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Abstract

We investigate the complexity of the model-checking prob-
lem for a family of modal logics capturing the notion of
“knowing how”. We consider the most standard ability-
based knowing how logic, for which we show that model-
checking is PSpace-complete. By contrast, a multi-agent
variant based on an uncertainty relation between plans in
which uncertainty is encoded by a regular language, is shown
to admit a PTime model-checking problem. We extend with
budgets the above-mentioned ability-logics, as done for ATL-
like logics. We show that for the former logic enriched with
budgets, the complexity increases to at least ExpSpace-
hardness, whereas for the latter, the PTime bound is pre-
served. Other variant logics are discussed along the paper.

Introduction

Knowing How Logics. The epistemic concept of “know-
ing how” has received considerable attention lately, as a new
way of providing formal foundations to strategic reason-
ing in Al and automated planning (see e.g., (van Ditmarsch
et al. 2015)). Most formalisations for this notion are based
on simple combinations of standard knowledge modalities
and abilities (Herzig and Troquard 2006; van der Hoek and
Lomuscio 2003). However, arguably, such an approach does
not lead to a proper characterisation of “knowing how”, as
discussed in (Herzig 2015; Jamroga and Agotnes 2007).

In (Wang 2018Db), a novel proposal to reason about “know-
ing how” assertions was introduced. The logic (herein writ-
ten L) includes a goal-direct knowing how modality
Kh(p, q), indicating that “the agent knows how to achieve
the goal q, whenever the initial condition p holds”. As
stated in (Wang 2018b), there is an explicit intention to keep
the logical language neat and to introduce simple semanti-
cal structures, namely labelled directed graphs. The inter-
pretation of the new modality is ability-based: the formula
Kh(p, q) holds whenever there is a plan o (understood as a
finite sequence of actions) such that from all the states satis-
fying p, the execution of ¢ leads only to states satisfying q;
and any partial execution of o can be extended to a com-
plete execution of o (known as the strong executability con-
dition, directly inspired from conformant planning (Smith
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and Weld 1998)). Thus, “knowing how” is given by the abili-
ties described by the graph. The simplicity of the logical lan-
guage is partly reflected by the fact that formulae of the form
Kh(p, q) are global, no action symbol appears in formulae, a
single agent is considered, and no “knowing that” modality
is present. A complete axiomatisation is provided in (Wang
2018b) but more importantly, such a work has been a source
of inspiration for many others. Some variants include: mul-
tiple agents, other classes of plans, or admit “knowing that”
operators (see e.g. (Fervari et al. 2017; Li and Wang 2021b)).
Other approaches, related to strategic games and coalitions,
have been studied in (Naumov and Tao 2018c,a,b). Finally,
the logic studied in (Areces et al. 2021) (called herein £LVY)
is based on a notion of indistinguishability over plans. Ar-
guably, such a proposal provides a more epistemic view of
knowing how than other approaches.

Substantial progress has been already done related to
philosophical motivations, axiom systems and combinations
with other epistemic operators. However, much less contri-
butions exist about the possibility to constraint plans (for
instance, by adding budgets), or to perform the model-
checking task (instead of checking theoremhood). These is-
sues are addressed in this paper.

Our Motivations. The need to investigate knowing how
logics with constrained plans is advocated in (Li 2017,
Ch. 3). This is our first motivation to revisit results about
numerical constraints (i.e. budgets) and/or regularity con-
straints about plans, over this family of logics. Moreover,
it is more natural to investigate model-checking instead of
the validity/satisfiability problem, not only because it is a
standard problem in formal verification, but also because
the power of adding constraints is best illustrated there.
This is due to the fact that the available plans are part
of the input, and a few clever tricks cannot be used any-
more, such as guessing simply shaped plans witnessing the
truth of a formula, see e.g. the completeness proofs in (Li
2017; Areces et al. 2021). Also, most of the works are
dedicated to Hilbert-style axiomatisation and to the satis-
fiability problem, and relatively little was done on model-
checking, apart from the works (Li, Yu, and Wang 2017;
Areces et al. 2021; Li and Wang 2021a). Since the seman-
tics of such logics involve complex conditions such as strong
executability, PTime upper bounds seemed more difficult to



reach than what is known about the minimal modal logic K
or alternating-time temporal logic ATL (known to admit a
PTime model-checking problem, see e.g. (Alur, Henzinger,
and Kupferman 2002)). An additional motivation to study
the model-checking problem for ability-based logics rests
on consequences for the satisfiability problem. It is known
that when a logic has the (bounded) small model property,
a decision procedure for checking satisfiability consists in
guessing a small model and then perform a model-checking
test. This is done in (Li 2017, Th. 3.4.8) to decide the satis-
fiability status of formulae in an extension of L, in which
the satisfaction of Kh-formulae requires the satisfaction of
constraints for intermediate states. Then, knowing the com-
plexity of the model-checking problem becomes crucial to
evaluate the complexity of the satisfiability problem. This is
the case in (Areces et al. 2021, Sec. 3.3), where the satisfia-
bility problem for an uncertainty-based knowing how logic
is shown in NP by stating that model-checking is in PTime.

Our Contributions. We study the model-checking prob-
lem for known ability-based logics from the literature, typ-
ically from (Wang 2015) and (Li 2017, Ch. 3), but also for
extensions by adding arithmetical and/or regular constraints
on plans. Furthermore, we provide new relationships of this
family of logics with formal languages and automata theory.

As a warm-up, we show that the model-checking prob-
lem for the logic of knowing how from (Wang 2015) (writ-
ten L) is PSpace-complete (Thm. 1). This untractabil-
ity result came a bit as a surprise, but witnesses the high
expressive power of the Kh-like modalities despite its sim-
plicity. A variant of the logic Ly, designed in (Areces et al.
2021) and featuring a notion of indistinguishable plans, has
been shown therein to admit a PTime model-checking prob-
lem. Here, we assume that each of those indistinguishability
classes is specified by a regular language, thus, can be po-
tentially infinite. We prove that the model-checking problem
for this extension L, , can be also solved in PTime, using
an algorithm based on reachability checks (Thm. 2).

We extend the logics Ly, and c}?eg so that actions have
costs, and executing a plan requires to stay within a cer-
tain budget. Adding budget-like constraints to plans is ad-
vocated in (Li and Wang 2017; Cao and Naumov 2017).
The extensions we propose follow a standard pattern al-
ready used in ATL-like logics (see e.g. (Alechina et al. 2017,
2018; Bulling and Goranko 2022)), in energy games (see
e.g. (Bouyer et al. 2008)) and in general for other transition
systems (see e.g. (Cao and Naumov 2017)). We show that
the PTime upper bound is preserved if budgets are added
to Ly, (written L, (x), Thm. 3). This is done by tak-
ing advantage of algorithms for solving decision problems
related to vector addition systems with states (VASS) (see
e.g. (Karp and Miller 1969)), restricted to a single counter,
and using Bellman-Ford algorithm for weighted directed
graphs (see e.g. (Cormen et al. 2022)). By constrast, we
show that adding budgets to Ly, increases the complexity
significantly. The model-checking problem for L, (*) (with
resources) is ExpSpace-hard (Lemma 7). The subproblem
in which the cost of any action does not depend on the state
it is triggered, is shown ExpSpace-complete (Thm. 4).

6306

Preliminaries on a Simple Knowing How Logic

We present below the knowing how logic introduced
in (Wang 2015, 2018b) (herein written Ly,). Formulae of
the form Kh(y, 1) can be read as “when ¢ is the case, the
agent knows how to make 1 true”. Since Ly has a cen-
tral position in this paper, we dedicate a separate section for
preliminary definitions, and for its model-checking problem.
Notions introduced here, such as LTS, plans and strong exe-
cutability, will be helpful in forthcoming sections.

Formulae and models. Let Prop be a countably infinite
set of propositional symbols. Formulae of the logic Ly, are
defined by the grammar:

pu=p| ¢ levelKhipp)
Other Boolean connectives are defined as usual.
In (Wang 2015, 2018b), formulae are interpreted over la-
belled transition systems (LTSs): relational models in which
each (basic) relation indicates the source and target of a par-
ticular type of action the agent can perform. Let Act be a

countably infinite set of action symbols. A labelled transi-
tion system (LTS) is a tuple S = (S, (Ra)acact, V), where:

(p € Prop).

* S is a non-empty set of states (called the domain);
* (Ra)aeAct 18 a collection of binary relations on S;
» V: S — 2ProP js a labelling function.

Given an LTS § and s a state, the pair (S, s) (parentheses
usually dropped) is called a pointed LTS. Before defining
the satisfaction relation for the logic Ly, we need to intro-
duce the notion of linear plan, that is used all along the paper
(for more complex plans, see (Li and Wang 2021b, Def. 18)).

Linear plans. Let Act® be the set of finite sequences over
Act. Elements of Act® are called plans, with € being the

empty plan. Given o € Act®, let |o| be the length of o

(le] £ 0). For 0 < k < |o], the plan oy, is ¢’s initial segment

up to (and including) the kth position (with og €). For
0 < k < |o|, the action o[k] is the one in o’s kth position.

Let (Ra)acact be a family of binary relations with each
def

R. © SxS. Define R, = {(s,s) | s € S} and, for all

o€ Act* and a € Act, Rpa &£ {(s,t) € SxS | 3¢ €
S s.t. (s,t') € R, and (¢,t) € Ra}. Take a plan o € Act™:

for s € S define Ry(s) £ {t € S | (s,t) € R,}. For all

X c SandIT  Act*, define Ri(X) = |, x perr Ro(5)-

Intuitively, (Wang 2015, 2018a,b) handle how to express
that an agent knows how to achieve 1) given , when she
has an appropriate plan that allows her to go from any state
in which ¢ holds only to states in which ¢ holds. In order
to characterise what ‘appropriate’ means, one can impose
restrictions on what qualifies as an adequate plan.

Let (Ra)acact as before. A plan o € Act® is strongly
executable (SE) at s € S iff for all £ € [0, |o] — 1] and
t € Ry, (), we have R,(41)(t) # 9. We define the set

SE(0) £ {s € S | ois SE at s}. Interestingly, in the next

section we show that for any state s, the set {o € Act™ | s €
SE(o)} is a regular language.



s B)>P>D +p->9
Figure 1: Example of LTS.
Satisfaction relation (-). Let S = (S, (Ra)acAct, V) be

an LTS, s € S and ¢ be a formula of Ly, |- is defined as:

def

S,sl-p < peV(s),

S,slF—p < S, s,

S,sl-¢o v £ S,sl-p or S,s -1,

S, s I Kh(ip, ) £ there exists o € Act* such that

(1) [¢]® < SE(o) and
@) Ro([¢]®) = [¥]°,

with [x]® £ {s € S| S, s |- x}. Ifaplan o € Act* satisfies
conditions (1) and (2) above, we say that o witnesses the
satisfaction of S,s |- Kh(p,%). In the LTS S of Fig. 1,
we have that S,s |- Kh(p,q) (via the single-action plan
a) whereas S, s I Kh(p, ), as the plan ab is not strongly
executable at t € [p]®.

A complete Hilbert-style system for Ly, can be found
in (Wang 2015) (see also (Wang 2018b, Sec. 3)). Decidabil-
ity of the satisfiability problem for Ly, is shown in (Li 2017,
Ch. 3) (the proof is done for a more general logic), but its
complexity characterisation is open, as far as we know.

Model-checking Problem for £,

An LTS S = (S, (Ra)acAct, V) is finite iff S, Act and Prop
are finite sets. The model-checking problem for the logic
Lyp, written MC(Lgp,), is defined as follows.

Input: a finite LTS S and a formula ¢ over Prop, s € S.
Question: S, s |- ?

Though the model-checking problem for many modal and
temporal logics can be solved in PTime, see e.g. (Black-
burn, de Rijke, and Venema 2001; Demri, Goranko, and
Lange 2016), below, we show that MC(Lyy) is PSpace-
complete, requiring more computational resources. This
high complexity was probably not expected from the works
in the literature. Indeed, the model-checking problem is ei-
ther not considered explicitly at all, or shown in PTime for
some variant knowing how logics (see e.g. (Li and Wang
2021a,b)) or shown PSpace-hard but for some expressive
logic, see e.g. (Li, Yu, and Wang 2017).

PSpace-completeness of MC(Ly;). To show PSpace-
hardness, we reduce the nonemptiness problem for intersec-
tion of deterministic finite-state automata that is a PSpace-
complete problem, see e.g. (Galil 1976; Kozen 1977).

Lemma 1. MC(Ly;,) is PSpace-hard.

Proof. (sketch) Given N € N, for each i € [1, N], let A; =
(Qi, Act, d;, g;, F;) be a deterministic finite-state automaton
accepting the regular language L(A;) S Act®. We assume
that each automaton A; is complete and the sets of loca-
tions are disjoint. We define an LTS S = (S, (Ra)acAct, V)

6307

over the set {init,fin} < Prop, with S o |+ Q; such that
S,q1 IF Kh(init, fin) iff L(A4;) n - nL(AN) # & (@1
is arbitrary), as follows.

» For all ¢,¢' € Sand a € Act, (¢,¢') € Ra £ there is
i€ [1,N]suchthatq,q¢ € Q; and ¢ > ¢ € ;.

e Foralli € [1,N] and q € Q;, init € V(q) bl q=q,
and fin € V(q) &£ ¢eF.

MC(Lgy) is PSpace-hard, since Kh(init,fin) and S are
computed in logspace in the size of the input automata. [

In order to establish that MC(Lgy,) is in PSpace, we
show a small plan property based on the regular structure
of the set of plans witnessing the satisfaction of S,s |-
Kh(e1, ¢2). By regularity, we mean that the set of plans can
be shown to be a regular language, and we can effectively
compute a finite-state automaton accepting the language of
witness plans. Hence, though the regularity property is in-
strumental to prove our PSpace upper bound, we believe it
is also interesting for its own sake to understand the expres-
sive power of the modality Kh in L. Below, we state a few
properties before getting to the PSpace upper bound.

Given an LTS S = (S, (Ra)acAct, V), let us charac-
terise the plans o € Act™ such that either (nonl) [¢1]° &
SE(c) or (non2) Re([p1]®) & [w2]®. Let Ay, iy =
(Q,Act, d, I, F') be the automaton defined as follows.

P QES IE (1), F ¥ {ta).
e Forallt,t e QandacAct,t >t 5 & (t,t') € Ra.

It is worth observing that t; € Ry (t1) iff o € L(A, ¢,))-
So, the plans o satisfying (non2) are exactly those in

U{L(A(tl,tgﬂ | t1 € [e1]®, t2 € [—pa]®},

defined from at most |S |2 languages. We write fl(thtz) to
denote the powerset automaton built from A, 4,) such that
L(Aw, 1) = Act*\L(A(tl’tz)) (complement language).
Hence, o satisfies (2) iff it belongs to the language below.

(VLA ) |t € [91]% 12 € [—p2] )

The locations of the automaton A, ,,) are subsets of S.
Let us handle now the condition (nonl). We have (nonl)
iff there is 1 € [¢1]S suchthatt; ¢ SE(0), i.e. for some k €
[0,[o]—1] and u € Re, (t1), Ro[r+1](v) = @. Equivalently,
(nonl) iff there are X1, Xs < S such that for some k €
[0,]o| = 1], X1 = Ry, (t1), X2 = Ry, (t1) and there is
u € X such that for no v’ € X5, we have (u, u’) € Ryj41]-
This characterisation serves as the basis to define the set {o |
s € SE(0)} for some state s € S. Let A} = (Q, Act,d,I, F)

be the finite-state automaton defined as follows.

« QEP(S) x {ace,rej}, I £ {({s},acc)}, F £ P(S) x
{acc} (‘acc’ stands for ‘acceptance’, ‘rej’ for ‘rejection’).

s Forall X € P(S)and a € Act, (X, rej) 2> (X, rej) € 6.
 For all X,X’ € P(S) and a € Act, (X,acc) >

(X',acc) € § & (*) Ra(X) = X’ and (*+) for all
t € X, there is t' € X’ such that (¢,t') € Ra.



e For all X,X’ € P(S) and a € Act, (X,acc) >
(X' rej)ed & (*) and not (xx).
Lemma 2. {c | s € SE(0)} = L(A}).

Thus, the plan o satisfies (1) iff it belongs to the language

(LA | te o)),

defined from at most | S | languages; moreover, each automa-
ton A7 has at most 2 - 28 locations. In conclusion, the set of
plans witnessing S, s |- Kh(¢1, p2) is equal to

LAY | te [£1]°}
LA, 1)) | t1 € [01]°,t2 € [—2] ®},

which amounts to build an automaton with at most 28 - | S |*.
228 .| S| locations.

As we have provided a way of characterising conditions
(1) and (2), we can state an interesting property about the
plans witnessing the satisfaction of S, s I+ Kh(p1, 2). This
property has been unnoticed so far, as far as we can judge.

Corollary 1. Let S be an LTS, s be a state and Kh(p1, ¢2)
be a formula. Let L be set of plans witnessing S,s |-
Kh(p1, @2). Then, L is a regular language and if L # &,

then it contains a plan of length at most 2™ - | S |3.
We state the key property to get the PSpace upper bound.

Lemma 3. Checking whether S, s I+ Kh(p,q) (with p,q €
Prop) can be done in polynomial space.

Proof. (sketch) To test whether S, s |- Kh(p, q), we check
on-the-fly the non-emptiness of the product automaton

X{A? [t [PI°} x X{ A .e0) | tr € [P]°, t2 € [~a]®}.

There are at most |S| + |S|? automata and each location
from those automata is a subset of S, possibly enriched with
a flag either acc or rej. Polynomial space is enough to store
two consecutive locations of the product automaton, and its
transition relation can be also computed in polynomial space
based on the LTS S. Nonemptiness of finite-state automata
can be checked in NLogSpace (the number of states of the
product automaton is bounded by 238 - |S|*). So, we get
a NPSpace decision procedure for checking nonemptiness
of the product automaton. By Savitch’s Theorem (Savitch
1970), we get the PSpace upper bound. O

It is time to characterise the complexity of MC(Lgp,).
Theorem 1. MC(Ly;,) is PSpace-complete.

PSpace-hardness is a direct consequence of Lemma 1. In
order to establish PSpace-easiness, we can design a stan-
dard labelling algorithm taking advantage of Lemma 3 (this
idea can be adapted to all the logics studied in this paper).

Variant problems. Our approach using formal languages
theory provides us with modular and standard tools in order
to characterise the complexity of model-checking problems
for several ability-based logics. This is the case for instance,
of the logic EPDL, known to be PSpace-complete (Li, Yu,
and Wang 2017, Th. 4.3), for which our results can be eas-
ily adapted. On the other hand, alternative constraints on
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plans can be considered. For instance, a modality Kh 4 (para-
metric on the finite-state automaton .4) such that a witness
plan must necessarily belong to L(.A). Another option is
to consider variant logics from the literature, such as the
logic Lipm, from (Wang 2018b, Sec. 4) and (Li 2017, Ch.
3)). Lgnm contains a ternary modality Kh™ (o1, 2, ¢3), and
witness plans must satisfy o, all along the traversed paths.
It is not difficult to see that we can apply our techniques for
all these logics (details are omitted due to lack of space).

Regular Classes in Uncertainty-Based Logics

It is argued in (Areces et al. 2021) that an epistemic notion
of knowing how should be not only based on the given abil-
ities, but also on some notion of indistinguishability/uncer-
tainty between them. Therein, it is also argued that such an
approach makes the framework closer to standard epistemic
logics (van Ditmarsch et al. 2015). For instance, it makes
easier to move to a multi-agent setting.

In the uncertainty-based setting, agents share the same
set of affordances (provided by the actual environment, typ-
ically an LTS). Still, they have different abilities depending
on which of these affordances are available for each of them,
and how well they can tell these affordances apart.

In this section, we assume that the indistinguishability
classes of plans are specified by regular languages and we
prove that the model-checking problem for this extension
LY s also in PTime.

reg

Uncertainty-Based Knowing How

Let Agt be a finite set of agent symbols. Formulae of the
logic LY are defined by the grammar:

pu=p| ¢ |evelKh(pp)
A formula Khy(p, ) is read as “when ¢ is the case, the
agent a knows how to make 1 true”.

Here, each agent’s knowledge is not given simply by the
abilities described by the LTS. Instead, the models are en-
riched with an uncertainty relation ~, for each agent a,
which is an equivalence relation over a non-empty subset
I, < Act® describing those plans that are indistinguish-
able from each other, from the agent’s perspective. Below,
each relation ~, is represented by its set of equivalence
classes U, (therefore, U, satisfies a few simple proper-
ties recalled below). A multi-agent uncertainty-based LTS
(LTSY) is a tuple S = (S, (Ra)acActs (Uq)acagt, V) where
(S, (R)acAct, V) is an LTS and each U, assigns to the agent a
a non-empty collection of pairwise disjoint non-empty sets
of plans with: (1) U, # &, (2) @ ¢ Uy, and

(3) Hl,Hg € Ua with H1 #* H2 1mphes H1 N H2 = .

Intuitively, [T, < Uneu, IL is the set of plans that the
agent a has at her disposal. Similarly, as in classical epis-
temic logic, ~, < II; x II, describes agent a’s indistin-
guishability. This relation is not defined over possible states
of affairs, but rather over her available plans.

Again, in this setting we need to define the notion of be-
ing a “proper plan”. Let S = (S, (Ra)acAct, (Ua)acagt; V)
be an LTSY. For II < Act® and X U {s} < S, we define

R < U,en Ros Ri(s) € U,y Ro(s), and Ryp(X) &

(p € Prop, a € Agt).



Usex Ri(t). A set of plans IT = Act™ is strongly exe-
cutable at s € S iff every plan o € Il is strongly executable

at 5. Hence, SE(IT) & (,err SE(0) is the set of the states in
S where IT is strongly executable.

The notion of satisfiability for Khy-formulae is defined as:

S, s I Khy(p,¥) £ there exists I1 € U, such that
(D) [¢]® = SE() and ) Ru([¢]®) € [¥]°.

Let S be the LTS from Fig. 1, enriched with U, =
{{a,ab}} and Uy = {{a}, {ab}}, for some a, b € Agt. With
this setup, the agent a cannot distinguish between the plans a
and ab (i.e., she is uncertain about whether these plans lead
to the same outcome or not), whereas the agent b considers
them different. Thus, S, s IF =Kh,(p,q) A Khy(p, q).

The satisfiability problem for LY is NP-complete,
whereas MC(CUJ isin PTime (Areces et al. 2021). In an in-
stance of MC (L"), each U, is defined such that IT,, is finite.
Representing equivalence relations by their indistinguisha-
bility classes results handy for designing model-checking
algorithms, as we can directly deal with the list of available
plans. However, there is a limitation: we only consider a fi-
nite set of them. For instance, assuming that L(a*b) < II,,
we may wish to express that for all ¢ # ¢’ € L(a*b), we
have 0 ~, o’ (the action a is silent for the agent a). In a
more concrete example, we can consider that an agent a is
a server sending connection requests to another server. The
indistinguishability class for a is given by aa*, where action
a stands for “sending a connection request through a secure
channel”. Thus, the class establishes that after the first re-
quest is sent by agent a, all other requests are ignored. This
type of class cannot be handled when Uy, is a finite set of fi-
nite sets of plans. Instead, below, the elements of U, are de-
fined as finite-state automata A such that L(.A) is understood
as a (possibly infinite) equivalence class. This is a standard
way to represent finitely a (potential) infinite set of words.

Generalisation with Regular Equivalence Classes

Strictly speaking, we generalise the problem MC(LV)
from (Areces et al. 2021), by requiring elements in U, to be
regular languages (instead of finite sets), but defined through
finite-state automata. On the logical side, the models for

the logic £geg defined below, are a subclass of the models

for LY (because we assume regularity of each equivalence

class). Hence, the introduction of the logic c}Jeg serves at

least two purposes: to generalise MC(£Y) and to introduce
models in which the indistinguishability classes are regular
languages, which might seem confusing at first glance.

An LTSV with regular constraints (reg-LTSY) is a tuple
S = (S, (Ra)aeact, (Uq)aeagt; V) where each U, assigns
to agent a a non-empty collection of finite-state automata
& # Uy = {Ay, As, ...}, such that each A € U, defines an
equivalence class over a set Il = (J ey, L(A) € gAct™
ie., forall A;, Ay € Ug, j # kimplies L(A;) nL(A)=2.

The clause for Kh,-formulae over reg-LTSYs becomes:

S, s I Khq(p, ) < thereis A e U, such that
(1) [¢]° < SE(L(A)) and (2) Reca)([¢]°) < [V]°.
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Unlike (Areces et al. 2021), each equivalence class over II,
is defined by a regular language. Interestingly, theoremhood
in £V and LY coincide (see (Areces et al. 2021, Th. 2)).

reg

A reg-LTSY S = (S, (Ra)acAct, (Ua)achgt, V) is finite
iff S, Act, Prop and the U,’s are finite sets. The model-
checking problem for the logic £}, . written MC(LJ,,),
is defined over finite reg-LTSVY.

In (Areces et al. 2021) it has been shown that the model
checking problem for £Y can be solved in PTime. How-
ever, herein the main difficulty is dealing with automata gen-
erating potentially infinite languages, and thus, equivalence
classes with infinitely many plans. One can show that the
method used in the previous section applies also here, but
giving us (roughly) an ExpSpace upper bound. However,
as we will show here, this bound is not optimal. We shall use
a more fine-tuned approach to handle the conditions related
to the modality Kh,. With this at hand, we will show that
MC(L;.,,) belongs actually to PTime.

The semantics of Kh, (¢, ) requires to find some A €
U,, such that L(.A) satisfies two conditions. As U, is finite,
inspecting its members one by one, poses no difficulties.
Again our method relies on characterising all the potential
candidates for the satisfiability of a Kh,-formula that fail to
be a proper witness. For A4 € U,, we proceed as follows.

1. Checking condition (2) Ry,4)([¢]°) = [¢]° can be
handled by checking that

L(A) n U{L(Ag, 1) | 11 € [0]°, 82 € [-9]} = 2,

with A, +,) defined as in the previous section. By the
analysis provided there, and since nonemptiness of the
intersection of two finite-state automata can be checked
in PTime, we have a PTime procedure for checking (2).

Then, we will design a PTime algorithm for checking
the strong executability of L(A) at [¢]®. The algorithm
relies on constructing a directed graph as a product be-
tween A4 and S. Then, we proceed by looking for a state ¢
that fails to execute a “productive” action, i.e., an action
that leads to a final state of A, and checking whether
(g, t) is reachable, for some location ¢ that is accepting
in A. For the sake of correctness, we assume that all the
locations in A are productive, i.e. for any location, there
is a path in .4 leading to a final location.

Let S = (S, (Ra)acAct; (Uq)aeagt; V) be a reg-LTSY and
A = (Q,Act,, I, F) be an automaton. We define a digraph

def

G = (V,E)suchthat V = Q x S and for all (¢,t), (¢, ') €
V, we have (¢,t) — (¢/,t') € E £ there is some a € Act

such that ¢ = ¢’ € 6 and (t,#') € R.. G is therefore a
(standard) product between A and S. Given s € S, we define
the procedure CheckSE(S, s, .A) as follows.
1. For each a € Act, for each t € S such that R,(t) = @
and for each ¢ € @ such that 6(¢q,a) # @ do:
(a) if there is qo € I such that there is a path from (qo, )
to (g, t) in G, then: return True;

2. return False.

Lemma 4. s¢ SE(L(A)) iff CheckSE(S, s, .A) returns True.

Now it is time to establish the complexity bound.



Theorem 2. MC(LY

reg

) is in PTime.

Proof. (sketch) PTime is guaranteed if S, s |- Khy(¢, )
can be checked in PTime. U, contains a linear amount of
finite-state automata and we showed that (2) can be checked
in PTime. It remains to verify that so is the case for (1). By
Lemma 4, (1) holds iff for all 5" € []®, CheckSE(S, s, A)
returns False. As | [¢]® | < | S| and the for loop ranges over

all S, Act and Q, checking (a) is performed O(|S|? - | Act]| -
|Q|) times, which is polynomial in the size of the instance
S, s I- Khq(p,1). Moreover, (a) is an instance of the graph
accessibility problem (GAP), known to be NLogSpace-
complete, applied on the graph G of quadratic size in the
size of S. Thus, (1) can be checked in PTime. O

Ability-Based Logics with Budgets

The need to express budget-like constraints about plans has
been advocated in (Li 2017, Sec. 3.1) and (Li and Wang
2017). Assuming that actions have costs, the execution of
plans requires that the agent stays always within the bud-
get. Adding resource reasoning is a well-known paradigm
used in ATL-like logics, see e.g. (Alechina et al. 2017), in
energy games, see e.g. (Chatterjee, Doyen, and Henzinger
2017), and in multi-agent systems, see e.g. (Cao and Nau-
mov 2017). Herein, we study the complexity of adding re-
source reasoning in the logics Ly, and £Peq, respectively.
It is particularly interesting to observe is that the worst-case
complexity stays within PTime for the extension of E}Lg
whereas it jumps to at least ExpSpace-hardness for Lyy,.
We provide clues to understand this computational gap.
Given a set of states S and a finite set of actions Act, a
weight function is a map wf : S x Act — Z" for some r>0;
wf (s, a) is understood as the cost of executing the action a
at state s. Adding =f to an LTS shall be our standard way to

enrich models with action costs. Given a computation A =
def

505 51 B sy S sp, its weight is defined as wf(\)
YK wf(sk_1,ax) (empty computations have zero cost).

(*)

aug-

PTime Upper Bound for Model-checking £U

reg
o U
We write L.,

(1) to denote the ability-based logic L

reg
mented with r > 0 resource types, and LU, 4(*) to denote the
version with an arbitrary number of resource types. This is
the version used in our model-checking problem.

For r > 0, the set of £, (r) formulae is defined below.

@u=p|—@|eve|Khi(p,p) (peProp,acAgtbeN)
All the integers appearing in formulae and models are
encoded with a binary representation. Formulae of the
form Kh’(p,1) are read as “when ¢ is the case, the
agent a knows how to make 1 true with budget b,
Models of the logic c},;g(r) are of the form S

(S, (Ra)aeact, (Uq)acagt; wf, V), where wf : S xAct — Z"
is a weight function. A plan o = a; - - - ak is b-compatible

ag
So —

at s (5 e N7 £ for every computation A
s1--- 55 s with sp = s, we have for all L e [1,K],
b+ wf(A<p) = 0 (with A<y &£ s 24 25 s1). The

— 81
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S;}yyb_,‘cyt U, = {05026} X
Y T \(yb_:(), Yu Vv = (=050, ~0>0>6}

Figure 2: A reg-LTSY with budgets (r = 1).

plan o is b-compatible at a set X = S £ itis g-compatible

atall s € X. bis understood as the initial budget.
Given a model S = (S, (Ra)acAct; (Ua)acagt, wf, V) and

s € S, we update the satisfiability clause for th-formulae:

S,s - th(cp, ) £ thereis A e U, such that

(D) [¢]M = SE(L(A)), @) Ry ([e]™) < [vIM,
and (3) for all o € L(A), o is b-compatible at [o]M.

Consider the model S of Fig. 2 (we use standard nota-
tions for finite-state automata). Both plans a and ab lead to q
states, but the cost of executing ab from s to u is —1, where-
as from s to ¢ is —6. Thus, S, s |- Kh{ (p,q) A —=Kh3(p, q).
In the budget-free logic LY, g» the clause related to the sat-
isfaction of Khy(p, ) uses exactly (1) and (2) above. We
have shown that such conditions can be checked in PTime.
To prove that MC(L,,(*)) is in PTime too, we establish
that (3) can be checked in PTime for a given A. Since | S| is
less than the size of S and MC(L},,(*)) can be solved by a
standard type of labelling algorithm, it is sufficient to show

that given S, ¢ € S and a finite-state automaton .4, one can

check in PTime that for all o € L(A), o is b-compatible at .
This is the purpose of the rest of this subsection.

Interestingly, the models for c}Jeg (r) can be viewed as
an extension of the vector addition systems with states
(VASS) (Karp and Miller 1969), since in both models the
transitions are labelled by tuples in Z" encoding an update
function. Below, we recall a few standard definitions about
VASS that are helpful in the sequel to characterise the com-
plexity of MC(Ly,,(+)).

A vector addition system with states (VASS) is a struc-
ture V=(Q, r, R), where @ is a finite set of locations, reN
is its dimension, and R is a finite set of transitions in
Q xZ" x (). A configuration (resp. pseudo-configuration)
ina VASS Vis apair (¢, Z) € @xN" (resp. in Q xZ"). Given
pseudo-configurations (¢, Z), (¢’,Z’) and a transition T =
g% ¢, we write (¢, %) & (¢, ') whenever 2/ = @i + 7.

A pseudo-run is defined as a sequence p = (qo,Zo) o

(q1,21) 5 (q2,%2) -+ of pseudo-configurations, where
(o, @p) is the initial pseudo-configuration. A run is a
pseudo-run in which only configurations in () x N" occur.
An 7-VASS is a VASS with » > 0 counters. We begin
by presenting a simple problem called NONSAFE(VASS),
strongly related to the non-satisfaction of the condition (3).

Input: a VASS V and a configuration (qo, Zp) € @ x N".

Question: is there a finite pseudo-run p = (qo,Zy) —
p P
(q1,%1) — -+ — (qn, @) such that &, ¢ N" ? (is it
possible to reach a negative value from (qg, o)?).



Lemma 5. NONSAFE(VASS) is in PTime.

Lemma 5 follows from the fact that one instance
of NONSAFE(VASS) can be reduced to r instances of
NONSAFE(1-VASS) (restriction to 1-VASS). The second
step consists in showing that checking whether a negative
value can be reached in a 1-VASS from a given initial config-
uration can be solved using Bellman-Ford algorithm work-
ing on weighted directed graphs.

Assume that A = (Q, Act, 6, I, F') and all the locations in
@ are productive, so any run reaching a given location from
some initial location can be completed as an accepting run.

One more step is needed to establish that (3) can be solved
in PTime. Namely, we build a VASS V = (Q’,r, R’) with

Q' ¥ S xQ such that not (3) iff there is ¢o € I and ¢ €
[¢]® such that V, ((t, qo), b) is a positive instance of NON-

SAFE(VASS). It remains to define R’. We have (s, q) z,
(s',¢) € R & for some a € Act, (s,s') € R, and
q > ¢ € 6 (synchronisation on actions) with @ = wf (s, a).

Lemma 6. There aret € [¢1]° and o € L(A) such that for
some j € [1,|c|], o is not b-compatible at t iff there are

t € [p1]° and qo € I such that V, ((t,qo),g) is a positive
instance of NONSAFE(VASS).

Now, we are in position to state our best result as far as a
PTime model-checking problem is concerned.

Theorem 3. MC(LU ()) is in PTime.

reg
Let us briefly provide the argument to get PTime. The
proof of Thm. 3 uses a labelling algorithm as for Thm. 1

and PTime is guaranteed as soon as M, s |- th(p, q) can

be checked in PTime. Now, M, s |- Kh'(p, q) iff there is
A € U, such that (1), (2) and (3) hold. There is a linear
amount of automata in U, and Thm. 2 guarantees that (1)
and (2) can be checked in PTime. The remaining bit is to
check that (3) can be done in PTime. Notice that when (1)
and (2) hold true, the first statement of Lemma 6 is equiva-
lent to (3) being false. Thus, checking (3) follows from the
combination of Lemmas 5 and 6.

Extending the Logic £, with Budgets

Let L (r) be the ability-based logic Ly, augmented with
r = 0 resource types. The logic Ly (*) denotes the version
in which the number of resource types is arbitrary.
Models of Lygp(r) are of the form S
(S, (Ra)acAct, wf, V) where wf : SxAct — Z" is a
weight function. The relation |- is updated as follows.

S, sl th(cp, V) £ there is a plan o € Act™ such that
(1) and (2) as for L}, and (3) o is g-compatible at ] M.

We already showed that the conditions (1) and (2) from
Ly, can be encoded by a finite-state automaton of exponen-
tial size, and that MC(Ly, ) is PSpace-complete. However,
MC(Lgn(*)) witnesses at least an exponential blow-up, as
stated below, partly due to condition (3) combined with (2).

Lemma 7. MC(Ly, (%)) is ExpSpace-hard.
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The proof is by reduction from the control-state reacha-
bility problem for VASS, written CREACH(VASS), known
to be ExpSpace-complete, see e.g. (Lipton 1976; Rackoff
1978). CREACH(VASS) takes as inputs a VASS V), a con-
figuration (qo, o), and a location ¢, and asks whether there
is a run from (go, Zo) to a configuration with location ¢.

Cor. 1 states that small witness plans in L, have length
at most exponential in the joint size of the LTS and the for-
mula. By contrast, since the proof of Lemma 7 uses a re-
duction from CREACH(VASS) for which witness runs can
be of length doubly-exponential in the size of the input
VASS (Lipton 1976), the witness plans in L, (*) may have
length doubly-exponential too (if not more). Up to now, no
known upper bound exists for the length of witness plans in
Ly:n (%) and the decidability status of MC (L (x)) is open.

However, it is possible to characterise the complexity of
a natural fragment of MC(Ly, (%)) by requiring a simple
restriction on the weight function in LTS: we consider below
the subproblem of MC(L, (*)) in which the action costs do
not depend on the states the actions are triggered. Hence, to
conclude, we assume that =f is of the form Act — Z".

Theorem 4. MC(Ly, (%)) restricted to LTS with action
costs independent of states is ExpSpace-complete. For r €
N, its restriction to r resources is PSpace-complete.

ExpSpace-hardness is inherited from the proof of
Lemma 7. For ExpSpace-easiness, we show that test-

ing S,s |- Kh®(p,q) can be reduced to an instance of
CREACH(VASS) that can be checked in nondeterministic
exponential space (refined analysis required here). When r
is fixed, we regain PSpace.

Concluding Remarks

We investigated the complexity of the model-checking prob-
lem for ability-based logics, possibly with plans constrained
by budget-like requirements and/or by regularity constraints.
First, we established that for the well-known knowing how
logic introduced in (Wang 2015), the problem is PSpace-
complete (Thm. 1). Interestingly, we have shown that the set
of witness plans for a given Kh-formula is regular, a prop-
erty used all along the paper. Then, we propose a generalisa-
tion of the uncertainty-based logic of (Areces et al. 2021),
in which each equivalence class over sets of plans is de-
fined by a regular language. We show that model-checking
for this extension £V, is in PTime, using an algorithm
based on graph accessibility (Thm. 2). The final part of
the paper is devoted to add budget-like constraints to Lgp,
and Eyeg, following a paradigm used in many formalisms.
While model-checking for the extension L[, () is shown
in PTime (Thm. 3), we prove that for L, (*) is ExpSpace-
hard (Lemma 7). Moreover, the restriction in which the ac-
tion costs do not depend on states, a reasonable assumption
in many contexts, is ExpSpace-complete (Thm. 4). In all
cases, we rely on results from vector addition systems.

A puzzling question remains the decidability status of
MC(Lgp(*)). Our investigations can be also broadened
by going beyond sequential plans (see e.g. (Li and Wang
2021b)) or by investigating alternative knowing how modal-
ities (see e.g. (Fervari et al. 2017)).
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