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Abstract

Because widely used real-world ontologies are often com-
plex and large, one important challenge has emerged: design-
ing tools for users to focus on sub-ontologies correspond-
ing to their specific interests. To this end, various modules
have been introduced to provide concise ontology views. This
work concentrates on extracting deductive modules that pre-
serve logical entailments over a given vocabulary. Existing
deductive module proposals are either inefficient from a com-
puting point of view or unsatisfactory from a quality point of
view because the modules extracted are not concise enough.
For example, minimal modules guarantee the most concise re-
sults but their computation is highly time-consuming, while
⊥⊤∗-modules are easy to compute but usually they contain
many redundant items. To overcome computation cost and
lack of quality, we propose to compute two different kinds of
deductive modules called pseudo-minimal modules and com-
plete modules for EL-ontology. Our deductive module defi-
nitions rely on associating a tree representation with an on-
tology, and their computation is based on SAT encoding. Our
experiments on real-world ontologies show that our pseudo-
minimal modules are indeed minimal modules in almost all
cases (98.9%), and computing pseudo-minimal modules is
more efficient (99.79 times faster on average) than the state-
of-the-art method Zoom for computing minimal modules.
Also, our complete modules are more compact than ⊥⊤∗-
modules, but their computation time remains comparable. Fi-
nally, note that our proposal applies to EL-ontologies while
Zoom only works for EL-terminologies.

Introduction
Description logic-based ontologies have been widely stud-
ied and used in many areas. However, real-world ontologies
are often too big to be handled by humans. The most evi-
dent approach for overcoming this problem is to extract sub-
ontologies related to user interests. For example, the well-
known biomedical ontology Snomed CT contains more than
300,000 axioms. By extracting deductive modules, we could
provide doctors with small sub-ontologies of Snomed CT
based on symptoms to establish a diagnosis. Extracting de-
ductive modules has been used for various different areas,
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like ontology debugging (Arif et al. 2016), re-use (Jiménez-
Ruiz et al. 2008), and forgetting (Koopmann and Schmidt
2013).

We can distinguish two classes of deductive modules. The
first class is syntactical locality-based modules such as ⊥⊤∗-
modules (Sattler, Schneider, and Zakharyaschev 2009) and
AMEX-modules (Gatens, Konev, and Wolter 2014). Those
modules can be computed efficiently, but usually, they con-
tain many unnecessary terms. The second class is subset-
minimal modules such as minimal modules (Chen et al.
2017). They do not contain any redundant terms but suffer
from high complexity and are time-consuming in practice.

In this work, we propose a new method for computing
deductive modules for EL ontologies to balance the compu-
tation cost and the result quality. Our method is inspired by
the SAT-based approach (Arif, Mencı́a, and Marques-Silva
2015; Manthey, Peñaloza, and Rudolph 2016) developed to
compute justifications, which are minimal sub-ontologies
that derive a given entailment. The main idea of these SAT-
based methods is to encode the derivations of a given en-
tailment as a set of Horn-clauses, then it enumerates all the
justifications of this entailment by SAT tools or resolution
(Kazakov and Skočovskỳ 2018). However, the computation
of deductive modules is much more complex: First, the in-
put is a vocabulary instead of an entailment and it could be
complicated to generate all the entailments over the given
vocabulary; Second, there may exist (even infinitely) many
entailments over a given vocabulary. Therefore, instead of
using justifications of the entailments directly, one has to
find other proper ways to tackle the computation of deduc-
tive modules.

Our contribution is twofold: (i) We associate a forest with
each given ontology and vocabulary to efficiently capture
the entailments over the vocabulary. The definition of for-
est is inspired by the regular tree grammar developed in
(Nikitina and Rudolph 2014). We can regard the forest and
the regular tree grammar as a set of derivation trees and
derivation rules that generate entailments over a given vo-
cabulary, respectively. Moreover, we are able to deal with
the case of infinitely many entailments by considering a fi-
nite subset of trees from our forest. (ii) We introduce two
novel notions of deductive modules called pseudo-minimal
modules and complete modules, and we develop an efficient
SAT-based algorithm to compute them based on the notion
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of the forest. Our pseudo-minimal modules are quite inter-
esting approximations of minimal modules: (1) They are in-
deed minimal modules when there are finitely many entail-
ments over a given vocabulary; (2) Moreover, our algorithm
is 99.79 times faster on average than the state-of-the-art al-
gorithm Zoom (Chen et al. 2017) which computes all the
minimal modules but only for EL-terminologies. Compared
to pseudo-minimal modules, our complete modules are less
concise but easier to compute. They are far more concise
than the ⊥⊤∗-module, as demonstrated by our experiment,
but their calculation time remains comparable.

This paper is organized as follows. First, we introduce
our notion of the forest and define pseudo-minimal modules
based on this notion, while complete modules are defined di-
rectly from the definition of deductive modules (Definition
2). Next, we compute pseudo-minimal modules and com-
plete modules using Horn-clause encoding. Then, we vali-
date our method by running experiments on real-world on-
tologies with the prototype ForMod. Finally, after the dis-
cussion of the related work, we conclude the paper with
some future work directions.

Preliminaries
Given finite sets of atomic concepts NC={A,B, · · · } and
atomic roles NR={r, s, · · · }, EL-concepts C and EL-
axioms α are built by the grammar rules (i) C ::=
⊤ | A | C⊓C | ∃r.C or (ii) α ::= C⊑C. An EL-ontology
O is a finite set of EL-axioms. We denote by sig(O) (resp.
sig(C)) the set of the atomic concepts and roles that appear
in O (resp. C). For example, sig(B1⊓∃r.B2)={r,B1, B2}.

An interpretation I=(∆I , ·I) of ontology O consists
of a non-empty set ∆I and a mapping from each atomic
concept A∈NC to a subset AI⊆∆I , and from each role
r∈NR to a subset rI⊆∆I×∆I . For a concept C, we
define CI inductively by: (⊤)I=∆I , (C⊓D)I=CI∩DI ,
(∃r.C)I={a∈∆I | ∃ b∈CI , (a, b)∈rI}. An interpretation
is a model of O if it is compatible with all axioms in O, i.e.,
for all C⊑D ∈ O, we have CI⊆DI . We say O|=α where
α is an axiom iff any model of O is compatible with α.

An EL-ontology O is normalized if all its axioms are of
the form: A ⊑ B1 ⊓ · · · ⊓ Bn, B1 ⊓ · · · ⊓ Bn⊑A, ∃r.B ⊑
A, A ⊑ ∃r.B, where A,B,Bi∈NC , r∈NR, n≥1. Every
EL-ontology can be normalized in polynomial time by in-
troducing new atomic concepts.

Let LA = {C | C ⊑ A ∈ O}, RA = {D | A ⊑ D ∈ O}.
We say an atomic concept A is primitive iff (i) LA = ∅ or
(ii) LA = RA and |LA| = 1. O is a terminology iff all the
atomic concepts in O are primitive. The notion terminology
defined here equals to that introduced in (Konev, Walther,
and Wolter 2009). We state the definition in a different way
because we use a different form of normalized ontologies.
Example 1. O defined below is a normalized ontology. O is
a terminology because all its atomic concepts are primitive.

O={α1:A⊑∃r.B1, α2:B1⊑A1⊓A2, α3:A⊑∃r.A1

α4:∃r.B2⊑A2, α5:A3⊓A4⊑B2}.
Definition 1 (Justification). Given an ontology O such that
O|=A⊑B. A justification of A⊑B is a minimal sub-ontology
J⊆O such that J |=A⊑B.

Given two ontologies O1,O2 and a signature Σ ⊆
NC∪NR of atomic concepts and roles, the logical difference
(Konev et al. 2012) between O1 and O2 w.r.t. Σ is defined
as the set of axioms inferred by O1 but not inferred by O2:

cDiffΣ(O1,O2)={α | sig(α)⊆Σ,O1|=α,O2 ̸|=α}.

Definition 2 (Deductive module). A deductive module for
an ontology O and a signature Σ is a sub-ontology M⊆O
such that cDiffΣ(O,M)=∅. Moreover:
• M is a minimal module for O and Σ if M is a minimal

(under inclusion) deductive module for O and Σ.
• M is a complete module for O and Σ if M contains all

minimal modules for O and Σ.
It is clear that the union of all minimal modules is a com-

plete module, and so is the ontology itself. There can be mul-
tiple deductive, minimal, and complete modules.
Example 2 (Example 1 cont’d). Assume that Σ is the sig-
nature given by {A,A1, A2, A3, A4, r}. Then O \ {α3} is a
deductive module for O and Σ. O \ {α3} is also a minimal
module because no proper subset of O\{α3} is a deductive
module. Moreover, O\{α3} is also a complete module since
it is the unique minimal module for O and Σ.

We now introduce the notion of uniform interpolation,
which provides a way to capture entailments over a given
signature w.r.t. an ontology O as defined below:
Definition 3 (Uniform interpolation). Given an ontology O
and a signature Σ, an ontology UO

Σ is a uniform interpola-
tion (hereafter UI) for O and Σ iff (i) sig(UO

Σ ) ⊆ Σ; (ii)
O |= α ⇔ UO

Σ |= α for any axiom α with sig(α) ⊆ Σ.

Example 3 (Example 2 cont’d). The ontology UO
Σ = {β1 :

A⊑∃r.(A1⊓A2), β2 : A⊑∃r.A1, β3 : ∃r.(A3⊓A4)⊑A2}
is a uniform interpolation for O and Σ.
Given an ontology and a signature, a UI does not always
exist. To overcome this problem, several approaches (Lutz,
Piro, and Wolter 2010; Calvanese, Giacomo, and Lenzerini
1999) have been proposed to provide approximations of UI.

In the following, our definitions and theorems always as-
sume that O is a normalized EL-ontology and Σ a signature
unless otherwise stated.

Introducing Forest FO
Σ

Now, we analyze possible ways to compute deductive mod-
els and then introduce our notion of forest FO

Σ .

Motivation
Assuming UO

Σ is a UI for an ontology O and a signature
Σ, we can compute deductive modules for O and Σ us-
ing the justifications of each axiom β ∈ UO

Σ (see Figure
1). More precisely, consider the following collection of sub-
ontologies defined as the union of justifications:

S = {
⋃

α∈UO
Σ

Jα | Jα is a justification of α}.

Each element M in S is a sub-ontology of O and contains
exactly one justification for each element in UO

Σ . Thus it is a
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Forest F𝒪Σ Deductive modules

UIOntology  
Signature 

𝒪
Σ

justification

Figure 1: The main schema

deductive module for O and Σ. Moreover, we can conclude
that the minimal modules for O and Σ are identical to the
subset-minimal sub-ontologies in the collection S .

Example 4 (Example 3 cont’d). Recall the ontology O, the
signature Σ and the UI UO

Σ of our running example. We
know that there are one justification for β1: Jβ1 = {α1, α2},
two justifications for β2: J1

β2
= {α1, α2}, J2

β2
= {α3} and

one justification for β3: Jβ3 = {α4, α5}. Therefore, the col-
lection S = {O,O\{α3}} contains two different deductive
modules for O and Σ. Moreover, O\{α3} is the unique min-
imal module for O and Σ.

In Figure 1, computing deductive modules through UI and
justifications is shown by the black bold arrows. There are
two main difficulties in implementing this simple idea: (i)
computing UIs is hard, and (ii) a UI does not always exist.
Our contribution to overcome these difficulties is to proceed
to the computation of deductive modules through a new ob-
ject FO

Σ , called a forest, associated with the ontology O and
the signature Σ. This alternative computation process is de-
picted by the red arrows in Figure 1.

The notion of forest FO
Σ , formally introduced hereafter, is

inspired by the regular tree grammar developed in (Nikitina
and Rudolph 2014). The forest FO

Σ and the regular tree
grammar can be regarded respectively as a set of derivation
trees and derivation rules that generate candidate axioms of
a UI. Our method for computing deductive modules relies
on the structure of the trees in FO

Σ instead of using justifi-
cations, and has mainly three benefits: (i) the computation
of FO

Σ is efficient; (ii) our method works no matter a UI
exists or not; (iii) our method can be easily encoded as a
SAT-problem and thus solved by efficient SAT-tools.

Next, we develop the presentation of forests FO
Σ and show

the relation between FO
Σ and UI (i.e., the dotted arrow in

Figure 1). In the following sections, we introduce pseudo-
minimal modules using FO

Σ and describe ForMod, our SAT-
based algorithm, to compute them.

Definition of Forest FO
Σ

Next, we consider labeled trees. Each labeled tree t is asso-
ciated with a label map “lab” that maps (i) node n in t to
an atomic concept; (ii) edge e in t to a condition of the form
α∈O or O|=A⊑B. For simplicity, we use r(t) to denote the
root of t, and At the label of the root (i.e., At = lab(r(t))).

The forest FO
Σ consists of two kinds of trees, forward

trees and backward trees, defined as follows:

Definition 4. A labeled tree t+ is a forward tree (hereafter
f-tree) from A to Σ over O iff:

B1

A2

A1
∃r .
A

α1 ∈ �풪
�횝+�ퟷ

�풪 ⊧ B1 ⊑ A2

∃r .α3 ∈ �풪
B1

A2 A1

∃r .
A�횝+�ퟸ

A1
�풪 ⊧ B1 ⊑ A1

⋯
Figure 2: f-trees (blue words are the label of edges).

1. the label of the root of t+ is A (i.e., At+ = A);
2. for node n ∈ t+ distinct from the root, lab(n) ∈ Σ iff n

is a leaf of t+,
3. if the child set of a node n0 ∈ t+ is {n1, · · · , nm} and

Bi = lab(ni), 0 ≤ i ≤ m, then for each 0 ≤ i ≤ m,
one of the following conditions holds:

(a) B0 ⊑ ∃r.Bi ∈ O and r ∈ Σ,
(b) O |= B0 ⊑ Bi, where Bi is not primitive or Bi ∈ Σ.

The edge e from n0 to ni is labeled by the condition1 that
generates e.

For the sake of the presentation, edges labeled by
B0⊑∃r.Bi∈O (i.e., case 3(a)) are called ∃r-edges.
Example 5 (Example 4 cont’d). For simplicity and without
ambiguity, in the figure, we represent a node n by its label
lab(n) and mark ∃r-edges by “∃r”. In Figure 2, t+1 , t+2 are
two f-trees from A to Σ over O, and t+2 is a sub-tree of t+1 .
There are still 5 other f-trees from A to Σ over O that are
proper sub-trees of t+1 .

For Σ′=Σ ∪ {B1}, the trees t+1 , t
+
2 are no longer f-trees

from A to Σ′ over O, because t+1 , t
+
2 both contain an inter-

nal node labeled by B1 ∈ Σ′, which violates the requirement
2 in Definition 4.
Definition 5. A labeled tree t− is a backward tree (here-
after b-tree) from A to Σ over O iff:
1. the label of the root of t− is A (i.e., At− = A);
2. for node n ∈ t− distinct from the root, lab(n) ∈ Σ iff n

is a leaf of t−;
3. if the child set of a node n0 ∈ t− is {n1, · · · , nm} and

Bi = lab(ni), 0 ≤ i ≤ m, then one of the following
conditions holds:

(a) m = 1, ∃r.B1 ⊑ B0 ∈ O, r ∈ Σ;
(b) m = 1, O |= B1 ⊑ B0, B1 is not primitive or B1∈Σ;
(c) m > 1, B1 ⊓ · · · ⊓Bm ⊑ B0 ∈ O.

Again, here, the edge e from n0 to ni is labeled by the
condition generating e.

Similarly, edges labeled with ∃r.B1⊑B0∈O are called
∃r-edges. Note that for b-trees, all edges from a node to its
children are generated by the same condition.
Example 6 (Example 4 cont’d). In Figure 3, t−1 is the only
b-tree from A2 to Σ over O. Note that the tree on the right of
Figure 3 is not a b-tree from A2 to Σ over O because we do
not have A3 ⊑ B2 ∈ O nor O |= A3 ⊑ B2, which violates
the requirement 3 of Definition 5.

1The label lab(e) is B⊑∃r.Bi ∈ O for the case 3(a); lab(e)
is O|=B⊑Bi for the case 3(b).
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B2
∃r .

A2�횝−�ퟷ
α4 ∈ �풪

A3 A4
α5 ∈ �풪 α5 ∈ �풪

B2
∃r .
A2

A3

Not a b-tree:

Figure 3: b-tree (an example and a counter-example)

The forest FO
Σ associated with an ontology O and a sig-

nature Σ is defined as follows:
Definition 6. The forest FO

Σ is the collection of all f-trees
and b-trees from A to Σ over O, where A ∈ sig(O).

Notice that FO
Σ can be an infinite set. For example:

Example 7. Let O1={A⊑∃r.B, B⊑∃r.B, B⊑∃r.A} and
Σ1={A, r}. Then, FO1

Σ1
contains infinitely many f-trees

t+1 , t
+
2 , · · · from A to Σ1 over O1 as shown in Figure 4.

The f-trees in Figure 4 are generated by the loop starting
at the node labeled by B. More precisely, we say that a tree
t ∈ FO

Σ contains a loop if there is a path p from root r(t) to
a leaf of t with two different nodes having the same label.
For the same reason, there could be infinitely many b-trees
in a forest FO

Σ . We have that FO
Σ is infinite iff some t ∈ FO

Σ
contains a loop.

Generating UI from Forest FO
Σ

Although our computation of deductive modules does not
require computing UI, we investigate here how to generate a
UI from a forest. These discussions (definitions and results)
are necessary for presenting our method.

First, we associate each f-tree or b-tree t with an EL-
concept Ct defined as follows:
Definition 7. For a f-tree or b-tree t, the corresponding EL-
concept Ct is defined inductively by (i) if the child set of the
root r(t) is empty, then Ct = At; (ii) if the child set of the
root r(t) is {n1, · · · , nm}, and there exists 0 ≤ k ≤ m such
that the edge from r(t) to ni is a ∃ri-edge for i ≤ k. Then

Ct = ∃r1Ct1 ⊓ · · · ⊓ ∃rkCtk ⊓ Ctk+1
⊓ · · · ⊓ Ctm ,

where ti is the maximal sub-tree of t rooted at ni.
For instance, we have Ct+1 =∃r.(A2 ⊓A1)⊓∃r.A1 for t+1

in Example 5 and we have Ct−1
=∃r.(A3 ⊓ A4) for t−1 in

Example 6. Now, the UI candidate generated from FO
Σ is

defined as follows.
Definition 8. Given a forest F of b-trees and f-trees, the set
of axioms UΣ(F ) associated with F is the union of the three
axiom sets below:

U1
Σ(F )={Ct− ⊑ At− | t− ∈ F, At− ∈ Σ}

U2
Σ(F )={At+ ⊑ Ct+ | t+ ∈ F, At+ ∈ Σ}

U3
Σ(F )={Ct− ⊑ Ct+ | t−, t+ ∈ F, At−=At+ ̸∈ Σ}.

UΣ(F ) is a UI candidate because of the following result:
Theorem 1. For any axiom α with sig(α) ⊆ Σ, we have
O |= α iff UΣ(F

O
Σ ) |= α. Therefore, UΣ(F

O
Σ ) is a UI for O

and Σ if FO
Σ is finite.

𝚝+𝟸

A

B

∃r .

A∃r . ⋯
B
∃r .

𝚝+𝟷

A
∃r .

A
B
∃r .

Figure 4: Some trees of FO1

Σ1

Next, we omit Σ in UΣ(F ) and U i
Σ(F ), i ∈ {1, 2, 3} if

there is no ambiguity.

Example 8 (Example 5 and 6 cont’d). Note that FO
Σ is finite

because no b-tree or f-tree over the ontology O contains a
loop. We have U1(FO

Σ ) = {β′
1 : ∃r.(A3⊓A4) ⊑ A2},

U2(FO
Σ ) = {β′

2 : A ⊑ ∃r.(A2⊓A1) ⊓ ∃r.A1,

β′
3 : A ⊑ ∃r.(A2⊓A1), β

′
4 : A ⊑ ∃r.A2 ⊓ ∃r.A1,

β′
5 : A ⊑ ∃r.A1, β

′
6 : A ⊑ ∃r.A2},

and U3(FO
Σ ) = ∅. Here, β′

1 is generated from t−1 ∈ FO
Σ

and β′
2, β

′
3 are generated from t+1 , t+2 ∈ FO

Σ respectively.
β′
4, β′

5, β′
6 are generated from sub-trees of t+1 other than

t+2 . Then, U(FO
Σ ) = U1(FO

Σ ) ∪ U2(FO
Σ ) ∪ U3(FO

Σ ) is a UI
for O and Σ since FO

Σ is finite.

It may happen that FO
Σ is infinite and nevertheless, a UI

for O and Σ exists. In that case, we can still obtain a UI from
FO
Σ by extracting a finite subset of U(FO

Σ ) as in (Nikitina
and Rudolph 2014). We do not provide further details here
as computing UI is not our main goal.

Pseudo-Minimal Modules
This section introduces a novel notion of deductive mod-
ules, called pseudo-minimal modules, based on the forest
FO
Σ . The definition of pseudo-minimal modules relies on

tree-support and a finite representative subset of FO
Σ defined

below.

Tree-Support
Intuitively, tree-supports can be seen as analogs to justifica-
tions, although tree-supports are related to tree derivation,
whereas justifications are related to axiom inference.

Definition 9. A tree-support of a tree t∈FO
Σ is a sub-

ontology of O defined as the union of the following axiom
sets: (i) {α}, for each edge e ∈ t labeled by α∈O; (ii) a
justification JA⊑B ⊆ O of A ⊑ B, for each edge e ∈ t
labeled by O |= A ⊑ B. Let Supp(t) be the collection of all
tree-supports of t.

For example, in Example 6, the only tree-support of t−1 is
{α4, α5} since all edges in t−1 are labeled by α4∈O or
α5∈O. Different tree-supports can be obtained depending
on the different choices of justification JA⊑B .

Compared to justifications of α∈U(FO
Σ ), tree-supports

are easier to compute since (i) the first component {α} of
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tree-supports is obtained directly; (ii) computing justifica-
tions of A⊑B, where A,B ∈ NC , is easier than comput-
ing the justifications of an arbitrary axiom α∈U(FO

Σ ); (iii)
the computation of tree-supports can be encoded as Horn-
clauses and solved by efficient SAT tools as shown in the
next section.

Finding a Finite Representative Subset of FO
Σ

Now, we extract a finite subset of FO
Σ . First, we partition FO

Σ
into three disjoint sets F1, F2 and F3 as follows:

F1 = {t∈FO
Σ | t contains a loop}

F2 = {t+∈FO
Σ \F1 | ∃ t−∈F1 such that At+=At− ̸∈ Σ}

∪ {t−∈FO
Σ \F1 | ∃ t+∈F1 such that At−=At+ ̸∈ Σ}

F3 = FO
Σ \(F1 ∪ F2).

Then F2, F3 are finite sets since they do not contain trees
with loop, F1 is infinite iff FO

Σ is infinite.
Second, we select a finite subset F ∗

1 of F1 as follows. Let
us say that two f-trees (or b-trees) are equivalent iff they
share the same set of edge labels. Then F ∗

1⊆F1 is obtained
by selecting one representative tree for each equivalent class
in F1. Then, because the number of labels of the form α∈O
or O|=A ⊑ B is finite given an ontology O, the number of
equivalent classes is finite and thus F ∗

1 is finite.
Finally, we obtain a finite representative subset F ∗

1 ∪F2∪
F3 ⊆ FO

Σ . Note that if FO
Σ is finite, then F1=F2=F ∗

1=∅,
F3=FO

Σ and thus F ∗
1 ∪F2∪F3 is FO

Σ itself.

Pseudo-Minimal Modules
Now, we formally introduce pseudo-minimal modules as
follows:

Definition 10. A pseudo-minimal module for O and
Σ is a minimal element in the collection SO

Σ :=
{
⋃

t∈F∗
1 ∪F2∪F ′ St | St ∈ Supp(t), F ′ ⊆ F3,U(F2∪F ′) |=

U(F2 ∪ F3) }.
We can regard pseudo-minimal modules as an approxima-

tion of minimal modules because of the following result:

Theorem 2. A pseudo-minimal module for O and Σ is a
deductive module for O and Σ. Moreover, if FO

Σ is finite,
then M is a pseudo-minimal module for O and Σ iff M is a
minimal module for O and Σ.

Notice that, in Definition 10 of SO
Σ , if we do not consider

F ′⊆F3 satisfying U(F ′∪F2)|=U(F2∪F3) (i.e., let F ′ =
F3), all the elements in SO

Σ are still deductive modules for
O and Σ. However, in this case, we can not guarantee that
pseudo-minimal modules are minimal modules when FO

Σ is
finite. For example:

Example 9 (Example 8 cont’d). Recall that FO
Σ is finite,

then FO
Σ = F3. If we require F ′ = F3, then SO

Σ =

{
⋃

t∈FO
Σ
St

∣∣∣ St ∈ Supp(t)}. Since t+1 ∈FO
Σ has a unique

tree-support St+1
= {{α1, α2, α3}}, all the sets in SO

Σ are
super sets of St+1

and thus contain α3. However, as shown in
Example 4, α3 does not belong to any minimal module for O

and Σ. On the other hand, if we allow F ′ ⊆ F3, we can get
rid of t+1 because U(F ′) |= U(FO

Σ ) for F ′ = FO
Σ \ {t+1 }.

Therefore, we can get rid of α3.

When FO
Σ is infinite, we show by our evaluation (see Ta-

ble 4) that pseudo-minimal modules are still very concise.
This provides an experimental validation of the minimal
module approximation defined by pseudo-minimal modules.

ForMod: A SAT-Based Algorithm
Now, we present our algorithm ForMod that constructs a set
of Horn-clauses CΣ and computes pseudo-minimal modules
and complete modules using CΣ. Assume that we have com-
puted the finite representative subset F ∗

1 ∪F2∪F3 of FO
Σ by

enumeration of b-trees and f-trees.

Encoding by Horn-Clauses
Recall that all pseudo-minimal modules are minimal ele-
ments in the collection SO

Σ . In the following, we encode
the extraction of these minimal elements by a set of Horn-
clauses: CΣ.

We associate to each α∈O, β∈U(F ∗
1 ∪F2∪F3), t∈FO

Σ
and each edge e∈t a literal lα, lβ , lt, le, respectively. Also,
we introduce a new literal lΣ to capture pseudo-minimal
modules for O and Σ. Now, the encoding is decomposed
into two parts: (i) The first part (items 1, 2 and 3 be-
low) encodes the computation of the subsets F ′⊆F3 such
that U(F2∪F ′)|=U(F2∪F3); (ii) The second part (items 4
and 5 below) encodes the computation of the tree-supports
St∈Supp(t). In details, CΣ consists of:
1. (∧β∈U(F2∪F3) lβ)∧ (∧t∈F ∗

1 ∪F2
lt)→lΣ;

2. for each axiom β ∈ U(F2∪F3), a Horn-clause is built
depending on the provenance of β in U(F2∪F3) (recall
Definition 8):

(a) lt−→lβ if β = Ct− ⊑ At− ∈ U1(F2∪F3),
(b) lt+→lβ if β = At+ ⊑ Ct+ ∈ U2(F2∪F3),
(c) lt+∧lt−→lβ if β = Ct−⊑Ct+ ∈ U3(F2∪F3),

for some t−, t+ ∈ F2∪F3.
3. lβ1 ∧ · · · ∧ lβn→lβ, for each β ∈ U(F2∪F3) and each

justification {β1, · · · , βn} of β w.r.t. U(F2∪F3);
4. (∧e∈tle) → lt, for each t ∈ F ∗

1 ∪F2∪F3;
5. For each edge e ∈ t, where t ∈ F ∗

1 ∪F2∪F3:
(a) (∧α∈JA⊑B

lα) → le, if lab(e) is O |= A⊑B, where
JA⊑B ⊆ O is a justification of A⊑B;

(b) lα→le, if lab(e) is α ∈ O.
Above, for clarity, building the clauses of item 5(a) is pre-
sented using justifications. In the implementation, the com-
putation of these justifications is itself encoded by a set of
Horn-clauses as in (Yang, Ma, and Bidoit 2022).
Example 10 (Example 6 and 8 cont’d). For simplicity, we
assume FO

Σ = {t+1 , t+2 , t−1 } and U(FO
Σ ) = {β′

1, β
′
2, β

′
3}.

Indeed, this simplification is based on the optimization steps
that are explained later. Let e1, · · · , e7 be the edges of the
trees in FO

Σ as illustrated in Figure 5. Then the set of Horn-
clauses CΣ is shown in Table 1.
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1: lβ′
1
∧ lβ′

2
∧ lβ′

3
→lΣ

2(a): lt−1
→lβ′

1
,

(b): lt+1
→lβ′

2
, lt+2

→lβ′
3

3: lβ′
2
→lβ′

3
, lβ′

3
→lβ′

2
;

4: le1∧le2∧le3∧le4→lt+1
,

le1∧le2∧le3→lt+2
, le5∧le6∧le7→lt−1

5(a): lα2→le2 , lα2→le3 ,
(b): lα1→le1 , lα3→le4 ,

lα4
→le5 , lα5

→le6 , lα5
→le7

Table 1: Clause set CΣ

Complete and Pseudo-Minimal Modules
Let the answer literals be the literals lα associated with ax-
ioms α∈O. We can extract a complete module directly from
CΣ as follows.
Theorem 3. Mc={α ∈ O | lα is an answer literal in CΣ}
is a complete module for O and Σ.
For instance, in Example 10, the complete module Mc for
O and Σ is O itself.

Pseudo-minimal modules are computed from CΣ as in
(Kazakov and Skočovskỳ 2018). We apply resolution over
CΣ ∪ {¬lΣ} which leads to a set of clauses denoted by Cf

Σ.
Assuming MΣ ⊆ Cf

Σ is the subset of minimal2 clauses com-
posed of answer literals only, we have:
Corollary 1. M={α1, · · · , αk} is a pesudo-minimal mod-
ule for O and Σ iff (∧k

i=1lαi
)→⊥∈MΣ.

For instance, in Example 10, we obtain MΣ =
{lα1∧lα2∧lα4∧lα5→⊥} by resolution over CΣ∪{¬lΣ}.
Therefore, the only pseudo-minimal module for O and Σ is
{α1, α2, α4, α5}, which is also the unique minimal module
for O and Σ since the corresponding forest FO

Σ is finite.

Optimization
As mentioned in Example 10, we can reduce the size of FO

Σ
by ignoring some redundant trees. For example, we can ig-
nore those trees that do not contribute to the generation of
axioms in U(FO

Σ ). Furthermore, we can ignore some sub-f-
trees based on the following result:
Corollary 2. Theorem 1, 2 and 3 still hold if we ignore the f-
trees t+∈FO

Σ that satisfies (i) t+ has an edge, starting from
the root r(t+), which is not a ∃r-edge; or (ii) t+ is a proper
sub-tree of a f-tree t+1 ∈ FO

Σ such that r(t) = r(t+1 ) and
̸|= Ct+≡Ct+1 .

In Example 10, t+1 has 6 different sub-trees, but only t+2
satisfies |= Ct+1

≡Ct+2 . Therefore, we can ignore the other 5
sub-trees and thus now FO

Σ ={t+1 , t+2 , t−1 }.

Evaluation
We implemented a prototype ForMod3 of our algorithm in
Python and evaluated it over three real-world ontologies:

2c1 is smaller than c2 if all literals of c1 are in c2.
3https://gitlab.lisn.upsaclay.fr/yang/formod

B1

A2

A1
∃r .
Ae1

�횝+�ퟷ

e2

∃r .
e4

B1
A2 A1

∃r .
A�횝+�ퟸ

A1
e3

e1
e2 e3

B2
∃r .

A2�횝−�ퟷ
e5

A3 A4
e6 e7

Figure 5: Trees in FO
Σ

Σsn16
50 Σsn16

100 Σnci
50 Σnci

100 Σsn21
50 Σsn21

100

Zoom 57.1 32.5 79.0 57.3 - -
ForMod 83.8 79.2 92.3 74.2 98.9 88.1

Table 2: Success rate (%)

Snomed CT (versions Jan 2016 and Jan 2021) and NCI (ver-
sion 16.03d)4. We denote them as sn16, sn21, nci, respec-
tively. Here, sn16 and nci are two EL-terminologies con-
taining 317891 and 165341 axioms respectively. And sn21
is an EL-ontology with 362638 axioms. All the experiments
run on a machine with an Intel Xeon Core 4 Duo CPU 2.50
GHz with 64 GiB of RAM.

For each ontology O, we run the experiments over 2 sets
ΣO

n of 1000 randomly generated signatures, where each sig-
nature has n concepts (n ∈ {50, 100}) and 10 roles.

Pseudo-Minimal Modules
Recall that Zoom (Chen et al. 2017) is the state-of-the-art
algorithm that computes all the minimal modules but only
for EL-terminologies. First, we compare all pseudo-minimal
modules computed by ForMod with all minimal modules
computed by Zoom.

For each signature, we set the total run-time limit of 600s.
The success rates (i.e., the percentage of completed exper-
iments within the time limit) of ForMod and Zoom are
summarized in Table 2. We can see that the success rate of
ForMod is from 13.3% to 46.7% higher than Zoom. Note
that Zoom does not work for sn21, which is not an EL-
terminology.

Table 3 summarizes the time-cost comparison over sig-
natures that are solved successfully by both ForMod and
Zoom. We highlight that, for these signatures, the corre-
sponding forests are indeed finite. Therefore, the pseudo-
minimal modules are indeed minimal modules by Theorem
2. According to Table 3, ForMod is 99.79 times faster than
Zoom on average. Note that, as discussed in (Chen et al.
2017), Zoom spends most of its running time (94.6% on av-
erage) on computing justifications using Beacon (Arif et al.
2016), which is less efficient than the resolution we use.
However, even if we ignore the time cost of Beacon (i.e.
only consider 5.4% computation time of Zoom), ForMod is
still 5.67, 7.48, 3.72, 5.33 times faster than Zoom on aver-
age for Σsn16

50 , Σsn16
100 , Σnci

50 , Σnci
100, respectively.

Second, in our experiments, there are 66 signatures in
Σnci

50 ∪ Σnci
100 for which FO

Σ is infinite, and 43 of them are

4https://www.snomed.org,http://evs.nci.nih.gov
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Time(s) ForMod Zoom
Σsn16

50 17.20 / 1.09 / 1.77 / 1.73 558.76 / 34.85 / 186.04 / 143.53
Σsn16

100 9.75 / 1.29 / 2.18 / 2.10 563.24 / 71.38 / 302.24 / 294.19
Σnci

50 8.89 / 0.74 / 1.32 / 1.28 560.89 / 7.81 / 91.08 / 60.42
Σnci

100 12.47 / 0.89 / 1.47 / 1.42 576.35 / 15.49 / 145.32 / 105.92

Table 3: Time cost (max / min / mean / median)

Module size ⊥⊤∗-module pseudo-minimal module
Σnci

50 7499 / 6340 / 7126.24 80 / 12 / 31.06
Σnci

100 8091 / 1936 / 7317.31 111 / 9 / 52.81

Table 4: Signatures with infinite FO
Σ (max / min / mean )

solved within the time limit by ForMod, but all of them are
time-out for Zoom. So we compare pseudo-minimal mod-
ules of these signatures with ⊥⊤∗-modules implemented by
OWL API (Grau et al. 2008) instead. The result is summa-
rized in Table 4. We observe that the pseudo-minimal mod-
ules are still very concise in terms of size and are signifi-
cantly smaller than the ⊥⊤∗-modules.

Complete Modules
Here, we compare our complete modules generated by
ForMod with ⊥⊤∗-modules. Note that, for all signatures
tested, the corresponding complete modules and ⊥⊤∗-
modules are all computed within 32s, i.e., the success rate
is 100%. The size comparison of those modules is shown
in Table 5. We can see that the size of complete modules is
significantly smaller than that of ⊥⊤∗-modules (103.5 times
smaller on average) for all ontologies.

Table 6 summarizes the time cost comparison between
complete modules and ⊥⊤∗-modules. It shows that the com-
putation of complete modules is faster than that of ⊥⊤∗-
modules except for the maximal time cost.

Related Work
For computing deductive modules, the paper (Chen et al.
2017) developed a recursive algorithm Zoom, which com-
putes minimal modules by computing subsumption justifi-
cations based on a logical difference algorithm proposed
in (Ludwig and Walther 2014). Zoom can always compute
minimal modules no matter whether a UI exists or not. How-
ever, Zoom only works for EL-terminologies since the logi-
cal difference algorithm only works for EL-terminologies.

In (Koopmann and Chen 2020), deductive modules are
computed w.r.t. ALCH, which is more expressive than EL.
The authors compute a single deductive module by collect-
ing all axioms contributing to the generation of a UI obtained
by adapting lethe (Koopmann 2020). When a UI exists,
they further compute a single minimal module by removing
redundant axioms over the above obtained deductive module
using a reasoner. We do not compare their method directly
with ForMod because the UI and minimal modules are dif-
ferent if different languages (e.g., EL or ALCH) are used
as the underlying semantics, even for the same ontology and

Module Size ⊥⊤∗-module complete module pseudo-minimal
Σsn16

50 6628.21 74.53 8.80
Σsnt16

100 13159.89 140.68 20.97
Σnci

50 5560.64 52.02 24.36
Σnci

100 7327.67 73.91 37.53
Σsn21

50 4384.08 88.48 7.60
Σsnt21

100 15845.43 81.28 16.11

Table 5: Mean size of different deductive modules

Time(s) complete module (ForMod) ⊥⊤∗-module (OWL API)
Σsn16

50 27.10 / 1.09 / 2.92 /1.95 9.36 / 5.60 / 6.55 / 6.45
Σsn16

100 31.60 / 1.29 / 4.76 / 2.60 9.68 / 5.76 / 6.74 / 6.65
Σnci

50 3.45 / 0.74 / 1.32 / 1.30 2.88 / 1.16 / 1.90 / 1.97
Σnci

100 23.49 / 0.89 / 1.46 / 1.42 2.90 / 1.28 / 1.98 / 1.97
Σsn21

50 28.06 / 1.34 / 2.62 / 2.27 12.90 / 3.55 / 8.57 / 8.88
Σsn21

100 17.71 / 2.10 / 3.48 / 3.17 14.19 / 3.99 / 9.28 / 9.71

Table 6: Time cost (max / min / mean / median)

signature. Moreover, notice that their method always pro-
duces only one deductive module while ours computes all
(pseudo-)minimal modules.

Recall that Theorem 1 provides a way to compute UI
based on forests FO

Σ although we do not implement it. There
are mainly two different approaches for computing UI: (i)
Forgetting-based approach like lethe and Fame (Zhao
and Schmidt 2018). They compute a UI by forgetting all the
concepts and roles outside a signature Σ. (ii) Generation ap-
proach like NUI (Konev, Walther, and Wolter 2009). NUI
works only for EL-terminology and when FO

Σ is finite (has
no Σ-loop in their case). It is shown in (Chen et al. 2019)
that NUI is much more efficient than lethe and Fame on
EL-terminologies. Moreover, generating UI from FO

Σ un-
derlined by Theorem 1 can be regarded as a generalization
of NUI from EL-terminologies to EL-ontologies:

Proposition 3. Assume that O is an EL-terminology, Σ is
a signature, and FO

Σ is finite. Let F ⊆ FO
Σ be the subset

consisting of all b-trees and maximal f-trees. Then, the UI for
O and Σ computed by NUI is equivalent to U1

Σ(F )∪U2
Σ(F )

(recall Definition 8).

Conclusion and Future Work
In this paper, we present pseudo-minimal modules and com-
plete modules for EL-ontologies and a SAT-based algorithm
ForMod to compute them. Our method is based on a novel
notion of the forest, which enables to capture all the entail-
ments over a given signature. The experiments on real-world
ontologies validated the efficiency of our proposal as well as
the quality of our deductive modules.

As the next step, we plan to investigate how to generalize
our ideas to more expressive ontologies such as EL+ and
ALC. Also, we are interested in investigating such ideas on
module notions that are not necessarily deductive modules
(e.g., semantic modules (Konev et al. 2008)).
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