite horizon discounted CMDPs. We demonstrate the merits of proposed algorithm via experimental evaluations.

Introduction

Reinforcement learning problem is formulated as a Markov Decision Process (MDP) and can be solved using different algorithms in the literature (Sutton 1988). To deal with the scalability issue to the large state and action spaces, policy parametrization is widely used (Ding et al. 2020; Xu, Liang, and Lan 2021; Agarwal et al. 2020). The problem becomes challenging when we have constraints and is called constrained MDPs (CMDPs). The problem is popular across various application domains such as robotics, communications, computer vision, autonomous driving, etc. (Arulkumaran et al. 2017; Kiran et al. 2021). Mathematically, the problem is sequential in nature, agent observes the state, takes an action, and then transitions to next state. Further, an agent also needs to satisfy a set of constraints as well such as safety constraints, power constraints and maneuver constraints. CMDPs are challenging to solve specially in large state action spaces (Ding et al. 2020; Xu, Liang, and Lan 2021) which is the focus of our work.

The constraint violations could be catastrophic in applications such as in power systems (Vu et al. 2020) or autonomous vehicle control (Wen et al. 2020). In the literature, various algorithms are proposed to solve CMDP in large actions spaces in a model free manner (See Table 1 for comparisons). The main performance metric here is the sample complexity, which is the number of samples required to achieve ϵ-optimal objective and ϵ-constraint violation. However, there doesn’t exist literature which gives zero violation guarantee on large state and action space. Hence, we ask this question: “Is it possible to achieve zero constraint violations for CMDP problems in large state action spaces while solving in a model free manner?”

We answer this question in an affirmative sense in this work. We proposed a novel Conservative Natural Policy Gradient Primal Dual Algorithm (C-NPG-PDA) in this paper. We utilize a novel idea of conservative constraints to policy gradient algorithms and establish convergence guarantees of global optima for general policy parametrization. Our contributions are summarized as follows.

• We propose a Natural Policy Gradient algorithm which achieves zero constraint violation for constrained MDPs in large state and action space. The proposed algorithm also converges to the neighborhood of the global optima with general parametrization. It is challenging to establish the zero violation result with general parametrization due to the lack of strong duality, and hence we perform a novel analysis to establish a bound between the conservative and original problems.

• We show that even if we don’t utilize the conservative idea (proposed in this work), we are able to improve the sample complexity from $O\left(\frac{1}{\epsilon^4}\right)$ (Ding et al. 2020)[Theorem 3] to $O\left(\frac{1}{\epsilon^6}\right)$. To achieve this, we utilize the first order stationary result from (Liu et al. 2020) to bound the NPG update direction. However, due to the introduction of the constraint and the Lagrange function, the update of the Lagrange multiplier needs to be considered in the analysis.

• We perform initial proof of concepts experiments of the proposed algorithm with a random CMDP model and validate the convergence of the objective, with zero constraint violations.

1 The detailed dependence on $(1 - \gamma)$ is not shown in the original paper.

2 In (Xu, Liang, and Lan 2021), the authors used a two layer
Table 1: This table summarizes the different state of the art policy-based algorithms available in the literature with softmax or general Parametrization for CMDPs. We note that the proposed algorithm in this work is able to achieve the best sample complexity among them all while achieving zero constraint violation as well.

<table>
<thead>
<tr>
<th>Parametrization</th>
<th>Algorithm</th>
<th>Sample Complexity</th>
<th>Constraint violation</th>
<th>Generative Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softmax</td>
<td>PMD-PD (Liu et al. 2021)</td>
<td>$O\left(\frac{1}{\epsilon^3}\right)$</td>
<td>Zero</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PD-NAC (Zeng, Doan, and Romberg 2022)</td>
<td>$O\left(\frac{1}{\epsilon^6}\right)$</td>
<td>Zero</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>NPG-PD (Ding et al. 2020)</td>
<td>$O\left(\frac{1}{(1-\gamma)^5}\epsilon^2\right)$</td>
<td>$O(\epsilon)$</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CRPO (Xu, Liang, and Lan 2021)</td>
<td>$O\left(\frac{1}{(1-\gamma)^7}\epsilon^4\right)$</td>
<td>$O(\epsilon)$</td>
<td>Yes</td>
</tr>
<tr>
<td>General</td>
<td>NPG-PD (Ding et al. 2020)</td>
<td>$O\left(\frac{1}{(1-\gamma)^8}\epsilon^6\right)$</td>
<td>$O(\epsilon)$</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CRPO (Xu, Liang, and Lan 2021)</td>
<td>$O\left(\frac{1}{(1-\gamma)^{13}}\epsilon^4\right)$</td>
<td>$O(\epsilon)$</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>C-NPG-PDA (This work, Theorem 1)</td>
<td>$\tilde{O}\left(\frac{1}{(1-\gamma)^5}\epsilon^2\right)$</td>
<td>Zero</td>
<td>No</td>
</tr>
<tr>
<td>Lower bound</td>
<td>(Vaswani, Yang, and Szepesvári 2022)</td>
<td>$\tilde{O}\left(\frac{1}{(1-\gamma)^5}\epsilon^2\right)$</td>
<td>Zero</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Policy Gradient for Reinforcement Learning: In the setting of regularized local linear model, assuming that the optimal solution is unique, the policy gradient algorithm achieves the sample complexity $O(1/\epsilon^4)$, where ϵ is the relative error with respect to the optimal policy. In the setting of generative model, the sample complexity can be further reduced to $O(1/\epsilon^5)$. However, in the setting of generative model, the sample complexity can be further reduced to $O(1/\epsilon^5)$.

Problem Formulation: We consider an infinite-horizon discounted Markov Decision Process \mathcal{M} defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, r, g, \gamma, \rho)$, where \mathcal{S} is the set of states, \mathcal{A} is the set of actions, \mathcal{P} is the transition probability, r is the reward function, g is the discount factor, γ is the discount factor, and ρ is the probability of staying in the same state. The goal is to find a policy π that maximizes the expected discounted return $J(\pi) = \mathbb{E}_\pi \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1})$.
where S and A denote the state and action space, respectively. In this paper, we focus on large station and action space, which means that the policy parametrization may not be fully sufficient. $P: S \times A \rightarrow [0, 1]$ denotes the transition probability distribution from a state-action pair to another state. $r : S \times A \rightarrow \Delta^S$ denotes the reward for the agent and $g^i : S \times A \rightarrow [-1, 1], i \in [I]$ defines the i^{th} constraint function for the agent. $\gamma \in (0, 1)$ is the discounted factor and $\rho : S \rightarrow [0, 1]$ is the initial state distribution.

Define a joint stationary policy $\pi : \Delta \rightarrow \Delta^A$ that maps a state $s \in S$ to a probability distribution of actions defined as Δ^A with a probability assigned to each action $a \in A$. At the beginning of the MDP, an initial state $s_0 \sim \rho$ is given and the agent makes a decision $a_0 \sim \pi(\cdot|s_0)$. The agent receives its reward $r(s_0, a_0)$ and constraints $g_i(s_0, a_0), i \in [I]$. Then it moves to a new state $s_1 \sim P(\cdot|s_0, a_0)$. We define the reward value function $J_r(\pi)$ and constraint value function $J_g(\pi), i \in [I]$ for the agent following policy π as a discounted sum of reward and constraints over infinite horizon

$$V^\pi_r(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s \right],$$

$$V^\pi_g(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t g_i(s_t, a_t) \mid s_0 = s \right].$$

where $a_t \sim \pi(\cdot|s_t)$ and $s_{t+1} \sim P(\cdot|s_t, a_t)$. Denote J_{r}^π and J_{g}^π as the expected value function w.r.t. the initial distribution such as

$$J_r(\pi) = \mathbb{E}_{s_0 \sim \rho}[V^\pi_r(s_0)],$$

$$J_g(\pi) = \mathbb{E}_{s_0 \sim \rho}[V^\pi_g(s_0)].$$

The agent aims to maximize the reward value function and satisfies constraints simultaneously. Formally, the problem can be formulated as

$$\max_{\pi} J_r(\pi) \quad \text{s.t.} \quad J_g(\pi) \geq 0, \forall i \in [I].$$

Define π^* as the optimal-policy for the above problem. Here, we introduce the Slater Condition, which means the above problem is strictly feasible.

Assumption 1 (Slater Condition). There exists a $\varphi > 0$ and π that $J_g(\pi) \geq \varphi, \forall i \in [I]$.

Proposed Approach

We consider a policy-based algorithm on this problem and parameterize the policy π as π_θ for some parameter $\theta \in \Theta$ such as softmax parametrization or a deep neural network. In this section, we first give the form of the true gradient and introduce some properties of it. Then, we propose the Conservative Natural Policy Descent Primal-Dual Algorithm (C-NPG-PD), where the conservative idea is utilized to achieve zero constraint violation.

Gradient of Value Function and Properties

For the analysis of the convergence for the proposed algorithm, it is necessary to establish the form of the true and its properties. Here, we utilize the Policy Gradient Theorem and write the gradient for the objective function as

$$\nabla_\theta J_r(\pi_\theta) =$$

$$\mathbb{E}_{s \sim \rho} \log(\pi_\theta(s)) \left(\sum_{h=t}^{\infty} \gamma^h r(s_h, a_h)\right)$$

(4)

The computation of the gradient is well known and the proof is removed to the Appendix for completeness. We note that the log-policy function $\log(\pi_\theta(a|s))$ is also called log-likelihood function in statistics (Kay 1997) and we make the following assumption.

Assumption 2. The log-likelihood function is G-Lipschitz and M-smooth. Formally,

$$\|\nabla_\theta \log(\pi_\theta(s))\| \leq G \quad \forall \theta \in \Theta, \forall (s, a) \in S \times A,$$

$$\|\nabla_\theta \log(\pi_\theta(s)) - \nabla_\theta \log(\pi_\theta(s))\| \leq M \|\theta_1 - \theta_2\| \quad \forall \theta_1, \theta_2 \in \Theta,$$

where $L_J = \frac{M}{(1-\gamma)^2} + \frac{2G^2}{(1-\gamma)^4}$.

Lemma 1. Under Assumption 2, both the objective function $J_{r}^{\pi_\theta}$ and the constraint function $J_{g}^{\pi_\theta}$ are L_J-smooth w.r.t. θ.

Formally,

$$\|\nabla_\theta J_r(\theta_1) - \nabla_\theta J_r(\theta_2)\| \leq L_J \|\theta_1 - \theta_2\| \quad \forall \theta_1, \theta_2 \in \Theta$$

(6)

Lemma 2. Under Assumption 2, both the gradient of objective function $\nabla_\theta J_{r}^{\pi_\theta}$ and that of the constraint function $\nabla_\theta J_{g}^{\pi_\theta}$ are bounded. Formally,

$$\|\nabla_\theta J_r(\theta)\| \leq \frac{G}{(1-\gamma)^2}$$

$$\|\nabla_\theta J_g(\theta)\| \leq \frac{G}{(1-\gamma)^2} \quad \forall i \in [I].$$

Natural Policy Gradient Primal-Dual Method with Zero Constraint Violation

In order to achieve zero constraint violation, we consider the conservative stochastic optimization framework proposed in (Akhtar, Bedi, and Rajawat 2021) and define the conservative version of the original problem as

$$\max_{\pi} J_r(\pi) \quad \text{s.t.} \quad J_g(\pi) \geq \kappa, \forall i \in [I].$$

(7)

where $\kappa > 0$ is the parameter to control the constraint violation which we will explicitly mention in Theorem 1 in ³The appendix is uploaded to https://arxiv.org/abs/2206.05850
Sec. . The idea here to achieve zero constraint violation is to consider the tighter problem to make it less possible to make violation for the original problem. Notice that it is obvious that \(\kappa \) must be less than \(\frac{1}{2m} \) to make the conservative problem still feasible. Combining this idea, we introduce the Natural Policy Gradient method. The NPG Method utilizes the Fisher information matrix defined as

\[
F_\rho(\theta) = \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} [\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s)^T]
\]

where \(d^\rho_s \) is the state visitation measure defined as

\[
d^\rho_s := (1 - \gamma) \mathbb{E}_{s_0 \sim \rho} \left[\sum_{t=0}^\infty \gamma^t \mathbb{P} \pi^\rho(s_t = s|s_{0}) \right]
\]

We define the Lagrange function as

\[
J_L(\pi_\theta, \lambda) = J_r(\pi_\theta) + \sum_{i \in [I]} \lambda_i^i(\pi_\theta) J_{g_i}(\pi_\theta)
\]

For simplicity, we denote \(J_r(\theta), J_{g_i}(\theta), J_L(\theta, \lambda) \) as the short for \(J_r(\pi_\theta), J_{g_i}(\pi_\theta), J_L(\pi_\theta, \lambda) \) and the Natural Policy Gradient method is written as

\[
\theta^{k+1} = \theta^k + \eta_k F_\rho(\theta^k) / \nabla_\theta J_L(\theta^k, \lambda^k)
\]

\[
\lambda^i_{k+1} = \mathcal{P}(0, A_i) \left(\lambda^i_k - \eta_k (J_{g_i}(\theta^k) - \kappa) \right)
\]

(11)

For the projection of the Lagrange multiplier, we make the following assumption.

Assumption 3. The Lagrange multiplier \(\lambda^i \) is bounded. Formally, \(\lambda^i \in (0, A_i], \forall i \in [I] \)

Remark 2. For the direct parametrization or softmax parametrization, it can be proved that the Lagrange multiplier is bounded by utilizing the strong duality. However, strong duality doesn’t hold for the general parametrization (see Assumption 6). To prove the global convergence the boundedness of the Lagrange multiplier is required in the convergence analysis of the global convergence (Zeng et al. 2021), and a similar assumption has been made in (Zeng et al. 2021).

We note that the pseudo-inverse of the Fisher information matrix is difficult to calculate. However, the NPG update direction can be related to the compatible function approximation error defined as

\[
L_{d^\rho_s, \pi}(\omega, \theta, \lambda) = \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} \left[(\nabla_\theta \log \pi_\theta(a|s) \cdot (1 - \gamma) \omega - A^\pi_{\nu, \lambda}(a, \theta))^2 \right]
\]

Given a fixed \(\omega^k \) and \(\theta^k \), it can be proved that the minimizer \(\omega^*_k \) of \(L_{d^\rho_s, \pi}(\omega, \theta^k, \lambda^k) \) is exact the NPG update direction. Thus, it is possible to utilize the Stochastic Gradient Descent (SGD) algorithm to achieve the minimizer \(\omega^*_k \). The gradient of \(L_{d^\rho_s, \pi}(\omega, \theta^k, \lambda^k) \) can be computed as

\[
\nabla_\omega L_{d^\rho_s, \pi}(\omega, \theta^k, \lambda^k) = 2(1 - \gamma) \nabla_\omega \log \pi_\theta(a|s) \cdot \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} \left[(\nabla_\theta \log \pi_\theta(a|s) \cdot (1 - \gamma) \omega - A^\pi_{\nu, \lambda}(s, a)) \right]
\]

(13)

Where \(A^\nu_{\nu, \lambda}(s, a) \) is the advantage function for the Lagrange function and is defined as

\[
A^\nu_{\nu, \lambda}(s, a) = \left[Q^\nu_{\nu}(s, a) - V^\nu_{\nu}(s) \right] + \sum_{i \in [I]} \lambda_i^i \left[Q^\nu_{g_i}(s, a) - V^\nu_{g_i}(s) \right]
\]

(14)

However, it is challenging to achieve the exact value of the advantage function and thus we estimate it as \(A^\nu_{\nu, \lambda}(s, a) \) using the following procedure. The stochastic version of gradient can be written as

\[
\nabla_\omega L_{d^\rho_s, \pi}(\omega, \theta^k, \lambda^k) = 2(1 - \gamma) \nabla_\omega \log \pi_\theta(a|s) \cdot \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} \left[(\nabla_\theta \log \pi_\theta(a|s) \cdot (1 - \gamma) \omega - A^\pi_{\nu, \lambda}(s, a)) \right]
\]

(15)

Based on the stochastic version of the gradient mentioned above, we propose the Natural Gradient Descent Primal Dual with Zero Violation in Algorithm 1. In line 1, we initialize the parameter \(\theta \) and Lagrange multiplier \(\lambda \). From Line 3 to Line 10, we use SGD to compute the Natural Policy gradient. From Line 11 to Line 15, we estimate an unbiased value function for constraint. Finally, in Line 16, we perform the conservative primal-dual update.

Convergence Rate Results

Before stating the convergence result for the policy gradient algorithm, we describe the following assumptions which will be needed for the main result.

Assumption 4. For all \(\theta \in \mathbb{R}^d \), the Fisher information matrix induced by policy \(\pi_\theta \) and initial state distribution \(\rho \) satisfies

\[
F_\rho(\theta) = \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} [\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s)^T] \geq \mu_F \cdot I_d
\]

(18)

for some constant \(\mu_F > 0 \)

Remark 3. The positive definiteness assumption is standard in the field of policy gradient based algorithms (Kakade 2001; Peters and Schaal 2008; Liu et al. 2020; Zhang et al. 2020). A common example which satisfies such assumption is Gaussian policy with mean parameterized linearly (See Appendix B.2 in (Liu et al. 2020)).

Assumption 5. Define the transferred function approximation error as below

\[
L_{d^\rho_s, \pi}(\omega, \theta, \lambda) = \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} \left[(\nabla_\theta \log \pi_\theta(a|s) \cdot (1 - \gamma) \omega - A^\pi_{\nu, \lambda}(s, a))^2 \right]
\]

(19)

We assume that this error satisfies \(L_{d^\rho_s, \pi}(\omega^\theta \lambda, \theta, \lambda) \leq \epsilon_{bias} \) for any \(\theta \in \Theta, \lambda \in \Lambda \), where \(\omega^\theta \lambda \) is given as

\[
\omega^\theta \lambda = \arg \min_\omega L_{d^\rho_s, \pi}(\omega, \theta, \lambda) = \arg \min_\omega \mathbb{E}_{s \sim d^\rho_s} \mathbb{E}_{a \sim \pi_\theta(s)} \left[(\nabla_\theta \log \pi_\theta(a|s) \cdot (1 - \gamma) \omega - A^\pi_{\nu, \lambda}(s, a))^2 \right]
\]

(20)
Algorithm 1: Conservative Natural Gradient Descent Primal-Dual Algorithm (C-NPG-PDA)

Input: Sample size K, SGD learning iteration N, Initial distribution r. Discounted factor γ.
Parameter: Step-size η_1, η_2, SGD learning rate α, Slater variable φ, Conservative variable κ.

Output: θ^k, $k \in [0, K-1]$
1: Initialize $\lambda^1 = 0$, $\theta^1 = 0$, $\omega_0 = 0$
2: for $k = 1, 2, \ldots, K$ do
3: for $n = 1, 2, \ldots, N$ do
4: Sample $s \sim d_{\rho^k}$ and $a \sim \pi_{\theta^k} (\cdot | s)$
5: Sample $Q^\pi_{a,k}(s, a)$ and $V^\pi_{a,k}(s)$ for reward function and constraint functions following Algorithm 2
6: Estimate the Advantage Function $A^\pi_{L, \lambda^k}(s, a)$ following Eq. (14)
7: Estimate SGD gradient $\nabla_\lambda L_{a, \pi} (\omega_n, \theta^k, \lambda^k)$ following Eq. (15)
8: SGD update $\omega_{n+1} = \omega_n - \alpha \nabla_\lambda L_{a, \pi} (\omega_n, \theta^k, \lambda^k)$
9: end for
10: Compute NPG update direction as $\omega = \frac{1}{N} \sum_{n=1}^{N} \omega_n$
11: for $n = 1, 2, \ldots, N$ do
12: Sample $s \sim \rho$ and $a \sim \pi_{\theta^k} (\cdot | s)$
13: Sample constraint value functions $V^\pi_{a, n}(s)$ following Algorithm 2
14: end for
15: Estimate expected constraint value function $J_{\pi}(\pi_{\theta^k}) = \frac{1}{N} \sum_{n=1}^{N} V^\pi_{a, n}(s)$, $\forall i \in \mathcal{I}$
16: Update the primal and dual variable as
 \[\theta^{k+1} = \theta^k + \eta_1 \omega \] (16)
 \[\lambda^{k+1} = P_{\rho}(\lambda^k) \left(\lambda^k - \eta_2 (J_{\pi}(\pi_{\theta^k}) - \kappa) \right), \forall i \in \mathcal{I} \] (17)
17: end for

It can be shown that ω_0^k is the exact Natural Policy Gradient (NPG) update direction.

Remark 4. By Eq. (19) and (20), the transferred function approximation error expresses an approximation error with distribution shifted to (d_{π^*}, π^*). With the softmax parameterization or linear MDPS structure (Jin et al. 2020), it has been shown that $\epsilon_{bias} = 0$ (Agarwal et al. 2020). When parameterized by the restricted policy class, $\epsilon > 0$ due to π_0 not containing all policies. However, for a rich neural network parameterization, the ϵ_{bias} is small (Wang et al. 2019). Similar assumption has been adopted in (Liu et al. 2020) and (Agarwal et al. 2020).

Global Convergence For NPG-PD Method

To analyze the global convergence of the proposed algorithm, we firstly demonstrate the convergence of Lagrange function for the conservative problem, which is shown in the following Lemmas.

Algorithm 2: Estimate Value Function for objective or constraint function

Input: starting state and action s, a, reward function r or constraint function g^\prime (Here we denote as function h for simplicity), policy π, discounted factor γ.

Output: state action value function $Q_H(s, a)$ or state value function $V_h(s)$
1: Estimate state action value function as $Q_h(s, a) = \sum_{t=0}^{T-1} h(s_t, a_t)$, where $s_0 = s, a_0 = a, a_t \sim \pi (\cdot | s_t)$, $s_{t+1} \sim P(\cdot | s_t, a_t), T \sim \text{Geo}(1 - \gamma)$
2: Estimate state value function as $V_h(s) = \sum_{t=0}^{T-1} h(s_t, a_t)$, where $s_0 = s, a_t \sim \pi (\cdot | s_t), s_{t+1} \sim P(\cdot | s_t, a_t), T \sim \text{Geo}(1 - \gamma)$

Lemma 3. Suppose a general primal-dual gradient ascent algorithm updates the parameter as
 \[\theta^{k+1} = \theta^k + \eta_1 \omega \]
 \[\lambda^{k+1} = P_{\rho}(\lambda^k) \left(\lambda^k - \eta_2 (J_{\pi}(\theta^k) - \kappa) \right) \] (21)

When Assumptions 2 and 5 hold, we have
 \[\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \left(J_L(\pi_{\theta^k}, \lambda^k) - J_L(\pi_{\theta^k}, \lambda^k) \right) \leq \frac{\sqrt{\epsilon_{bias}}}{1 - \gamma} + \frac{M \eta_1}{2K} \sum_{k=0}^{K-1} \mathbb{E} \| \omega^k \|^2 + \frac{\log(|\mathcal{A}|)}{\eta_1 K} \] (22)

where $\omega^k := \omega^k_{\theta^k}$ and is defined in Eq. (20)

To prove the above Lemma, we extend the result in (Liu et al. 2020)[Proposition 4.5] to our setting. The extended result is stated and proved in Appendix. Then, to prove the global convergence of the Lagrange function, it is sufficient to bound $\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \| \omega^k - \omega^k \|^2_2$ and $\frac{M \eta_1}{2K} \sum_{k=0}^{K-1} \mathbb{E} \| \omega^k \|^2$ in Lemma 3. The detailed proof of them can be found in Appendix. At a high level, the first term is the difference between the estimated and exact NPG update direction, which can be bounded using the convergence of SGD procedure. The second term is the bound of the norm of estimated gradient. To bound the second term, we need the following first-order convergence result.

Lemma 4. In the NPG update process, if we take $\eta_1 = \frac{\mu_k}{4G^2L_J}$, then we have the first order stationary as
 \[\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \nabla_\theta J_L(\theta^k, \lambda^k) \|^2_2 \leq \frac{16(2 + 3I\Lambda)G^4L_J}{\mu_k^2 K (1-\gamma)} \] (23)
 \[+ \frac{8(\mu_k^2 + 2G^2)}{\mu_k N} \left[\frac{G^2(1 + I\Lambda)}{\mu_k (1-\gamma)^2} + \frac{2}{(1-\gamma)^2} \right] \sqrt{d} \]
 \[+ \frac{G^2(1 + I\Lambda)}{\mu_k (1-\gamma)^2} \]
Moreover, for any given \(\epsilon > 0 \), if we take \(K = \mathcal{O}(\frac{I_{\lambda}}{(1 - \gamma)^{\epsilon}}) \) and \(N = \mathcal{O}(\frac{I_{\lambda}^{2A^2}}{(1 - \gamma)^{\epsilon}}) \), we have

\[
\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\nabla_{\theta} J_L(\theta^k, \lambda^k)] \leq \epsilon
\]

(24)

Remark 5. The basic idea of the proof for first-order stationarity is from (Liu et al. 2020). However, due to the introduction of the constraints, we need to further consider the update of the dual variable. The detailed proof can be found in Appendix.

Given the above Lemmas, it is sufficient to achieve the final bound of Lagrange function for conservative problem as below.

Lemma 5. Under the Assumption 2, 3, 4 and 5, the proposed algorithm achieve the global convergence of the Lagrange function, which can be formally written as

\[
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[J_L(\pi_{\hat{\theta}}, \lambda^k) - J_L(\pi_{\hat{\theta}}, \lambda^k)] \leq \frac{\epsilon_{bias}}{1 - \gamma} + \epsilon_{K,N}
\]

(25)

where

\[
\epsilon_{K,N} = \mathcal{O}(\frac{1}{(1 - \gamma)^3K}) + \mathcal{O}(\frac{I_{\lambda}^{2A^2}}{(1 - \gamma)^{2N}}) + \mathcal{O}(\frac{I_{\lambda}}{(1 - \gamma)^{\sqrt{N}}}) + \mathcal{O}(\frac{I_{\lambda}}{K(1 - \gamma)})
\]

(26)

Before we get the final result for the regret and constraint violation, we need to bound the gap between the optimal value of the original problem and conservative problem. Such gap can be bounded in the dual domain. To do that, we recall the definition of state-action occupancy measure \(d^\pi \in \mathbb{R}^{|S|\times|A|} \) as

\[
d^\pi(s, a) = (1 - \gamma)\mathbb{P}\left(\sum_{i=0}^{\infty} \gamma^i \cdot 1_{s_i = s, a_i = a} | \pi, s_0 \sim \rho \right)
\]

(27)

We note that the objective and constraint can be written as

\[
J_r(\pi_{\theta}) = \frac{1}{1 - \gamma} \langle r, d^\pi_{\theta} \rangle
\]

\[
J_g(\pi_{\theta}) = \frac{1}{1 - \gamma} \langle g, d^\pi_{\theta} \rangle, \forall i \in [I]
\]

(28)

Define \(D \) to be the set of vector \(\phi \in \mathbb{R}^{|S|\times|A|} \) satisfying

\[
\sum_{s' \in S} \sum_{a \in A} \phi(s', a)(\delta_x(s') - \gamma \mathbb{P}(s'|s, a)) = (1 - \gamma)\rho(s) \quad \text{and} \quad \phi(s, a) \geq 0, \forall (s, a) \in S \times A
\]

By summing the first constraint over \(s \), we have \(\sum_{s, a} \phi(s, a) = 1 \), which means that \(\phi \) in the above set is occupancy measure. By Eq. (28) and (29), we define the following problem which can be found in the reference (Altman 1999)

\[
\max_{\phi \in D} \frac{1}{1 - \gamma} \langle r, \phi \rangle \quad \text{s.t.} \quad \frac{1}{1 - \gamma} \langle g, \phi \rangle \geq 0, \forall i \in [I]
\]

(30)

For the full-parameterized policy, it can be shown that the above problem is equivalent to the original problem Eq. (3). However, the strong duality doesn’t hold for general parameterization. Thus, we need the following assumption to bound the gap between them.

Assumption 6. For any \(\phi \in \mathcal{D} \), we define a stationary policy as

\[
\pi'(a|s) = \frac{\phi(s, a)}{\sum_a \phi(s, a)}
\]

(31)

We assume that there always exists a \(\theta \in \Theta \) such that \(|\pi'(a|s) - \pi_0(a|s)| \leq \epsilon_{bias}, \forall (s, a) \in S \times A \)

Remark 6. The intuition behind the above assumption is that the parameterization is rich enough so that we can always find a certain parameter \(\theta \) and \(\pi_0 \) is close to the above stationary policy. A special case is softmax parameterization, where \(\epsilon_{bias} = 0 \).

With such an assumption, we reveal the relationship between the optimal value of primal problem and dual problem as follows, whose proof can be found in Appendix.

Lemma 6. Under Assumption 6, denote \(\pi_{\theta}^* \) as the optimal policy of the original problem defined in Eq. (3) and \(\phi^* \) as the optimal occupancy measure for the new problem defined in Eq. (30), we have

\[
\langle r, \phi^* \rangle - \epsilon_{bias} \leq J_{r}^{\pi_{\theta}^*} \leq \langle r, \phi^* \rangle
\]

(32)

Equipped with the above lemma, we bound the gap between original problem and conservative problem in the following lemma.

Lemma 7. Under Assumption 6, Denote \(\pi_{\theta_{\pi_{\phi}}^*} \) as the optimal policy for the conservative problem, we have

\[
J_{r}^{\pi_{\theta_{\pi_{\phi}}^*}} \leq J_{r}^{\pi_{\theta_{\pi_{\phi}}^*}} \leq \frac{\epsilon_{bias}}{(1 - \gamma)^2} + \frac{\kappa}{\varphi}
\]

(33)

Equipped with Lemma 5 and 7, we provide the main result for the NGP-PD algorithm for the objective function and constrained violation. The detailed proof can be founded in Appendix.

Theorem 1. For any \(\epsilon > 0 \) in the Natural Policy Gradient Algorithm 1, if step-size \(\eta_1 = \frac{\epsilon_{bias}}{4\sqrt{2L}} \) and \(\eta_2 = \frac{1}{\sqrt{K}} \), the number of iterations \(K = \mathcal{O}\left(\frac{I_{\lambda}^{2A^2}}{(1 - \gamma)^{\epsilon}}\right) \), the number of samples for per iteration \(N = \mathcal{O}\left(\frac{I_{\lambda}^{2A^2}}{(1 - \gamma)^{\epsilon}}\right) \), and take the conservative variable \(\kappa \) as

\[
\sqrt{\frac{2}{\eta_2 K} \left(\frac{\epsilon_{bias}}{1 - \gamma} + \epsilon_{K,N} + \frac{2\sum_{i \in [I]} \lambda_i^2 + 1}{1 - \gamma} + \frac{4}{K(1 - \gamma)^2}\right)}
\]

then we have \(\epsilon \)-optimal policy with zero constraint viola-
Figure 1: Comparison of objective and constraint violation between $\kappa = 0.5$ and $\kappa = 0$. For the constraint violation figure, we use the log axis to make zero constraint violation more obvious.

In other words, the NPG-PD algorithm needs $O\left(\frac{r^k \lambda^k}{(1-\gamma)^{k+1}}\right)$ trajectories.

Remark 7. The proposed algorithm doesn’t only achieve the zero constraint violation, but also achieves the state-of-the-art sample complexity over general parameterization policy-based algorithm. In Theorem 1, we can see that the algorithm converges to the neighbourhood of the global optimal and the bias is controlled by two parameters ϵ_{bias} and ϵ_{bias2} defined in Assumption 5 and 6, respectively. If the parameterization is sufficient enough, then $\epsilon_{bias} = \epsilon_{bias2} = 0$. However, whether there exists certain relationship between Assumption 5 and 6 is an interesting question for future work.

Simulation\footnote{The code can be found at https://github.com/bqb3927586/NPG-zero-violation}

In order to verify the performance of the proposed algorithm (Algorithm 1), we utilize the simulation code from (Ding et al. 2020) and compare the proposed algorithm with them. We establish a random CMDP, where the state space and action space are $|S| = 10, |A| = 5$. The transition matrix $P(s'|s,a)$ is chosen by generating each entry uniformly at random in $[0,1]$, followed by normalization. Similarly, the reward function $r(s,a) \sim U(0,1)$ and constraint function $g(s,a) \sim U(-0.71, 0.29)$. Only 1 constraint function is considered here. The initial state distribution is set to uniform and the discount factor is $\gamma = 0.8$. For the general parameterization, we use a feature map with dimension $d = 35$, and for each SGD procedure we use $N = 100$ number of samples. The learning rate for θ and λ are set to 0.1. The more detailed information for the simulation setting can be found in Appendix. We run the algorithm for $K = 7000$ iterations and compare the proposed algorithm with $\kappa = 0.5$ and the NPG-PD algorithm (Ding et al. 2020) which doesn’t consider the zero constraint violation case (equivalently $\kappa = 0$) in Figure 1.

From Fig. 1, we find that the convergence of the reward is similar and the proposed algorithm converges even faster than the non-zero constraint violation case. However, for the constraint violation, we find that when $\kappa = 0.5$, the log of constraint violation converges to negative infinity, which means that the constraint violation is below 0. In contrast, the constraint violation still exists when $\kappa = 0$. The comparison between $\kappa = 0.5$ and $\kappa = 0$ validates the result in Theorem 1.

Conclusion

In this paper, we propose a novel algorithm for Constrained Markov Decision Process and the proposed algorithm achieves the state-of-the-art sample complexity over general parameterization policy-based algorithms. By revealing the relationship between the primal and dual problem, the gap between conservative problem and original problem is bounded, which finally leads to the analysis of zero constraint violation. The proposed algorithm converges to the neighbourhood of the global optimal and the gap is controlled by the richness of parametrization.

The key limitation of the work includes the assumptions used to prove the results. Simplifying or removing Assumptions 5 and 6 on the bias parameters is a valuable problem in the future work.

References

