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Abstract

In this paper, we provide two views of constrained differential
private (DP) mechanisms. The first one is as belief revision.
A constrained DP mechanism is obtained by standard proba-
bilistic conditioning, and hence can be naturally implemented
by Monte Carlo algorithms. The other is as belief update. A
constrained DP is defined according to l2-distance minimiza-
tion postprocessing or projection and hence can be naturally
implemented by optimization algorithms. The main advan-
tage of these two perspectives is that we can make full use
of the machinery of belief revision and update to show basic
properties for constrained differential privacy especially some
important new composition properties. Within the framework
established in this paper, constrained DP algorithms in the
literature can be classified either as belief revision or belief
update. At the end of the paper, we demonstrate their differ-
ences especially in utility in a couple of scenarios.

Introduction
Theories of belief revision and update have been an impor-
tant field in AI community, especially in knowledge repre-
sentation and database systems (van Harmelen, Lifschitz,
and Porter 2008). An agent’s beliefs about the world may
be incorrect or incomplete and she wants to change the be-
liefs. Such a process is known as belief revision (Alchourrón,
Gärdenfors, and Makinson 1985). Belief revision is intended
to capture changes in belief state reflecting new information
about a static world. In contrast, belief update is intended to
capture changes of belief in response to a changing world.
An agent’s beliefs may be correct at one time. But as the
world changes, for example, other agents take acts and dis-
rupt their environment, certain facts become true and oth-
ers false. The agent must accommodate these changes to
update its state of beliefs. Such a process is called belief
update (Katsuno and Mendelzon 1991). Besides the tradi-
tional symbolic formalism, probability theory can be used
to represent an agent’s belief state. In the probabilistic set-
ting, an agent’s cognitive state is represented by a probabil-
ity function p over a set Ω of possible worlds. Conditioning
and imaging are two probabilistic versions of belief change
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that correspond to belief revision and belief update, respec-
tively. Upon learning a sure fact C, on the one hand, con-
ditioning works by suppressing the possible worlds which
are inconsistent with C and normalizing the probabilities
of the remaining possible worlds. It is a fundamental ap-
proach in probabilistic reasoning and statistical inference
(Pearl 1988). On the other hand, imaging (or updating) per-
forms by transferring the probabilities of worlds outside C
to the closest worlds in C. It is a common method to study
intervention and causality (Pearl 2009).

In this paper, we take the two views of belief revision
and update to study constrained differential privacy. Differ-
ential privacy (DP) is a mathematically rigorous definition
of privacy which addresses the paradox of learning noth-
ing about an individual while learning useful information
about a population (Dwork et al. 2006; Dwork and Roth
2014). Differentially private data releases are often required
to satisfy a set of external constraints that reflect the legal,
ethical, and logical mandates to which the data curator is
obligated (Abowd et al. 2019; Hay et al. 2010). For exam-
ple, in US Census 2020, the so-called touchstone of DP by
Dwork, the Census Bureau is constitutionally mandated to
report the total population of each state as exactly enumer-
ated without subjecting them to any perturbation protection;
in data queries, constraints are often used to improve the ac-
curacy while maintaining the quality of privacy protection
of the unconstrained DP mechanisms. The central question
in designing DP mechanisms with those constraints (called
constrained DP) is how to integrate randomized DP privacy
mechanisms with deterministic constraints while maintain-
ing the standard trade-off between privacy protection and
data utility. Our main contribution is to study this integra-
tion from the perspectives of belief revision and update.

In this paper, we mainly focus on those constraints that
are known to hold also for the original datasets, which are
hence called invariants. We first give a definition of data-
independent invariants C (Definition 8), which is a subset of
the output space Rn of the privacy mechanism M . In this pa-
per, Laplace and Gaussian mechanisms are considered. For
a given dataset D, M(D) is a (continuous) random vector
over Rn. Let PM(D) and pM(D) denote the corresponding
probability distribution and (density) function, which is re-
garded as an agent’s belief state. We then design constrained
DP mechanisms by performing belief change on pM(D) (or
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PM(D)). In order to revise pM(D) by conditioning, we have
to consider two cases: PM(D)(C) > 0 and PM(D)(C) = 0.
When PM(D)(C) > 0, conditioning works as usual. One
of our technical contributions is to deal with the challenge
when PM(D)(C) = 0. We use the techniques of changing
variables in multivariate calculus to compute the conditional
density. Even though the invariant C is data-independent,
conditioning is data-dependent because the denominator in
conditional density function depends on the original data
D. So conditioning may add more privacy loss as shown in
(Gong and Meng 2020). In this paper, we show that, if M is
additive and C is represented by a group of linear equalities,
conditioning does not incur any extra privacy loss (Lemma
10). In addition to the standard postprocessing and compo-
sition properties (Lemmas 11,13), we obtain from the char-
acterizing property of conditioning an interesting form of
composition: conditional privacy mechanism on the disjoint
union of two invariants is a convex combination of the mech-
anisms conditioned on individual invariants (Theorem 12).
From the perspective of belief update, we perform imaging
on pM(D) and show the standard postprocessing and com-
position properties (Lemmas 15,17). In contrast, imaging is
a privacy-preserving postprocessing and does not incur any
privacy loss (Lemma 14). Moreover, we obtain a character-
istic proposition about composition and show that imaging
on mixture of privacy mechanisms is the mixture of imag-
ing privacy mechanisms (Theorem 16). In addition to the
above analysis of privacy, we also perform analysis of utility
and perform some experiments to show the differences be-
tween the two perspectives as belief revision and update. The
theory of belief revision and update can guide us in choos-
ing the appropriate constraining approach, thereby clarify-
ing many confusions in the literature regarding these two
constrained DPs.

The paper is organized as follows. We first present some
background about belief change and differential privacy.
Then we provide a detailed analysis of the two views. At
the end of the paper, we discuss some related works and fu-
ture research. The following Figure 1 provides the guide of
the paper.

Figure 1. Guideline of the Paper

Preliminaries
In this paper, we are mainly concerned about belief revi-
sion and update in the probabilistic setting. So, in this sec-
tion, we provide some basic knowledge. For details about
probabilistic belief revision and update, one may refer to
(Gärdenfors 1988) and (Dubois and Prade 1993). In the
probabilistic framework, a belief state is represented by a
probability measure P (or a probability function p) on the
set Ω of possible worlds. In order to motivate the views of
constrained differential privacy from the perspective of be-
lief change, we first assume that Ω is finite. If we learn that
event E has occurred, i.e., we are certain that E is true, the
prior state P is revised according to Bayesian conditioning:
for any E′ ⊆ Ω, P (E′|E) = P (E∩E′)

P (E) . It is not well-defined
when P (E) = 0. Bayesian conditioning is the probabilis-
tic counterpart of belief revision for a static world. There
is a well-known characterization of Bayesian conditioning:
there is no relative change of beliefs in the process of condi-
tioning.

Proposition 1 (Proposition 3.2.1. in (Halpern 2017)) Let
P (E) > 0. A probability measure P ′ on Ω is obtained from
P according to Bayesian conditioning if and only if P ′ sat-
isfies the following two conditions:

1. P ′(Ē) = 0;

2. P ′(B)
P ′(B′) = P (B)

P (B′) for any B,B′ ⊆ E such that P (B′) >

0.

There is another more interesting characterization of
Bayesian conditioning. It is shown (Gärdenfors 1988) that,
for C and C ′ such that C ∩ C ′ = ∅, conditioning satisfies
the property that P (·|C ∪ C ′) is a convex combination of
P (·|C) and P (·|C ′).

Proposition 2 For the above defined Bayesian condition-
ing, and C,C ′ ⊆ Ω such that C ∩ C ′ = ∅, P (B|C ∪ C ′) =

λP (B|C) + (1− λ)P (B|C ′) with λ = P (C)
P (C)+P (C′) .

Another important characterization of Bayesian
conditioning is about the minimal change princi-
ple through the Kullback-Leibler information dis-
tance: for any probability measures P and P ′ on Ω,
I(P, P ′) :=

∑
ω∈Ω P ′(ω) log P ′(ω)

P (ω) . The conditional
probability P (·|C) minimizes the KL distance I(P, P ′)
from the prior P under the constraint that P ′(C) = 1.

Now we describe belief update in the probabilistic frame-
work. Assume that, for any event C ⊆ Ω and for any ω ∈ Ω,
there is a unique ωC ∈ C which is the closest world from ω.
According to probabilistic imaging (projection), upon learn-
ing that C is true, the probability mass P (ω) assigned to a
world ω ∈ Ω is then transferred to ωC , the closest world in
C. In other words, the updated probability after imaging can
be written as

PC(ω) :=
∑

ω′
C=ω

P (ω′) (1)
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Such a process is called probabilistic belief update. There is
a nice characterization of probabilistic imaging. It is the only
updating rule that is homomorphic. Mathematically, for any
two probability measures P and P ′ on Ω and any λ ∈ [0, 1],

(λP + (1− λ)P ′)C =λPC + (1− λ)P ′
C . (2)

In other words, imaging preserves probabilities under the
mixture of probabilities. In particular, imaging may turn an
impossible world into a possible one, i.e., P (ωC) = 0 but
PC(ωC) > 0. On the other hand, imaging may turn a sure
event to be uncertain, i.e., P (B) = 1 but PC(B) < 1. How-
ever, both cases are impossible in the Bayesian conditioning.

Example 3 Here we adopt an example from Section 2.3 in
(Dubois and Prade 1993) to illustrate the difference between
belief revision and update. There is either an apple (a) or a
banana (b) in a box. Let ω1, ω2, ω3 and ω4 denote all the
four possible states where a ∧ b is true, a ∧ ¬b is true,
¬a ∧ b is true and ¬a ∧ ¬b is true, respectively. Our cur-
rent epistemic state p is represented by p(ω1) = p(ω4) = 0,
p(ω2) = 0.7 and p(ω3) = 0.3. After learning that there is
no apple, i.e., C = {ω3, ω4}, the epistemic state p changes
according to Bayesian conditioning to p(ω3|C) = 1 and
p(ω1|C) = p(ω2|C) = p(ω4|C) = 0. In other words, we in-
fer that there is a banana in the box. Next we consider imag-
ing or belief update. In C, ω3 is the closest world to ω1 and
ω4 is the closest to ω2. So pC(ω3) = p(ω1) + p(ω3) = 0.3
and pC(ω4) = p(ω2) + p(ω4) = 0.7. This implies that it
is more probable that the box is empty. In belief revision,
C is interpreted as “there is no apple in the box” (static
world), while, according to belief update, it means “there
is no longer any apple” (world change).

Let T be a set of possible records. Typically we use t to
denote records (or data). A dataset is a finite indexed fam-
ily of records. We use D to denote the space of all possi-
ble datasets. Elements of D are typically denoted as D or
D′. For any i ≤ |D|, Di denotes the i-th record in D and
D−i is the dataset D with Di removed. In other words,
D−i = D \ {Di}. Let Y be the set of outputs which are
usually denoted by y, y′, y1 or y2. A randomized mecha-
nism M : D → Y maps a dataset D to a random variable
M(D) over Y . In other words, for any D ∈ D and E ⊆ Y ,
Pr[M(D) ∈ E] defines a probability measure over Y . Dif-
ferential privacy is a privacy guarantee that a randomized al-
gorithm behaves similarly on neighbouring input databases
which differ on at most one record. The two datasets D and
D′ can differ in two possible ways: either they have the same
size and differ only on one record (|D| = |D′|, Di ̸= D′

i
and, for any j ̸= i, Dj = D′

j), or one is a copy of the other
with one extra record (D′ = D−i for some i). These two op-
tions do not protect the same thing: the former protects the
value of the records while the latter also protects their pres-
ence in the data: together, they protect any property about a
single individual. The original definition of differential pri-
vacy in (Dwork et al. 2006) takes the second notion of neigh-
bourhood. In this paper, these two notions apply, which are
both denoted D ∼ D′. Usually we use capital letters to de-
note random variables and lower-case letters to denote their
values.

Definition 4 For arbitrary ϵ, δ > 0, a randomized mech-
anism M is called (ϵ, δ)-differentially private if, for any
S ⊆ Y and D and D′ such that D ∼ D′, the following
inequality hold:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

If δ = 0, we say that M is ϵ-differentially private. ✁

In this paper, we assume that the output set Y = Rn. For
a function f : D → Rn and k = 1, 2, the lk-sensitivity
of f is defined as ∆k(f) = maxD∼D′ ∥f(D) − f(D′)∥k.
We mainly consider the following two most commonly-used
privacy mechanisms.

Definition 5 (Laplace Mechanism) For a deterministic
query function f : D → Rn, the Laplace mechanism M :
D → Rn is given by M(D) = f(D) + (U1, U2, · · · , Un)
where U1, U2, · · · , Un are i.i.d. Laplace random variables
with the probability density function

Lap(x|λ) = 1

2λ
exp

(
−|x|

λ

)
We will sometimes write Lap(λ) to denote the Laplace dis-
tribution with the scale λ, and will sometimes abuse notation
and write Lap(λ) to denote a random variable U ∼ Lap(λ).
✁

Definition 6 (Gaussian Mechanism) For a deterministic
query function f : D → Rn, the Gaussian mechanism M :
D → Rn is given by M(D) = f(D) + (U1, U2, · · · , Un).
where U1, U2, · · · , Un are i.i.d. Gaussian random variables
with the probability density function N (0, σ2). Similarly,
we will sometimes write N (0, σ2) to denote a random vari-
able U ∼ N (0, σ2). ✁

To answer queries under differential privacy, we use the
Laplace and Gaussian mechanisms, which achieves differ-
ential privacy by adding noise to query answers. If we cal-
ibrate the Laplace and Gaussian noises to the query f , we
can show that the above two mechanisms are differentially
private.

Proposition 7 (Dwork et al. 2006) Let λ = ∆1(f)
ϵ and δ =

∆2(f)(1+
√

1+ln(1/δ))

ϵ . We have
1. The above Laplace mechanism with Lap(λ) is ϵ-DP;
2. The above Gaussian mechanism N (0, σ2) is (ϵ, δ)-DP.

In this paper, the random variables associated with privacy
mechanisms are usually continuous. Density functions de-
termine continuous distributions. If a continuous distribution
is calculated conditionally on some information, then the
density is called a conditional density (Applebaum 1996).
When the conditioning information involves another random
variable with a continuous distribution, the conditional den-
sity can be calculated from the joint density for the two ran-
dom variables. Suppose that two random variables have a
joint continuous probability distribution with joint density
function pX,Y (x, y) and pY (y) is the density function of Y ,
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then the conditional density of the distribution of the random
variable X for fixed values y of Y is defined as follows:

pX(x|Y = y) =
pX,Y (x, y)

pY (y)
. (3)

It is easy to see that, in this case, conditioning does not
change the relative densities.

Two Views of Constrained DP
From the data curator’s perspective, in addition to privacy
concerns, there often exists external constraints that the pri-
vatized output M must meet. These constraints can often be
represented as a predicate of M(D) that agrees with what is
calculated based on the confidential f(D).

Definition 8 Given a deterministic query f : D → Rn and
a privacy mechanism M : D → Rn, we call a convex (and
hence Lebesgue measurable) subset C ⊆ Rn an invariant if,
for any D ∈ D, M(D) ∈ C ⇔ f(D) ∈ C with probability
one over the randomness of M . ✁

Our definition of invariant is independent of the origi-
nal dataset D and hence is essentially different from that in
(Gong and Meng 2020). The invariants defined there depend
on the original dataset. We have not found in the literature
yet any practical scenarios with such a dependent invariant.
Usually the invariants are represented by a group of linear
equalities or inequalities. In other words, C = {z ∈ Rn :
Az = b} or C = {z ∈ Rn : Az ≥ b} for some matrix
A and vector b. Constrained DP (CDP for short) refers to
differential privacy (or differential private mechanism) sat-
isfying some invariant.

Constrained DP as Belief Revision
For a given dataset D ∈ Rn, M(D) is a random variable.
Let PM(D) and pM(D) be the corresponding probability dis-
tribution and density function over Rn. Now we give a defi-
nition of constrained DP by employing the technique of be-
lief revision to the probability distribution and density func-
tion associated with the random variable M(D). Given an
invariant C, we construct the conditional random variable
M(D)|C in two cases.

1. Case 1: PM(D)(C) > 0. For example, if C is repre-
sented by a group of linear inequalities, then usually
PM(D)(C) > 0. Now we define the conditional random
variable M(D)|C (and its probability density function
pM(D)|C). If u ∈ C, then pM(D)(u) =

pM(D)(u)

PM(D)(C) ; other-
wise, pM(D)|C(u) = 0.

2. Case 2: PM(D)(C) = 0. Here we consider as an illustra-
tion a simple case when M is additive and the invariant
C is defined by a group of linear inequalities Az = b
where A is a (n′ × n) matrix (n′ < n) and b is a
(n′ × 1) column vector. It follows PM(D)(C) = 0. Let
M(D) = f(D) + U where f is a deterministic query
and U is a random vector (U1, U2, · · · , Un) with prob-
ability density function pU . Since Af(D) = AM(D)
with probability 1, AU = 0 with probability 1. So, in this

case, the randomness in M(D) comes from the random
vector U and hence is independent of the original dataset
D. Without loss of generality, we assume that the rank of
A is n′, i.e., A is of full rank and, by solving the group of
linear equations AU = 0 of unknowns U1, U1, · · · , Un,
we get 

Un′+1 = Un′+1(U1, U2, · · · , Un′)
Un′+2 = Un′+2(U1, U2, · · · , Un′)
· · ·
Un = Un(U1, U2, · · · , Un′)

In other words, U1, · · · , Un′ are the n′ free vari-
ables. Now we define the conditional random variable
M(D)|C and its probability density function pM(D)|C .
If M(D) = f(D) + u = f(D) + (u1, · · · , un) ∈ C,
then pM(D)|C(f(D) + (u1, · · · , un)) = pU (u) =

pU (u1,··· ,un′ ,Un′+1(u1,··· ,un′ ),··· ,Un(u1,··· ,un′ ))∫
Rn′ pU (u1,··· ,un′ ,Un′+1(u1,··· ,un′ ),··· ,Un(u1,··· ,un′ ))du1···du

n′

(let KC denotes the denominator); if M(D) =
f(D) + u ̸∈ C, then pM(D)|C(f(D) + u) = 0.
In summary, if (v1, v2, · · · , vn) ∈ C, then
pM(D)|C(v1, v2, · · · , vn) =

pM(D)(v1,··· ,vn)

KC
; if

(v1, · · · , vn) ̸∈ C, then pM(D)|C(v1, · · · , vn) = 0.
Note that KC depends only on C and the noise-adding
random vector (U1, · · · , Un).

Definition 9 For a privacy mechanism M : D → Rn and an
invariant C ⊆ Rn, we define the constrained privacy mech-
anism M(·|C) satisfying the invariant C as belief revision
according to probabilistic conditioning as follows:

M(·|C)(D) :=M(D)|C (4)

For short, we call M(·|C) a conditional privacy mechanism
on the invariant C.

✁

Congenial DP under mandated disclosure considered in
(Gong and Meng 2020) is our conditional DP for the first
case, i.e., M(D)(C) > 0. In this case, define cD =
Pr[M(D) ∈ C] and cD′ = Pr[M(D′) ∈ C]. Set γ =
1
ϵ maxD∼D′ log cD

cD′
. From a similar argument to Theorem

2.1 in (Gong and Meng 2020), we know that, in this case,
if M is ϵ-differentially private, then M(·|C) is (1 + γ)ϵ-
differentially private for some γ ∈ [−1, 1]. So the condi-
tioning may incur an additional privacy loss with a factor γ.
The following proposition shows a similar proposition for
the second case when M(D)(C) = 0 but with γ = 0.

Lemma 10 Let M be additive and C be represented by a
group of linear equalities Az = b as above. For an invariant
C ⊆ Rn, if M : D → Rn is ϵ-differentially private, then
M(·|C) is also ϵ-differentially private.

Proof. Assume that M is additive and C is defined
by Az = b. For any two neighbouring datasets D
and D′, since M is ϵ-differentially private, e−ϵ ≤
pM(D)(v1,··· ,vn)

pM(D′)(v1,··· ,vn)
≤ eϵ for any (v1, · · · , vn) ∈ Rn. For any

(v1, · · · , vn) ∈ C, pM(D)|C(v1, · · · , vn) =
pM(D)(v1,··· ,vn)

KC
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and pM(D′)|C(v1, · · · , vn) =
pM(D′)(v1,··· ,vn)

KC
.

So, it follows that, for any (v1, · · · , vn) ∈ C,
e−ϵ ≤ pM(D)|C(v1,··· ,vn)

pM(D′)|C(v1,··· ,vn)
≤ eϵ. This implies that

e−ϵ≤ Pr[M(D|C)∈E]
Pr[M(D′|C)∈E] ≤ eϵ for any E ⊆ C. We have shown

that M(·|C) is ϵ-differentially private.
QED

Lemma 11 Let M(·|C) be a (ϵ, δ) conditional differential
private for some privacy mechanism M : D → Rn and
invariant C. If h : Rn → Rn′

is measurable, then

1. h ◦M(·|C) is also (ϵ, δ)- differentially private.
2. (h ◦M)(·|C) is also (ϵ, δ)-differentially private, and h ◦

(M(·|C)) = (h ◦M)(·|C).

Proof. The proof of the first part follows from the observa-
tion that h ◦M(D|C) ∈ Z iff M(D|C) ∈ h−1(Z) for any
measurable Z ⊆ Rn′

. And the second part follows from the
fact

Pr[(h ◦M)(·|C)(D) ∈ B]

Pr[(h ◦M)(·|C)(D′) ∈ B]
=
Pr[M(·|C))(D) ∈ h−1(B)]

Pr[M(·|C)(D′) ∈ h−1(B)]

QED

The following two propositions are about composition.
The first one comes from the characteristic property in
Lemma 2 about conditioning. It is a new composition prop-
erty. It tells us that, constrained DP mechanism by condition-
ing on the disjoint union of two invariants can be obtained
by the convex combination of constrained DP on these two
individual invariants.

Theorem 12 (Disjoint-union Composition) Let C and C ′

be two invariants such that C ∩ C ′ = ∅. We have

1. The conditional privacy mechanism on C∪C ′ is a convex
combination of the conditional privacy mechanisms on
C and on C ′, i.e., for any D ∈ D, P r[M(D|C ∪ C ′) ∈
B] = λPr[M(D|C) ∈ B] + (1−λ)Pr[M(D|C ′) ∈ B]
for some λ ∈ [0, 1];

2. If the conditional privacy mechanism M(·|C) and
M(·|C ′) are both (ϵ, δ)-differential private, then
M(·|C ∪ C ′) is (ϵ, δ)-differentially private.

Proof. The first part is from Lemma 2 with λ =
PM(D)(C)

PM(D)(C)+PM(D)(C′) and the second follows from the first
part. Note that λ here depends on D and hence is data-
dependent. QED

Lemma 13 Given ϵ1 ≥ 0 and ϵ2 > 0, if M1(·|C1) is ϵ1-
differentially private and M2(·|C2) is ϵ2-differentially pri-
vate, then (M1,M2)(·|C12) such that C12 = (C1, C2) is
(ϵ1 + ϵ2)-differentially private.

The probability distribution P ′ = PM(D|C) of the con-
ditional privacy mechanism minimizes the KL-divergence
I(P ′, PM(D)) with the requirement that P ′(C) = 1.

Constrained DP as Belief Update
Now we define how to update a privacy mechanism M :
D → Rn with an invariant C according to the following
probabilistic imaging rule of belief update:

ȳ =argmin
y∈C

∥y − ỹ∥2 (5)

where ỹ denotes the noisy output of the mechanism M ,
i.e., M(D) = ỹ. So ȳ is the “closest world” in the in-
variant C from the noisy ỹ. Let fL2

denote the determin-
istic function of postprocessing with L2 minimization, i.e.,
fL2

(ỹ) = ȳ. Let pM(D) and pfL2
M(D) denote the corre-

sponding probability function of the two random vectors
M(D) and fL2(M(D)), respectively. For y ∈ Rn,

pfL2
M(D)(y) =

∫
fL2

(y′)=y

pM(D)(y
′)dy′ (6)

From the above Eq. (6), we see that pfL2
M(D) is obtained

from pM(D) according to probabilistic imaging in the sense
of Eq. (1). Let PM(D) and PfL2

(M(D)) denote the corre-
sponding probability measures of pM(D) and pfL2

(M(D)),
respectively. In other words, PM(D)(B) = Pr[M(D) ∈ B]
and PfL2

(M(D))(B) = Pr[fL2M(D) ∈ B]. From Eq, (6),
we have PfL2

(M(D)) = (PM(D))C . Let MC denote the cor-
responding privacy mechanism updated according to the in-
variant C, i.e., MC(D) = fL2(M(D)).

Generally, when M is (ϵ, δ)-differentially private, fL2◦M
is not necessarily (ϵ, δ)-differentially private (Gong and
Meng 2020). However, in this paper, we consider only data-
independent invariants (Definition (8)). So, fL2

as belief up-
date does preserve privacy. Indeed, for any B ⊆ Rn,

Pr[MC(D) ∈ B]

Pr[MC(D′) ∈ B]
=

Pr[MC(D) ∈ B ∩ C]

Pr[MC(D′) ∈ B ∩ C]

=
Pr[M(D) ∈ f−1

L2
(B ∩ C)]

Pr[M(D′) ∈ f−1
L2

(B ∩ C)]

So, if M is (ϵ, δ)-DP, then so is MC . In particular, when M
is an additive privacy mechanism and the invariant can be
represented by a group of linear equalities, fL2 as postpro-
cessing preserves privacy.

Lemma 14 If M is (ϵ, δ)-diferentially private, then MC is
also (ϵ, δ)-differentially private.

Lemma 15 (Postprocessing) If MC is (ϵ, δ)-differentially
private, then, for any measuable function h from Rn to Rn′

,
(h ◦M)C is also (ϵ, δ)-differentially private.

Proof. Note that the randomness comes not from h but from
M . So the lemma follows from the observation:

Pr[(h ◦M)C(D) ∈ B]

Pr[(h ◦M)C(D′) ∈ B]
=

Pr[MC(D) ∈ h−1(B)]

Pr[MC(D′) ∈ h−1(B)]

QED
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The following composition property is new which says
that the constrained differential privacy as belief update is
also preserved under convex combination. A convex com-
bination of the privacy mechanisms is such a randomized
mechanism M that it outputs the mechanism Mi with prob-
ability ai where

∑
i ai = 1. Formally, suppose that we have

some privacy mechanisms Mi : D → Y (1 ≤ i ≤ n). Now
we define a new privacy mechanism M such that Pr[M =
Mi] = ai ≥ 0(1 ≤ i ≤ n) and a1 + a2 + · · ·+ an = 1.

Theorem 16 (Mixture Composition) Let a1, a2, · · · , an ≥
0 such that a1 + a2 + · · · , an = 1 and M be the above
defined mixed mechanism. We have that
1. PMC

(B) = a1P(M1)C (B) + a2P(M2)C (B) + · · · +
anP(Mn)C (B) for any B ⊆ Y ;

2. if (M1)C , (M2)C , · · · , (Mn)C are (ϵ, δ)-differentially
private, then MC is also (ϵ, δ)-differentially private.

Proof. The proof of the first part follows directly from the
characterizing Eq. (2) for probabilistic update. And the sec-
ond part is immediate from the first. QED

The theorem implies that, if we want to find the imaging
of the mixture of some privacy mechanisms, we can find the
imaging of those privacy mechanisms first, which may be
much easier, and then get their mixture. It is interesting to
note that constrained DP as belief update satisfies the Axiom
of Choice in (Kifer and Lin 2010).

Lemma 17 (Basic Composition) Given ϵ1 > 0 and ϵ2 > 0,
if M1 is ϵ1-differentially private with invariant set C1 and
M2 is ϵ2-differentially private with invariant set C2, then the
joint mechanism (M1,M2) is (ϵ1+ϵ2)-differentially private
for the invariant set C12 := (C1, C2).

Now we describe a mechanism design for imaging. As
usual, let M(D) = f(D) + (U1, · · · , Un). Then MC(D) =
f(D) + ΠC(U1, · · · , Un) where ΠC(U1, · · · , Un) is a
random vector with the following density function:
for (u′

1, · · · , u′
n) ∈ C, pΠC(U1,··· ,Un)(u

′
1, · · · , u′

n) =∫
S(u′

1,··· ,u′
n)

p(U1,··· ,Un)(u1, u2, · · · , un)du1 · · · dun where
S(u′

1, · · · , u′
n) = {(u1, · · · , un) : ΠC(u1, · · · , un) =

(u′
1, · · · , u′

n)}. This mechanism design covers the projec-
tion mechanism for subspace DP (Gao, Gong, and Yu 2022).

In most cases, conditioning and imaging are two differ-
ent methods to achieve the constraint differential privacy.
But, in the special case when the mechanism is spherical
Gaussian mechanism (Definition 6) and invariant is repre-
sented by linear-equality constraint, then these two methods
achieve the same results (Gao, Gong, and Yu 2022).

Utility Analysis
In this section, we analyze the utility in two scenarios:
one is a simple linear constraint; the other is hierarchical
constraint. It seems that, in both scenarios, conditioning
achieves better in utility than imaging. Here we consider the
Laplace mechanism in Definition 5. We first compare the
utilities of conditioning and imaging on the linear constraint
C = {(z1, · · · , zn) ∈ Rn : z1+z2+ · · ·+zn = b} for some

real number b. The following proposition (Theorem 12 from
(Zhu, Van Hentenryck, and Fioretto 2021)) characterizes the
variance of the marginal distribution of the postprocessed
noise fL2

(x̃)− x.

Proposition 18 V ar(fL2(x̃) − x)i = 2λ2(1 − 1
n ) for i =

1, · · · , n.

Here we consider the simplest case where n = 3
and the invariant is C = {(z1, z2, z3) ∈ R3 : z1 +
z2 + z3 = b} for some constant b. The Laplace mech-
anism M(D) = f(D) + (U1, U2, U3) where U1, U2 and
U3 are identically independent Laplace random variables.
Under the constraint z1 + z2 + z3 = b, it is easy to
see that U1 + U2 + U3 = 0. Let p(U1,U2,U3) denote
the probability density function (p.d.f) of the random vec-
tor (U1, U2, U3). It follows that pU1,U2,U3(u1, u2, u3) =

( 1
2λ )

3 exp(− |u1|+|u2|+|u3|
λ ). Let (U∗

1 , U
∗
2 , U

∗
3 ) denote the

conditional random vector (U1, U2, U3)|(U1+U2+U3 = 0).
So, if M(D) = f(D)+(u1, u2, u3) such that u1+u2+u3 =
0, then the probability density of M(D)|C at (u1, u2, u3) is

pU1,U2,U3
(u1,u2,−(u1+u2))∫

R2 pU1,U2,U3
(u1,u2,−(u1+u2))du1du2

; if u1 + u2 + u3 ̸= 0,
then the probability mass of M(D)|C at (u1, u2, u3) is
0. So the conditional privacy mechanism M(·|C)(D) =
f(D) + (U1, U2, U3)|C. We formulate the probability den-
sity of M(D)|C at (u1, u2, u3), defined as h (u1, u2)

h (u1, u2) =
exp

(
− |u1|+|u2|+|u1+u2|

λ

)
∫∫

u1,u2

exp
(
− |u1|+|u2|+|u1+u2|

λ

)
du1du2

Define h(u1) =
∫
u2

h(u1, u2)du2, the marginal variance

of u1 is then given by V ar(u1) =
∫
u1

u2
1h(u1)du1.

Now, consider computing h(u1, u2), h(u1) and
V ar(u1). The denominator of h(u1, u2) is a constant
K =

∫∫
u1,u2

exp
(
− |u1|+|u2|+|u1+u2|

λ

)
du1du2. Since the

integration region is symmetric about the origin and
p (u1, u2,−u1 − u2) = p (−u1,−u2, u1 + u2), we get
K = 3

2λ
2.To compute h(u1), we firstly consider the case

u1 ≥ 0

h(u1) = 1
K

∫ +∞
−∞ exp

(
− |u1|+|u2|+|u1+u2|

λ

)
du2

= 1
K

(
(λ+ u1) exp

(
− 2u1

λ

))
Similar derivation can be performed on case
u1 < 0. Thus for any u1, it follows that
h(u1) = 1

K

(
(λ+ |u1|) exp

(
− 2|u1|

λ

))
. At last, we

get marginal variance of u1, V ar(u1) =
∫
u1

u2
1h(u1)du1 =

1
K

∫ +∞
−∞ u2

1

(
(λ+ |u1|) exp

(
− 2|u1|

λ

))
du1 = 5

6λ
2. So

when n = 3, the variance V ar(u1) of the marginal dis-
tribution of conditioning M(D) is smaller than the above
variance V ar(fL2

(x̃) − x) of marginal distribution by
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CDP Privacy
preserving

Privacy
preserving
(linear eq.)

Post-
processing

Basic
composition

Disjoint
union

composition

Mixture
composition

Minimum
principle

Approximate
computation

Belief
revision ✘ ✔ ✔ ✔ ✔ ✘

KL-
divergence

Monte
Carlo

Belief
update ✔ ✔ ✔ ✔ ✘ ✔

L2-distance
L1-distance Optimization

Table 1. Summary of Main Results

imaging (Proposition 18). This is also true for the case
when n = 2 (Example 4.1 in (Gong and Meng 2020)).
We performed some simulation experiments for larger n
which showed similar results. We conjecture that this holds
generally for any n and hence the variance of the marginal
distribution by conditioning is smaller than that by imaging
on this invariant for simple counting query.

MCMC Method and Comparative Experiment
In this part, we experimentally compare accuracy between
conditioning approach and imaging approach in process-
ing data based on region hierarchy. In the experiment, we
choose the improved MCMC method to obtain samples of
the consistency constraint privacy mechanism, and com-
pare it with the classic post-processing projection technique
such as TopDown algorithm. We choose New York City
Taxi Dataset for the experiment. The specific selection is
the yellow taxi trip dataset in February 2022. The relevant
document is called “yellow tripdata 2022-02.parquet” while
records all trip data of the iconic yellow taxi in New York
City in February 2022. The dataset has 19 attribute columns,
2979431 record rows, where each row represents a taxi trip.
We only use one attribute “PULocationID” in this experi-
ment, which ranging from 1 to 263, indicates TLC Taxi Zone
in which the taximeter was engaged. We treat each taxi as a
group and build a 3-level hierarchy of trip record frequency
in each zone. New York city, abbreviated as NYK, is at Level
1, six boroughs, i.e., Bronx (Bx), Brooklyn (Bl), EWR, Man-
hattan (M), Queens (Q) and Staten Island (SI), is at Level 2
and Level 3 includes 263 zones corresponding to “PULoca-
tionID”. Here we provide an improved metropolis Hastings
(MH) algorithm MMH . Our experiment shows the advan-
tage in accuracy by comparing the conditioning algorithm
with the imaging algorithm. Trip frequency distribution in
all zones is taken as the confidential query x, and the Laplace
mechanism is selected to perturb x. Finally, the output x̃ sat-
isfying the differential privacy and consistency constraints is
obtained. In this experiment we select L1- distance between
x and x̃ as the performance evaluation criteria. For compari-
son, we normalized the L1-distance. i.e., 1

m |x− x̃|, where m
is the dimension of x and x̃. Algorithm’s running efficiency
at different levels of privacy budget is shown in Table 2.

Through the comparison of the two algorithms under dif-
ferent privacy budget conditions and different hierarchy lev-
els, it can be seen that in most cases, the conditioning algo-
rithm MMH will be more accurate than the classic imaging
or projection algorithms. And since the noise decreases as
the privacy budget increases, the errors decrease too.

ϵ Level MMH TopDown

0.5
1 0.013352 0.036806
2 0.028890 0.162698
3 1.680823 2.345461

1
1 0.018244 0.023974
2 0.057345 0.091148
3 1.534053 1.526361

2
1 0.003445 0.005173
2 0.015032 0.027614
3 1.052862 1.260267

Table 2. Accuracy Comparison of Algorithms Running on
NY City Taxi Dataset at L1-distance

Related Works and Conclusion
The main contributions and the comparisons between these
two approaches are summarized in Table 1 (✔ there means
“true” and ✘ “not necessarily true”). Belief change may ex-
plain why almost all constrained DP mechanisms in the lit-
erature are essentially classified either as belief revision or
as belief update. There is a long tradition of designing con-
strained DP by imaging in the database-system community
(Zhang, Xiao, and Xie 2016; Hay et al. 2010; Wang et al.
2020; Lee, Wang, and Kifer 2015; Zhu, Van Hentenryck,
and Fioretto 2021; Gao, Gong, and Yu 2022) and later in US
Census (Abowd et al. 2022). Constrained DP as belief revi-
sion has appeared quite recently and mainly from the statis-
tics community. For example, congenial DP in (Gong and
Meng 2020; Gong 2022) and bounded leakage DP (Ligett,
Peale, and Reingold 2020) are essentially as belief revision.
None of these papers relates their ideas to the notions of be-
lief revision and update. With this connection, we contribute
two interesting new theorems about constrained DP (Theo-
rems 12 and 16). We expect to obtain more important new
properties about constrained DP from the well-established
perspectives of belief revision and update. Also we will con-
sider the models of ”screened revision” and ”credibility-
limited revision” in the full version. Constrained DP by
conditioning on invariant C can be regarded as a special
bounded leakage DP when the invariant C can be repre-
sented by [M ′(D) = o] for some o and some randomized
algorithm M ′. We may consider to extend constrained DP
as belief update to a similar more general setting. Condi-
tioning and imaging are two important approaches in statis-
tical and causal inference. It may be an interesting research
topic to explore the relationships between constrained DP
and causality (Tschantz, Sen, and Datta 2020).
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