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Abstract

We propose a new paradigm for Belief Change in which the
new information is represented as sets of models, while the
agent’s body of knowledge is represented as a finite set of for-
mulae, that is, a finite base. The focus on finiteness is crucial
when we consider limited agents and reasoning algorithms.
Moreover, having the input as arbitrary set of models is more
general than the usual treatment of formulae as input. In this
setting, we define new Belief Change operations akin to tra-
ditional expansion and contraction, and we identify the ratio-
nality postulates that emerge due to the finite representabil-
ity requirement. We also analyse different logics concerning
compatibility with our framework.

1 Introduction
The field of Belief Change (Alchourrón, Gärdenfors, and
Makinson 1985; Hansson 1999) studies how an agent should
rationally modify its current beliefs when confronted with a
new piece of information. The agent should preserve most
of its original beliefs, minimising loss of information, which
is known as the principle of minimal change. Traditionally,
Belief Change is studied via two perspectives: (i) set of ratio-
nality postulates that conceptualise the principle of minimal
change (ii) and classes of Belief Change operations charac-
terised by such rationality postulates. These two views of
Belief Change are tightly connected via representation theo-
rems which show that these views are equivalent.

The standard paradigm of Belief Change (Alchourrón,
Gärdenfors, and Makinson 1985), named AGM due to the
initial of its founders, assumes that an agent’s epistemic state
is represented as a set of sentences logically closed known
as theories. A main issue with theories is that they are of-
ten infinite, whilst rational agents are cognitively limited in
the sense that an agent is only capable of carrying a finite
amount of explicit beliefs, and all its implicit beliefs follows
from such a finite body of beliefs.

A theory that can be generated from a finite set of for-
mulae is called finite based (Hansson 1996, 1993b). For this
reason, we will call finite sets of formulae finite bases, as ar-
bitrary sets of formulas simply (belief) bases. While in clas-
sical propositional logics, every theory is finite based, this

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is not the case for more expressive logics such as first-order
logic (FOL) and several Description Logics (DLs) (Baader
et al. 2017) such as ALC. Computationally, this finiteness
requirement is also important as reasoners for a particu-
lar logic usually can only deal with finite sets of formu-
lae. Therefore, it is paramount that Belief Change operations
guarantee that the new epistemic state is finite based. How-
ever, the AGM postulates do not address finite representa-
tion of epistemic states. In fact, the question of finite repre-
sentability has not been prioritised in Belief Change. In this
work, we address this issue by devising novel classes of be-
lief operators which ensure that the outcome is finite based.

Moreover, although the AGM rationality postulates do not
depend on any specific logic, classes of Belief Change oper-
ations have been devised upon strong assumptions about the
underlying logics. In the last years, effort have been made in
replacing some of these assumptions with weaker conditions
in order to extend the AGM paradigm to more logics such
as logics without classical negation (Ribeiro 2013), Horn
logics (Delgrande and Wassermann 2013, 2010), temporal
logics and logics without compactness (Ribeiro, Nayak, and
Wassermann 2018, 2019a,b). In this work, we consider that
the incoming information is represented as a set of models,
which generalises the AGM paradigm and other classical
Belief Change frameworks where the incoming information
is represented as formulae in the same logic. Moreover, there
are scenarios where it is more convenient that the incom-
ing information is represented as models. This is the case of
the Learning from Interpretations setting (De Raedt 1997),
where a formula needs to be created or changed to either
incorporate or block a set of models. Arias, Khardon, and
Maloberti (2007) use this setting to model the construction
of Horn theories from graphs.

In logics displaying theories that are not finite based, the
‘closest’ finite based epistemic state can be chosen instead.
We present an intuitive notion of ‘closest’ finite base to han-
dle cases in which not every theory is finite based. Using this
notion, we then define model change operations which cor-
respond, in spirit, to expansion and contraction in the AGM
paradigm. We also investigate the rationality consequences
of the finiteness requirement and show that our operators
only gain or lose models (information) when desired or nec-
essary. Furthermore, we analyse the compatibility of logics
with respect to the emerged rationality postulates, that is, we
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obtain necessary and sufficient conditions for a logic to ad-
mit rational contraction and expansion operators by models.

In Section 2, we briefly review basic concepts. In Sec-
tion 3, we detail the new Belief Change paradigm that we
propose. We discuss in Section 4 how properties of a logic
(seen as a satisfaction system) affect the behaviour of model
change operations. In Section 5, we analyse different logics
and the ability to define model change operations following
our paradigm. In Section 6, we highlight related works and
conclude in Section 7. Full proofs of the results can be found
in the long version (Guimarães, Ozaki, and Ribeiro 2023).

2 Notation and Basic Notions
The power set of a set A is denoted by P(A), while the set
of all finite subsets of A is denote by P f(A). We will write
P∗(A) to refer to the non-empty subsets of A. Following
Aiguier et al. (2018) and Delgrande, Peppas, and Woltran
(2018), we look at a logic as a satisfaction system. A sat-
isfaction system is a triple Λ = (L,M, |=), where L is a
language, M is the set of models, also called interpretations,
used to give meaning to the sentences in L, and |= is a sat-
isfaction relation which indicates that a model M satisfies
a base B (in symbols, M |= B). Looking at a logic simply
as a satisfaction system allows us to explore its properties
without making assumptions about the language or putting
constraints upon the logic’s entailment relation. Our concern
is to turn a belief base into a new one that either is satisfied
by a given set of models, or is not satisfied by such models.
Towards this end, we do not need to constrain how models
are used to define the satisfaction relation, but rather identify
exactly which models satisfy a belief base B in a satisfaction
system Λ = (L,M, |=) which is given by:

ModΛ(B) := {M ∈ M |M |= B}.
We will write simply Mod(B) when the satisfaction sys-
tem is clear from the context. A set of models M within
Λ is finitely representable iff there is B ∈ P f(L) such
that Mod(B) = M. Also, we say that a set of formulae
B ⊆ L is finitely representable iff there is a B′ ∈ P f(L)
with Mod(B) = Mod(B′). The collection of all finitely rep-
resentable sets of models in Λ is given by:

FR(Λ) := {M ⊆ M | ∃B ∈ P f(L) : Mod(B) = M}.

3 Model Oriented Change on Finite Bases
In this work, unlike the standard representation methods
in Belief Change, we consider that: incoming information
is represented as a (possibly infinite) set of models; while
an agent’s epistemic states are represented as finite (belief)
bases. Differently, from most approaches in Belief Base
Change, we are not concerned with the syntactical struc-
ture but, instead, with finiteness. This notion of belief bases
aligns with Nebel (1990); Dixon (1994) and Dalal (1988),
where a belief base is used simply as a form of finitely rep-
resenting an agent’s epistemic state. In our setting, we call
each form of rational change in beliefs a model change op-
eration. Formally, a model change operation is a function
f : P f(L) × P(M) → P f(L). We propose two kinds of
model change operations: reception (rcp(B,M)) when we

want to accept the input models; and eviction (evc(B,M))
when we want to reject them instead.

Reception turns the current belief state into a new one that
is satisfied by the input models; while in eviction the new
epistemic state is not satisfied by any of the input models.
In comparison to the Belief Change operations on formulae
as input, reception resembles formula contraction, as incor-
porating a new model implies in removing some formulae
from the original belief set. Analogously, eviction resembles
formula expansion, as removal of a model implies in acqui-
sition of information. In propositional logics, eviction and
reception can be easily defined, as any set of models (over a
finite signature) is finitely representable. However, in many
logics, there are sets of models that are not finitely repre-
sentable, even if you assume that the signature is finite. We
circumvent this issue by adding or removing models from
the current finite base towards the ‘closest’ finite base satis-
fied (resp. rejected) by the input models. We show that even
with an intuitive notion of ‘closeness’, there are cases where
the ‘closest’ solution does not exist. We also identify when
a solution is uniquely determined. We introduce each opera-
tion separately in the two following subsections.

3.1 Eviction
The purpose of eviction is to change the current finite base
B as to forbid any interpretation in the input set M. If
Mod(B)\M is not finitely representable, then we could sim-
ply remove more models until we obtain finite representabil-
ity. The question at hand is how many and which models to
remove to obtain a finite representation? An intuitive idea
is to look at a ⊆-maximal finitely representable subset of
Mod(B) \ M. Such a set is the closest we can get to the
ideal result in order to keep finite representability when sub-
tracting M. The class of eviction functions we define in this
section is based on this idea. Before we present them, let us
first introduce some auxiliary tools.
Definition 1. Let Λ = (L,M, |=) be a satisfaction system.
Also, let M ⊆ M.

MaxFRSubs(M,Λ) := {M′ ∈ FR(Λ) | M′ ⊆ M

and ̸ ∃M
′′
∈ FR(Λ) with M′ ⊂ M

′′
⊆ M}.

Given a satisfaction system Λ = (L,M, |=) and a set of
models M ⊆ M, the set MaxFRSubs(M,Λ) contains ex-
actly all the largest (w.r.t. set inclusion) finitely representable
subsets of M. If we want to contract a set M from a finite
base B, then we can simply build a finite base for one of
the sets in MaxFRSubs(Mod(B) \M). It turns out that one
cannot naively apply this strategy because, depending on the
underlying satisfaction system, there might exist a finite base
B and set of models M such that:
(1) MaxFRSubs(Mod(B) \M,Λ) = ∅; or
(2) |MaxFRSubs(Mod(B) \M,Λ)| ≥ 2.

If a satisfaction system Λ displays problem (1) then
we cannot subtract M. Thus, we say that a satisfac-
tion system Λ = (L,M, |=) is eviction-compatible iff
MaxFRSubs(Mod(B) \M,Λ) ̸= ∅ for all B ∈ P f(L) and
M ⊆ M. There are two possible causes for problem (1).
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∅ {pq}

{pq̄} {pq̄, pq}
{p̄q} {p̄q, pq}

{p̄q, pq̄} {p̄q, pq̄, pq}

{p̄q̄} {p̄q̄, pq}

{p̄q̄, pq̄} {p̄q̄, pq̄, pq}
{p̄q̄, p̄q} {p̄q̄, p̄q, pq}

{p̄q̄, p̄q, pq̄} M

Figure 1: Lattice generated by the sets of valuations over
the propositional atoms {p, q}. Boxed vertices correspond
to sets of models in FR(Λ(Horn)). Thin arrows indicate set
inclusion, the thick full arrows link sets of models to ele-
ments in their respective MaxFRSubs

First, when a set of models M has no finitely representable
subset, that is, ∅ ̸∈ FR(Λ). Second, when there is no ⊆-
maximal among infinitely many subsets of M: for any such
subset, there is another subset of M in FR(Λ) that contains
it. Figure 1 illustrates the satisfaction system for proposi-
tional Horn logic (Λ(Horn)), a case in which MaxFRSubs
is always non-empty. Note that bases in Horn logic can rep-
resent only sets of models that are closed under conjunction,
which explains why {p̄q, pq} is selected but {p̄q, pq̄} is not.

As we will prove in Section 5, the usual satisfaction sys-
tems for propositional logic and propositional Horn logic are
eviction-compatible. However, we will also show that some
important satisfaction systems (for instance for the Descrip-
tion Logic ALC) do not have this property.

There are two alternatives to deal with problem (1). One
is to apply an approach similar to semi-revision (Hansson
1997) and reject the change, keeping the finite base intact.
Another alternative, if ∅ ∈ FR(Λ), is to impose another con-
straint over the plausible candidates.

Problem (2) is related to epistemic choices. Intuitively
MaxFRSubs(Mod(B)\M,Λ) presents the best solutions to
remove M. If multiple solutions exist, then the agent needs
to choose among them. Traditionally, it is assumed that such
choices are based on an agent’s epistemic preference over its
beliefs, and such choices are realised by a selection function:

Definition 2. A FR selection function on a satisfaction sys-
tem Λ is a map sel : P∗(FR(Λ)) → FR(Λ) such that
sel(X) ∈ X .

Thus, each FR selection function determines an eviction
function as follows.

Definition 3. Let Λ be an eviction-compatible satisfaction
system and sel a FR selection function on Λ. The maxi-
choice eviction function on Λ defined by sel is a map evcsel :
P f(L)× P(M) → P f(L) such that:

Mod(evcsel(B,M)) = sel(MaxFRSubs(Mod(B)\M,Λ)).

The operation evcsel chooses exactly one set in
MaxFRSubs. Eviction functions that use this strategy are
called maxichoice because by choosing only one element

they keep as much information as possible from the origi-
nal finite base. Another approach is to allow the selection
function to choose multiple elements, and then intersect all
of them to build the eviction result. However, Proposition 4
shows that this strategy cannot be applied in our setting.

Proposition 4. Given a satisfaction system Λ = (L,M, |=)
and set of models M ⊆ M, if M ⊆ MaxFRSubs(M,Λ)
and |M| ≥ 2 then not necessarily (

⋂
M∈M M) ∈ FR(Λ).

Theorem 5 states a characterisation of the finitely repre-
sentable eviction functions based on FR selection functions.

Theorem 5. A model change operation evc, defined on an
eviction-compatible satisfaction system Λ, is a maxichoice
eviction function iff it satisfies the following postulates:

(success) M ∩Mod(evc(B,M)) = ∅.
(inclusion) Mod(evc(B,M)) ⊆ Mod(B).
(vacuity) If M ∩Mod(B) = ∅, then

Mod(evc(B,M)) = Mod(B).
(finite retainment) If Mod(evc(B,M)) ⊂ M′ ⊆
Mod(B) \M then M′ ̸∈ FR(Λ).
(uniformity) If MaxFRSubs(Mod(B) \ M,Λ) =
MaxFRSubs(Mod(B′) \ M′,Λ) then Mod(evc(B,M)) =
Mod(evc(B′,M′)).

The postulate of success ensures that no input model will
satisfy the resulting base, while inclusion states that no mod-
els will be introduced. Vacuity guarantees that models are re-
moved only when the input set has some models in common
with the base. Finite retainment expresses the notion of min-
imality: we only lose models (other than the input) if there
is no other way of ensuring success, inclusion and vacuity
while keeping the base finite. Uniformity states that the re-
sult depends only on MaxFRSubs. Vacuity is redundant in
the presence of inclusion and finite retainment.

Proposition 6. If a model change operation evc satisfies in-
clusion and finite retainment, then it satisfies vacuity.

An analogous to the classical recovery postulate would be
desirable: if a set of models M is evicted from a finite base
B, then putting M back should restore all the models of B.
This ‘model-recovery’ postulate, however, cannot be satis-
fied: in order to evict M, some extra models might be purged
in order to reach a finite base, and they cannot be restored
by simply putting M back. Although the roles of the pos-
tulates conjunction and intersection are well-known within
classical logics, understanding their behaviours within non-
classical settings are still a challenge (Ribeiro, Nayak, and
Wassermann 2018, 2019a). While intersection follows di-
rectly from finite-retainment, we cannot characterise con-
junction since our framework goes beyond the classical case.

3.2 Reception
Reception alters a finite base B to incorporate all models
in M. In some satisfaction systems, Mod(B) ∪ M is not
finitely representable. Analogous to the strategy employed
in the previous subsection, reception can be defined using
the smallest supersets of Mod(B) ∪M.
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Definition 7. Let Λ = (L,M, |=) be a satisfaction system.
Also, let M ⊆ M.

MinFRSups(M,Λ) := {M′ ∈ FR(Λ) | M ⊆ M′

and ̸ ∃M
′′
∈ FR(Λ) with M ⊆ M

′′
⊂ M′}.

There are also satisfaction systems Λ = (L,M, |=) with
MinFRSups(M,Λ) = ∅ for some M ⊆ M. The causes
are dual to the eviction case: either M ̸∈ FR(Λ) or there
is a M ⊆ M without a ⊆-minimal superset in FR(Λ). We
say that a satisfaction system Λ = (L,M, |=) is reception-
compatible iff MinFRSups(Mod(B) ∪ M,Λ) ̸= ∅ for all
B ∈ P f(L) and M ⊆ M. Figure 1 also shows a situation
in which the satisfaction system is reception-compatible. In
such systems, we can design reception as follows.

Definition 8. Let Λ = (L,M, |=) be a reception-compatible
satisfaction system and sel a FR selection function on Λ. The
maxichoice model reception function on Λ defined by sel is
a map rcpsel : P f(L)× P(M) → P f(L) such that:

Mod(rcpsel(B,M)) = sel(MinFRSups(Mod(B)∪M,Λ)).

An analogous of Proposition 4 also holds for reception, as
stated in Proposition 9.

Proposition 9. Given a satisfaction system Λ = (L,M, |=)
and set of models M ⊆ M, if M ⊆ MinFRSups(M,Λ)
and |M| ≥ 2 then not necessarily (

⋃
M∈M M) ∈ FR(Λ).

In Section 5, we will show that the usual satisfaction sys-
tems for propositional logic and proposition Horn logic are
also reception-compatible.We will also introduce a satisfac-
tion system that is reception-compatible but not eviction,
thus, showing that reception-compatibility and eviction-
compatibility are not always co-occurrent. A satisfaction
system Λ = (L,M, |=) can be such that ∅ ∈ FR(Λ) but
M ̸∈ FR(Λ), and vice-versa. We identify the set of rational-
ity postulates that characterise the reception function from
Definition 8.

Theorem 10. A model change operation rcp, defined on a
reception-compatible satisfaction system Λ, is a maxichoice
reception function iff it satisfies the following postulates:

(success) M ⊆ Mod(rcp(B,M)).
(persistence) Mod(B) ⊆ Mod(rcp(B,M)).
(vacuity) Mod(rcp(B,M)) = Mod(B), if M ⊆ Mod(B).
(finite temperance) If Mod(B) ∪ M ⊆ M′ ⊂
Mod(rcp(B,M)) then M′ ̸∈ FR(Λ).
(uniformity) If MinFRSups(Mod(B) ∪ M,Λ) =
MinFRSups(Mod(B′) ∪ M′,Λ) then Mod(rcp(B,M)) =
Mod(rcp(B′,M′)).

The postulates presented in Theorem 10 are straight-
forward translations of the classical framework of Belief
Change expansion, being finite temperance the only which
deviates w.r.t. its classical correspondent. Success guaran-
tees that the input models will satisfy the resulting base,
while persistence determines that no model will be lost.
Vacuity ensures that models will be added only when the in-
put set brings new models. Finite temperance expresses the
notion of minimality: we only gain models (other than the

input) if there is no other way of ensuring success and per-
sistence while keeping the base finitely representable. Uni-
formity states that the result depends only on MinFRSups.
Vacuity is redundant in the presence of finite temperance and
persistence.

Proposition 11. If a model change operation rcp satisfies
persistence and finite temperance, then it satisfies vacuity.

We can also translate the postulate monotony from clas-
sical expansion to our setting as follows: if Mod(B) ⊆
Mod(B′) then Mod(rcp(B,M)) ⊆ Mod(rcp(B′,M)).
However, rcp does not satisfy this postulate and enforcing
it means imposing monotonicity on the operation rcp simi-
lar to what happens to the update operations of Katsuno and
Mendelzon (1991). We would have to constrain FR selec-
tion function to only pick certain elements of MinFRSups.
A third operation of Belief Change on formulae is belief re-
vision whose purpose is to incorporate a new piece of infor-
mation and guarantee that the new theory is consistent. In
terms of models as input, we could define the model revi-
sion operation whose purpose would be to remove models
but avoiding that the inconsistent state is reached. To avoid
the inconsistent state, the agent would need to select a ‘clos-
est’ finitely representable set of models according to its un-
derlying epistemic preference relation. We leave such inves-
tigation as future work.

4 Uniqueness and Characterisation
In some satisfaction systems, the result of any eviction is
uniquely determined by the input models and initial base, re-
gardless of the underlying FR selection function. The same
holds for reception in some systems. Many well-known sat-
isfaction systems such as the traditional ones for proposi-
tional logic and propositional Horn logic have the reverse
monotonic bijection property (RMBP).

Definition 12. A satisfaction system Λ = (L,M, |=) has
the RMBP if for every B1,B2 ⊆ L and everyM ∈ M: M ∈
Mod(B1) and M ∈ Mod(B2) iff M ∈ Mod(B1 ∪ B2).

Proposition 13 states the RMBP is a sufficient condition
for this determinism.

Proposition 13. Let Λ = (L,M, |=) be a satisfaction sys-
tem with the RMBP. Then |MinFRSups(M,Λ)| ≤ 1 and
|MaxFRSubs(M,Λ)| ≤ 1 for all M ⊆ M.

Due to Proposition 13, if Λ = (L,M, |=) has the RBMP
then every FR selection function will yield the same result
when applied over MinFRSups(M,Λ) for any M ⊆ M, and
the same holds for MaxFRSubs(M,Λ).

We devote the rest of this section to prove a characteri-
zation of eviction- and reception-compatibility based on the
notion of partial orders. The intuitive idea is that eviction-
compatibility of a satisfaction system Λ depends on the abil-
ity of finding at least one subset which can be seen as the
‘immediate predecessor’ when adding a set of models to the
partially ordered set (poset) (FR(Λ),⊂).

Definition 14. Let (P,⪯), x, y, z ∈ P and ≺ the strict ver-
sion of ⪯. We say that x is an immediate predecessor of y
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if x ≺ y and there is no x′ ∈ P with x ≺ x′ ≺ y. Analo-
gously, we say that z is an immediate successor of y if y ≺ z
and there is no z′ ∈ P with y ≺ z′ ≺ z.

If a satisfaction system Λ = (L,M, |=) guarantees that
for any B ∈ P f(B) and M ⊆ M, Mod(B) \ M will have
a finitely representable immediate predecessor regarding set
inclusion (⊆), then it is eviction-compatible. Some satisfac-
tion systems, do not guarantee this because the empty set of
models is not representable (there is no inconsistent base).
That would be case for propositional Horn logic if we re-
moved the constant ⊥. On the other hand, some satisfac-
tion system (as we will see in Section 5) have non-finitely
representable sets of models for which there are arbitrarily
close approximations. Hence, none of the infinitely many
candidates is an immediate predecessor w.r.t. set inclusion.
The analogous notions and observations hold for reception-
compatibility. Example 15 illustrates one such satisfaction
system.
Example 15. Let Λq = (Lq,Mq, |=q) be such that Lq =
{[x, y] | x, y ∈ Q and x ≤ y}, Mq = Q and Q |=q B (with
Q ⊆ Q) iff for all z ∈ Q, x ≤ z ≤ y for every [x, y] ∈ B.

Intuitively, every finite base either has no models, or cor-
responds to a closed interval on the rationals. However, the
target set of models produced by an eviction or reception can
correspond to an open interval. For eviction, take the base
{[0, 1]} and the set of models {1} and for reception, take the
base {[0.5, 1]} and the set of models (0, 1]. In both cases, one
can find arbitrarily close approximations, thus there might
be no maximal subset for eviction nor a minimal superset
for reception.

Given a satisfaction system Λ = (L,M, |=), it is not
only the density of (FR(Λ),⊂) that determines compati-
bility. Even when the poset is dense, if every set of mod-
els is finitely representable (that is, FR(Λ) = 2M) then Λ
is clearly eviction- and reception-compatible. Using Defini-
tion 14 we can finally characterise eviction- and reception-
compatibility with the following theorem.
Theorem 16. A satisfaction system Λ = (L,M, |=) is
• eviction-compatible iff for every M ⊆ M either (i)
M ∈ FR(Λ), (ii) M has an immediate predecessor in
(FR(Λ)∪{M},⊂), or (iii) there is no M′ ∈ FR(Λ) with
M ⊆ M′; and

• reception-compatible iff for every M ⊆ M either (i) M ∈
FR(Λ), (ii) M has an immediate successor in (FR(Λ) ∪
{M},⊂), or (iii) there is no M′ ∈ FR(Λ) with M′ ⊆ M.

While verifying compatibility can be very cumbersome in
general, Corollary 17 displays a simpler sufficient condition
when FR(Λ) is finite.
Corollary 17. Let Λ = (L,M, |=) be satisfaction system in
which FR(Λ) is finite. Then:
• Λ is eviction-compatible iff ∅ ∈ FR(Λ).
• Λ is reception-compatible iff M ∈ FR(Λ).

5 Compatibility: Use Cases
In this section, we analyse some satisfaction systems and
establish whether they are (or not) eviction- and reception-
compatible. The framework we presented in Section 3 is

Satisfaction System Compatible

Eviction Reception

Λ(Prop) Yes Yes
Λ(Horn) Yes Yes
Λ(K3) Yes Yes
Λ(P3) No Yes
Λ(Gödel, θ) Yes Yes
Λ(LTLX) No Yes
Λ(ABox) Yes No
Λ(DL-LiteR)† Yes Yes
Λ(ALC) No No

Table 1: Eviction- and reception-compatibility of different
satisfaction systems. †: only with finite signature

general enough to cover several satisfaction systems with-
out imposing much constraints upon the logics being used
to represent an agent’s beliefs. In particular, it covers propo-
sitional logic (Theorem 18). However, there are interesting
fragments of first-order logic used for knowledge represen-
tation that are neither eviction nor reception-compatible, as
it is the case of some DLs (Theorem 25). Table 1 summarises
the results of compatibility proved in this section.

5.1 The Case of Propositional Logic
We start by analysing the simplest case: that of propositional
classical logic. We denote by Λ(Prop) the satisfaction sys-
tem with the entailment relation given by the standard se-
mantics of propositional logic with finite signature. As one
can express inconsistency with a finite base, tautologies, and
there is only a finite number of valuations, we obtain the fol-
lowing result for Λ(Prop).
Theorem 18. Λ(Prop) is reception-compatible and
eviction-compatible.

Proposition 19 demonstrates how to formulate eviction
and reception in propositional logic.
Proposition 19. The functions evcProp and rcpProp defined
next are, respectively, maxichoice eviction and reception
functions on Λ(Prop).

evcProp(B,M) =
∨

v∈Mod(B)\M

 ∧
v(a)=T

a ∧
∧

v(a)=F

¬a


rcpProp(B,M) =

∨
v∈Mod(B)∪M

 ∧
v(a)=T

a ∧
∧

v(a)=F

¬a

 .

As usual, F stands for ‘false’ and T stands for ‘true’.
Horn logic limits the language of propositional logic to

only facts and implications. Let At be a set of propositional
atoms containing ⊥ (falsum), the language of Horn logic,
denoted LH, is given by the following BNF grammar.

φ := φ ∧ φ | H | T → H

T := T ∧ T | H H := p
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where p ∈ At.
The universe of models and satisfaction system in (propo-

sitional) Horn logic coincide with those of classical propo-
sitional logic. The compatibilities of the resulting satisfying
system with our setting is given in Theorem 20, which can
be proved in a similar way as Theorem 18.
Theorem 20. Λ(Horn) = (LH,MProp, |=Prop) Λ(Horn), is
both eviction- and reception-compatible.

5.2 The Case of Kleene and Priest 3-valued
Logics

Now, we look at examples of 3-valued logics which are
only slightly more complex than propositional logic. The
3-valued logics of Kleene (Kleene 1952) and Priest (Priest
1979) consist of the classical propositional logic in which
the formulae might be assigned one of the following three
truth values: true (T), false (F) and unknown (U). Consider
the following total order on the three values: F < U <
T. The satisfaction system for Kleene’s 3-valued logics is
Λ(K3) = (LProp,M3, |=K3), and for Priest’s 3-valued logics
is Λ(P3) = (LProp,M3, |=P3) where LProp is the language
of the classical propositional logic, and
• M3 is the set of all functions v : L → {F,U,T} s.t

– v(¬φ) = T, if v(φ) = F; v(¬φ) = U, if v(φ) = U;
v(¬φ) = F, if v(φ) = T.

– v(φ ∧ ψ) = min<({v(φ), v(ψ)}).
– v(φ ∨ ψ) = max<({v(φ), v(ψ)}).

The main difference between Kleene’s and Priest’s 3-
valued logics lies on the satisfaction relation: for Kleene,
v |=K3 φ iff v(φ) = T; while for Priest, v |=P3 φ iff
v(φ) = T or v(φ) = U. Theorem 21 states the compati-
bility results for these systems.
Theorem 21. Λ(K3) and Λ(P3) are reception-compatible
but Λ(K3) is reception-compatible, while Λ(P3) is not.

5.3 The Case of Propositional Gödel Logic
All satisfaction systems studied earlier in this section had
only finitely many models. This is not the case in (propo-
sitional) Gödel logic, one of the most important fuzzy log-
ics (Hájek 1998; Bergmann 2008). We will analyse the com-
patibilities for Gödel logic’s satisfaction system next.

Let θ ∈ (0, 1] and Λ(Gödel, θ) = (LG,MG, |=θ
G) be a

satisfaction system in which
• LG consists of propositional formulae defined over a non-

empty finite set of propositional atoms At;
• MG is the set of all functions v : L → [0, 1] respecting

the standard Gödel semantics for the boolean connectives
(see (Bergmann 2008, page 20)); and

• v|=θ
GB iff v(

∧
φ∈B∪{¬(¬a∧a)} φ) ≥ θ, where a ∈ At.

We say that Λ(Gödel, θ) is the satisfaction system for
propositional Gödel logic with threshold θ. Theorem 22
states a positive result for Λ(Gödel, θ). Despite MG being
infinite, the models can be grouped into finitely many equiv-
alence classes w.r.t. satisfaction of bases.
Theorem 22. The satisfaction system Λ(Gödel, θ) is
eviction- and reception-compatible.

5.4 The LTL NeXt Fragment
In the previous subsections, we focused on languages which
had only boolean connectives and whose models were val-
uations on propositional atoms. Here, we consider the LTL
logic (Clarke et al. 2018) with the language confined only
to the operator X (NeXt) as an example of satisfaction sys-
tem which differs considerably in language and in semantics
from the other systems presented before. For clarity, the lan-
guage of this logic LX is given by the following grammar in
BNF φ := p | Xφ, where p ∈ At for some fixed non empty
set of propositional symbols At. We write Xmp as a short-
hand for the nesting of X m times. The formula X0p stands
for p. A model of this logic is a pair (M, s) where M is a
Kripke structure (see definition at (Clarke et al. 2018)), and s
is a initial state of M , called the initial state. Let MX be the
set of all such models. A model (M, s) satisfies a formula
Xip iff p is labelled at the i-th state of all paths fromM start-
ing from s (see (Clarke et al. 2018), for a detailed definition).
Let |=X be the satisfaction relation between models and for-
mulae as just defined. The satisfaction system of this logic
is the system Λ(LTLX) = (LX ,MX , |=X). Within this sec-
tion, we will write A |=X φ as a shorthand for (M, s)|=Xφ,
for all (M, s) ∈ A.

For reception-compatibility we define the function rcpX
and prove its relation to the reception construction in Propo-
sition 23.
Proposition 23. Let B ∈ P f(LX), M ⊆ MX and rcpX :
P f(LX)× P(MX) → P f(LX) defined as

rcpX(B,M) = {φ ∈ B | M |= φ}.

It holds that rcpX(B,M) ∈ MinFRSups(Mod(B) ∪M).
Even though this logic is reception-compatible, it is not

eviction-compatible.
Theorem 24. Λ(LTLX) is reception-compatible but it is not
eviction-compatible.

5.5 The Case of Description Logic
To analyse the case of Description Logic (DL), we study
ALC, which is a prototypical DL that shares many similari-
ties with other expressive logics in the DL family. Here we
use the term ontology to refer to a finite set of formulae—
a finite base. Let NC, NR and NI be countably infinite and
pairwise disjoint sets of concept, role, and individual names,
respectively. ALC concepts are built according to the rule:

C ::= A | ¬C | (C ⊓ C) | ∃r.C,

where A ∈ NC. An ALC ontology is a set of expressions of
the form

C(a) | r(a, b) | C ⊑ D,

where C,D are ALC concepts, a, b ∈ NI, and r ∈ NR. The
semantics of the DLs considered here is standard (Baader
et al. 2017).
Theorem 25. Λ(ALC) is neither reception-compatible nor
eviction-compatible.

Not being reception-compatible is essentially due to hav-
ing an infinite signature. Indeed, this is already the case
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for the satisfaction system where the language allows only
(positive and negative) assertions, which are expressions of
the form A(a), r(a, b),¬A(a),¬r(a, b), where A ∈ NC,
r ∈ NR, and a, b ∈ NI. We denote it by Λ(ABox).

Theorem 26. Λ(ABox) is not reception-compatible but it is
eviction-compatible.

Finally, we consider the case in which the signature is
finite, that is, the sets NC,NR,NI are disjoint, non-empty,
and finite (but models can still be infinite). Our result that
Λ(ALC) is not eviction-compatible already holds is this
case. So we consider a simpler but popular DL called DL-
LiteR. DL-LiteR role and concept inclusions are expres-
sions of the form S ⊑ T and B ⊑ C, respectively, where
S, T are role expressions and B,C are concept expressions
built through the rules

S ::= r | r−, T ::= S | ¬S,B ::= A | ∃S,C ::= B | ¬B,

with r ∈ NR and A ∈ NC. A DL-LiteR ontology is a set
of role and concept inclusions and (positive) assertions, as
defined above. We denote by Λ(DL-LiteR) the satisfaction
system with the entailment relation given by the standard
semantics of DL-LiteR (Baader et al. 2017).

Theorem 27. Λ(DL-LiteR) (with finite signature) is
reception-compatible and eviction-compatible.

6 Related Work
Finite representation of epistemic states have been addressed
in Belief Change literature by representing an agent’s knowl-
edge via a finite set of formulae known as a finite belief base
(Nebel 1991; Dixon and Wobcke 1993). Belief change oper-
ations on belief bases, however, are syntax sensitive: they
preserve the syntactic form of the original belief base as
much as possible. This syntax sensitivity also appears in tra-
ditional approaches for Ontology Repair and Ontology Evo-
lution (Kalyanpur 2006; Suntisrivaraporn 2009). Although
finite bases trivially guarantee finite representability, syntax
sensitivity might compel drastic loss of information as no-
ticed by Hansson (1993a). The main reason is that apply-
ing an operation in the finite base is not equivalent to ap-
plying an operation on the epistemic state generated by the
same base, in general. The new paradigm we defined per-
forms eviction and reception on the epistemic state generate
from the finite base, that is, it is not sensitive to syntax. The
problem of loss of information due to syntax sensitivity has
been studied in Belief Change pseudo-contraction (Santos
et al. 2018). Thus, our paradigm approaches the concept of
pseudo-contraction with the extra condition of finite repre-
sentability.

To minimize the drastic loss of syntax sensitive oper-
ations, Troquard et al. (2018) proposed to repair DL on-
tologies by weakening axioms using refinement operators.
Building on this study, Baader et al. (2018) devised the the-
ory of gentle repairs, which also aims at keeping most of the
information within the ontology upon repair. In fact, gentle
repairs are type of pseudo-contractions (Matos et al. 2019).
In this same category, we include the Belief Change op-
erations based on concept relaxation (Aiguier et al. 2018).

These studies, however, do not answer the question of find-
ing an optimal solution. Meanwhile, we give conditions that
guarantee that our operations perform minimal changes on
epistemic states. Baader et al. (2022) propose to repair EL
ontologies by modifying only their ABox, preserving as
many entailments as possible. Still, in this approach, one
cannot contract all necessary kinds of information, as the
TBox cannot be modified.

Other works in Belief Change that consider finite rep-
resentability are: (i) revision by Katsuno and Mendel-
zon (1991) and (ii) base-generated operations by Hansson
(1996). In the former, Katsuno and Mendelzon (1991) as-
sumes an agent’s epistemic state is represented as a single
formula. This is possible because they only consider finitary
propositional languages. Hansson (1996) provides a charac-
terisation of Belief Change operations over finite bases but
restricted for logics which satisfy all the AGM assumptions
(such as classical propositional logic), while we have shown
that our approach works in other logics as well.

As for Belief Change operation on models, Guerra and
Wassermann (2019) consider modifying a single Kripke
model into a new one that satisfies a given formula in Linear
Temporal Logics (LTL) (Clarke et al. 2018). While they pro-
vide an AGM-style characterisation, there is no guarantee
of finite representability. Hieke, Kriegel, and Nuradiansyah
(2021) devise an approach for contraction by formula in DL
EL ontologies that employs the notion of counter-models.
Even so, while a model is employed to derive the final out-
come of the contraction, the input is still a single formula.
Hence, despite using finite bases, our framework is more
general because we accept arbitrary sets of models as input.

7 Conclusion and Future Work
We introduced a new paradigm of Belief Change: an agent’s
epistemic state is represented as a finite base, while incom-
ing information are represented as a set of models. The agent
can either incorporate the incoming models (via reception)
or remove them (via eviction). In either case, the resulting
belief base must be finitely representable. The standard ra-
tionality postulates of Belief Change do not guarantee finite
representability. Hence, we proposed new postulates that
capture a notion of minimal change in this setting for both
eviction and reception. We also presented two constructive
classes of model change operations that are precisely char-
acterised by such sets of rationality postulates. As a case
study, we investigated how this new paradigm works in var-
ious logics.

Eviction can lead to an inconsistent belief base, in the case
that all models are removed. If consistency is required, then
a more sophisticated model operation could be defined with
the caveat that, in behalf of consistency, other models can
be assimilated during the removal of an input model. This
third model operation is similar in spirit to formula revision.
We leave model revision as a future work. We envisage that
the results we obtain for eviction and reception shall shed
light towards this other operation. Another line of research
concerns the effects of partially constraining the structure of
the resulting base, in the spirit of pseudo-contractions.
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