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Abstract

We propose a new approach to the verification of epis-
temic properties of programs. First, we introduce the new
“program-epistemic” logic LPK, which is strictly richer and
more general than similar formalisms appearing in the litera-
ture. To solve the verification problem in an efficient way, we
introduce a translation from our language LPK into first-order
logic. Then, we show and prove correct a reduction from the
model checking problem for program-epistemic formulas to
the satisfiability of their first-order translation. Both our logic
and our translation can handle richer specification w.r.t. the
state of the art, allowing us to express the knowledge of
agents about facts pertaining to programs (i.e., agents’ knowl-
edge before and after a program is executed). Furthermore,
we implement our translation in Haskell in a general way (i.e.,
independently of the programs in the logical statements), and
we use existing SMT-solvers to check satisfaction of LPK for-
mulas on a benchmark example in the AI/agency field.

1 Introduction
Explainability in learning, in security, etc (Viganò and Mag-
azzeni 2018) is at the forefront of AI. In this vein, we aim
to verify knowledge beyond systems and onto code: e.g., to
formally answer what programs know, and what an observer
knows about a program modulo what is not private to them.
Our goal is to no longer “just” model check knowledge of
systems, but rather do knowledge verification of programs or
reason about programs’ knowledge. Moreover, if we could
do so by leveraging the benefits of program-verification be-
ing often reduced to SMT-solving, this would be ideal.

But, whilst reductions of general verification to SMT-
solving are often done and prove worthwhile for Hoare
logics or program-intrinsic logics (such as separation
logic (Botincan, Parkinson, and Schulte 2009)), it is not al-
ways clear if it is possible to give such reductions for high-
level, non-classical logics defined on top of programs, such
as linear dynamic logic (De Giacomo and Vardi 2013a). Fur-
thermore, this is even less so the case for logics of knowl-
edge, or a sound mix of knowledge with code-driven logics.
We come to fill this gap.

To this end, in 2017, (Gorogiannis, Raimondi, and Boure-
anu 2017) promisingly introduced a “bespoke” epistemic
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logic for programs, denoted L□K. The programs/command
C in (Gorogiannis, Raimondi, and Boureanu 2017) could
be seen as formed of multiple threads/agents and each
thread i would have observable and non-observable vari-
ables w.r.t. the program space. Then, a formula □CKiφ in
L□K denotes the thread/agent i knowing the state of affairsφ
at the end of executing program C. Under given conditions
(e.g., set of program-instructions, variable domain, math-
ematical behaviour of program transformer), (Gorogian-
nis, Raimondi, and Boureanu 2017) proved that the model
checking problem for L□K can be reduced to SMT-solving.
Whilst interesting, there are several limitations to (Goro-
giannis, Raimondi, and Boureanu 2017):
a. The translation could handle reasoning about knowledge

only at states at the end of the execution of a given pro-
gram, i.e., formulas □CKiφ were handled by the trans-
lation, whereas formulas of type Ki□Cφ were not.

b. The logic L□K only allowed to expressing aspects like
“at the end of executing program C, a formula holds”,
where the programs were not part of the logic, but rather
ad-hoc instructions defined outside of the logic.

c. The logic was “bespoke” in that, predicate transformers
were necessary to be defined w.r.t. the programs in the
logic and the transition relation of the logic be linked
to these predicate transforms. To this end, the reduction
of model checking L□K to SMT was also dependent on
these predicate transformers. However, no formal charac-
terisation was given for these, and so we cannot ascertain
if their program semantics is therefore “standard”.

We overcome the limitations (a)-(c) above, and produce
the first approach that allows verifying knowledge over pro-
gram without totally foregoing the temporal aspects and by
giving a logic and translation that is program-semantics in-
dependent and more general, in the sense of being “free” of
dependencies on “bespoke” predicate transformers.

Contributions. Our contribution is threefold. First, we in-
troduce a new logic to reason about agents’ knowledge
on program/command execution, in ways richer that the
state-of-the-art. Concretely, we define a program-epistemic
logic LPK that is strictly more expressive than the program-
epistemic logic L□K in (Gorogiannis, Raimondi, and Boure-
anu 2017): i.e., in LPK, the epistemic and the knowledge
operators can commute. Moreover, our program-epistemic
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logic LPK is more general than the logic in (Gorogiannis,
Raimondi, and Boureanu 2017): our relational semantics
is not dependent on programs’ predicate transformers, and
our programs are fully mapped to logic operators. In that
sense, our logic LPK can be seen as an extension of star-
free linear dynamic logic (LDL) (De Giacomo and Vardi
2013b) with epistemic operators, or equivalently dynamic
logic (DL) (Harel 1984) extended with an epistemic oper-
ator. A nice consequence is that, like in DL (Harel 1984)
and unlike in L□K (Gorogiannis, Raimondi, and Boure-
anu 2017), in our program-epistemic logic LPK, the non-
atomic program operators for sequential composition and
non-deterministic choice are respectively obtained by apply-
ing atomic program operators in sequence, and by using the
OR logic connective over atomic program operators.

Second, for our logic, we show a totally new mech-
anism of translating its formulas to first-order logic, in
such a way that we obtain that model checking LPK re-
duces to first-order satisfaction. Indeed, because our logic
is more aligned to “standard” logics (such as linear dynamic
logic – LDL (De Giacomo and Vardi 2013b) and dynamic
logic – DL (Harel 1984)), our translation is entirely recur-
sive, without the need to leverage special cases separately
and/or Hoare-style predicate transformers. In this transla-
tion and reduction result, we include formulas that (Goro-
giannis, Raimondi, and Boureanu 2017) could not treat, i.e.,
Ka[program]φ – expressing that agent a knows fact φ
about the execution of “program”.

Third, we mechanise our translation in Haskell and ex-
periment with SMT-solving being called to answer w.r.t.
satisfaction of LPK formulas. We mechanise our translation
in a general way (i.e., not for a given bespoke program as
per (Gorogiannis, Raimondi, and Boureanu 2017), but for
the whole logic). This is possible also because our logic
itself “builds” the program operators within. We report on
the experiments on one “home-made” relevant use-case, as
well as the canonical example of the dining cryptographers,
used in (Gorogiannis, Raimondi, and Boureanu 2017) and
in most epistemic model checking benchmarks.

2 Program-Epistemic Logic
In this section we define an epistemic extension of dynamic
logic (Harel 1984), in particular strictly more expressive1

than the language in (Gorogiannis, Raimondi, and Boureanu
2017).

Agents & Program Variables. We assume that agents
(or threads) in set Ag have access to a countable set V of
variables, that are modified concurrently by them and/or an
outer program. Variables may belong the one of the follow-
ing finite sets:

• p⃗ ⊆ V is a non-empty set of program variables;
• o⃗a ⊆ p⃗ are the variables agent a ∈ Ag can observe.

1This is directly from the fact that the program operators and
the knowledge operator can commute in our language, whereas
in (Gorogiannis, Raimondi, and Boureanu 2017) they cannot. The
programs are also more general herein, but this is secondary.

• n⃗a = p⃗ \ o⃗a are the variables agent a ∈ Ag cannot ob-
serve.

We use o⃗ and n⃗ for observable and non-observable vari-
ables in general, i.e., un-indexed by a given agent. We use
x⃗ = ⟨x1, . . . , xn⟩ to denote both the vector and the set
of variables x1, . . . , xn, according to some enumeration, as
clear from the context. Finally, both x⃗i and x⃗(i) denote the
i-th element in vector x⃗.

Languages – Syntax. As in (Gorogiannis, Raimondi, and
Boureanu 2017), we assume a base language LQF to be a
quantifier-free, first-order language including identity ‘=’,
whose variables are user- or domain-specific, i.e., integers,
reals, etc. The particular choice of LQF is left under-specified
here, but we assume that LQF is decidable.

We now define two languages based on LQF.
The first-order language LFO is the extension of LQF

with quantification.

Definition 1 (LFO). Formulas ϕ in LFO are defined in BNF
as follows, where π ∈ LQF and x ∈ V :

ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | ∀xϕ

We extend quantification from variables to vectors as
usual, writing ∀x⃗ϕ for ∀x1 . . . ∀xnϕ. Further, we can intro-
duce Boolean operators ∨, →, ↔, and the existential quan-
tifier ∃ as standard. Moreover, the simultaneous substitution
of variables x⃗with expressions e⃗ in formula ϕ (provided that
all e⃗s are free for x⃗s in ϕ and |x⃗| = |e⃗| = m) is denoted as
ϕ[x1/e1, . . . , xm/em], or ϕ[x⃗/e⃗] in short.

Our program-epistemic language LPK extends the base
language LQF with the epistemic modality Ka, expressing
the knowledge of agent a, as well as the program operator
[ρ] of dynamic logic (Harel 1984), for some program ρ.

Definition 2 (LPK). Formulas α and programs ρ in LPK are
defined in BNF as follows:

α ::= π | ¬α | α ∧ α | (Kaα)[x⃗/e⃗] | [ρ]α
ρ ::= x := e | ϕ?

where π ∈ LQF, a is a fixed agent inAg (i.e., we do not allow
multi-agent nesting of epistemic modalities), e⃗ are domain-
specific expressions over program variables V up to com-
putable and non-recursive mathematical function, ϕ ∈ LFO
is a first-order formula over V .

Note that we indicate substitutions [x⃗/e⃗] explicitly in
epistemic formulas of type (Kaα)[x⃗/e⃗]. This is because
– as we will see shortly – formulas (Kaα)[x⃗/e⃗] and
Ka(α[x⃗/e⃗]) are not equivalent in our semantics. That
is, substitution does not commute with epistemic op-
erators in general, differently from what happens with
Boolean operators. For instance, even though Venus is
the morning star, some agent a might not know that it
is also the evening start. As a result, (Ka(V enus =
morn st))[V enus/even st] can be true in our seman-
tics, but Ka((V enus = morn st)[V enus/even st]) =
Ka(morn st = even st) might still be false (Kripke 1963).

Moreover, we write Kaα as a shorthand for (Kaα)[x/x],
where [x/x] is the identity substitution,
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Derived dynamic operators. Given the syntax in Def. 2,
we can introduce the arbitrary assignment x := ∗ of dy-
namic logic, as the following shorthand, provided that the
domain D of interpretation is finite:

[x := ∗]α ::=
∧
c∈D

[x := c]α

Further, dynamic operators for sequential composition ‘;’
and non-deterministic choice ⊔ can be introduced as the fol-
lowing abbreviations, which are standard in dynamic logic
(Harel 1984):

[ρ; ρ′]α ::= [ρ] [ρ′]α

[ρ ⊔ ρ′]α ::= [ρ]α ∨ [ρ′]α

So, hereafter we will make use of language LPK with all
the derived operators described above, simply intended as
the corresponding shorthands.

We write FV (Φ) for the set of free variables of a formula
Φ. We normally use Greek letters ϕ, ψ, . . ., and α, β, . . .
to denote formulas in the first-order language LFO and
program-epistemic formulas in LPK, respectively. We refer
to the fragment of LPK without program operator as the epis-
temic language LK. Finally, for a tuple x⃗ of variables and a
tuple e⃗ of terms such that |x⃗| = |e⃗|, we write

∧
(x⃗ = e⃗) as a

shorthand for
∧
i≤|x⃗|(xi = ei).

Program Operators [ρ] vs Programs ρ. In LPK we con-
sider program operators [ρ] of dynamic logic. Each such
operator [ρ] corresponds to a program ρ over variables, as
implied by the syntax of LPK. Hereafter we use “program-
operator” and “program” interchangeably, when the context
allows it.

Our program-operators [ρ] applied at a state s can do:
“x := e”, i.e., assign the value of expression e to vari-
able x; “ϕ?”, i.e., check the truth of first-order condition ϕ;
“x := ∗”, i.e., assign an arbitrary value to variable x; “ρ; ρ′”,
i.e., compose sequentially programs ρ and ρ′; “ρ ⊔ ρ′”, i.e.,
choose non-deterministically to execute either program ρ or
program ρ′. We remark that our program operators are in-
terpreted similarly to operators in Linear Dynamic Logic
(LDL) (Giacomo and Vardi 2015); however, we do not con-
sider the full expressivity of LDL, i.e., a program operator
may not necessarily be a full regular expression, as we ex-
plicitly do not consider the Kleene star in our syntax.

Languages – Semantics. We now provide the semantics
for the languages introduced in the previous section. First,
letD be the domain of interpretation for variables and quan-
tifiers. Then, a valuation is a total function s : V → D, nat-
urally lifted to tuples x⃗ and e⃗. Such a valuation is a state. We
write s[x 7→ c] to denote the state s′ that leaves s unchanged
apart from assigning variable x ∈ V to element c ∈ D, i.e.,
s′(x) = c and s′(y) = s(y) for all y ∈ V different from x.
Let U be the set of all such states.

Given the definition of state s as above, s is in particular
an interpretation of LQF.

Definition 3 (Semantics of LFO ). Given a state s ∈ U and
formula ϕ ∈ LFO, we define the satisfaction relation |= for
LFO inductively as follows:

s |= π iff s |=QF π
s |= ¬ϕ iff s ̸|= ϕ
s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′

s |= ∀xϕ iff for all c ∈ D, s[x 7→ c] |= ϕ

where |=QF is the underlying satisfaction relation for LQF.
We remark that Def. 3 of satisfaction for LFO is com-

pletely standard (Mendelson 1964).
To introduce the semantics of LPK we need a few more

notions, starting with a relation of indistinguishability for
the interpretation of epistemic operators.
Definition 4 (Indistinguishability). Let X ⊆ V be a set of
variables. The indistinguishability relation ∼X is a binary
relation overU , defined as s ∼X s′ iff for all x ∈ X , s(x) =
s′(x). Clearly, ∼X is an equivalence relation over U , for
any X ⊆ V .

Further, to define the state updates entailed by program
operators, we define a family of binary relations. Namely,
for each program ρ, let Rρ ⊆ U × U be a binary relation
representing the transition relation induced by ρ, considered
at a state s. Intuitively, Rρ(s, s′) denotes that we can reach
state s′ from s via program ρ. We can then naturally lift Rρ
to a function from states to sets of states, as well as a function
from sets of states to sets of states, as follows, where s ∈ U
and S ⊆ U :

Rρ(s) = {s′ ∈ U | Rρ(s, s′)}
Rρ(S) =

⋃
s∈S Rρ(s)

Definition 5 (Semantics of LPK). Given a state s ∈W ⊆ U ,
and formula α ∈ LPK, we define the satisfaction relation |=
for LPK inductively as follows.
(W, s) |= π iff s |=QF π
(W, s) |= ¬α iff (W, s) ̸|= α
(W, s) |= α ∧ α′ iff (W, s) |= α and (W, s) |= α′

(W, s) |= (Kaα)[x⃗/e⃗] iff for all s′ ∈W ,
s′ ∼o⃗a s[x⃗ 7→ s(e⃗)] implies
(W, s′) |= α

(W, s) |= [ρ]α iff for all s′ ∈ Rρ(s), (Rρ(W ), s′) |= α

where the relation Rρ is inductively defined as follows:

Rx:=e(s) = {s[x 7→ s(e)]};
Rϕ?(s) = {s} if s |= ϕ, and ∅ otherwise.

As a consequence of Def. 5, we have the following clauses
for dynamic operators:
(W, s) |= [x := e]α iff (Rx:=e(W ), s[x 7→ e]) |= α
(W, s) |= [ϕ?]α iff (Rϕ?(W ), s) |= ϕ→ α

Notice that we use the same symbol |= for the satisfac-
tion relations for of both language LFO and LPK; the con-
text will disambiguate. Moreover, in the derived truth clause
for [ϕ?]α, the expression ϕ → α is not a formula in LPK
strictly speaking, as ϕ is a generic first-order formula in LFO.
Nonetheless, we are able to interpret formulas of type [ϕ?]α
by using the corresponding clause in Def. 5. Hereafter we
use x⃗ := e⃗ to denote the simultaneous assignment of ex-
pressions e⃗ to variables x⃗.

In LPK, we can write formulas such as [x := e]α to be
evaluated at a state s. By Def. 5, this means that we first
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evaluate the expression e over the variables at state s, then
assign the result to x, and finally check if α holds at the up-
dated state s[x 7→ s(e)]. In particular, if α = Kaα

′, we eval-
uate α′ in all indistinguishable states s′ that also assign value
s(e) ∈ D to variable x, whenever x is observable by agent
a. As a result, formulas [x := e](Kaα

′) and (Kaα
′)[x/e] are

not equivalent in our semantics, with the latter amounting to
a de re interpretation of the epistemic modality (Fitting and
Mendelsohn 1999), whereby formula Kaα

′ is true for indi-
viduals e⃗ at state s. On the other hand, formulas Ka(α′[x/e])
and (Kaα

′)[x/e] are not equivalent in general, as the for-
mer expresses a de dicto reading of the epistemic modality,
whereby expressions e⃗ might denote different individuals in
different indistinguishable states. This feature of the seman-
tics motivates the explicit notation of substitutions in epis-
temic formulas.

We now state the model checking problem for LPK.

Definition 6 (Model Checking). Given a set W ⊆ U of
states, a state s ∈ W , and a formula α ∈ LPK, the
model checking problem amounts to determining whether
(W, s) |= α.

3 Translation into First-Order Logic
In this section, we show how program-epistemic formulas in
LPK can be translated into first-order formulas in LFO. The
latter can then be fed into an SMT solver. The translation
will be recursive on the structure of a formula α ∈ LPK.

Satisfaction Objects. To be able to define the translation,
we first introduce some notation to denote states where a
formula is satisfied. We generically call these sub-parts of
the state-space satisfaction objects [[β]] of a formula β.

For formulas ϕ in LFO, the corresponding satisfaction ob-
ject [[ϕ]]LFO is indeed the standard notion [[ϕ]], that is, the set
of states satisfying ϕ:

[[ϕ]]LFO = {s ∈ U | s |= ϕ}.

The satisfaction object [[α]]LPK for formulas α in LPK is
the set in ℘(℘(U)) defined as follows:

[[α]]LPK = {W ∈ ℘(U) | for all s ∈W, (W, s) |= α}

Programs. In LPK we defined program operators [ρ]. Ab-
stracting away the semantics for now, we consider the pro-
gram ρ over variables as implied by the syntax in LPK. The
set of all epistemic programs is denoted as {ρ}.

All programs update states, by changing an input into an
output. Classically, a non-deterministic program C is mod-
elled as a set-valued function fC : U → ℘(U), stating that
a state can be updated into one of a series of possible states.
Our programs lift this representation uniformly from states
to set of states. So, a program ρ can be represented as func-
tions fρ : ℘(U) → ℘(℘(U)). This denotes that program ρ
takes as input a set of states and this set can be transformed
into one of a series of sets of states.

Now, we have all the elements to present our translation.

Definition 7 (Translation τ ). The translation τ : LFO ×
LPK → LFO is such that for ϕ ∈ LFO and α ∈ LPK, τ(ϕ, α)

is inductively defined as follows:

τ(ϕ, π) = π

τ(ϕ,¬α) = ¬τ(ϕ, α)
τ(ϕ, α1 ∧ α2) = τ(ϕ, α1) ∧ τ(ϕ, α2)

τ(ϕ, (Kaα)[x⃗/e⃗]) = ∀k⃗(
∧

(k⃗ = e⃗) →

∀n′
a(ϕ[x⃗/k⃗] → τ(ϕ[x⃗/k⃗], α[x⃗/k⃗])))

τ(ϕ, [x := e]α) = τ(∃y((x = e[x/y]) ∧ ϕ[x/y]), α[x/e])
τ(ϕ, [ψ?]α) = τ(ψ ∧ ϕ, ψ → α)

where k⃗ is a tuple of new variables not appearing in α, ϕ,
and for every i ≤ |n⃗′a|, n⃗′a(i) = k⃗(i) if x⃗(i) = n⃗(i); other-
wise n⃗′a(i) = n⃗a(i).

The clause for translation τ for the base case α = π is im-
mediate, as π itself is returned, as it is already a first-order
formula by the syntax of LFO in Def. 1. Then, translation
τ commutes with Boolean operators. The case of epistemic
operators is more complex. Intuitively, the values of expres-
sions e⃗ are assigned to variables k⃗. Then, quantification on
non-observable variables n⃗′a is applied to mimic the fact that
operator Karanges over all states that are observationally in-
distinguishable for agent a from the current state. Moreover,
variables x⃗ occurring in ϕ, α are replaced by k⃗, and therefore
if some of the x⃗ are equal to some of the n⃗a, then the latter
have to be replaced by the corresponding k⃗. This is basically
the meaning of n⃗′a. Finally, as regards the dynamic opera-
tors, atomic assignments x := e are translated as substitu-
tions, in such a way that if the expression e contains bind-
ings over x, then these binding are evaluated first and they
are consistently carried forward in the satisfaction object ϕ
via substitutions; this is the purpose of ∃y in ∃y(. . . ϕ[x/y]).
This is intuitively in line with the interpretation of strongest-
postconditions for assignment in programming languages.
Tests ψ? simply become implications. Again, we observe
that, strictly speaking, ψ → α is not a formula in LPK, but
our translation τ can take care of these formulas as well, by
translating first-order formula ψ simply as itself.

Next, we prove a lemma, which will be used to show the
main theorem. This lemma is simply saying what the rela-
tion translations for the assignment and test programs are,
respectively, in our logic semantics. It is easy to see that
these expressions are natural and we prove these rather for
preciseness.
Lemma 8. For every ϕ ∈ LFO, we have that

Rx⃗:=e⃗([[ϕ]]) = [[∃y⃗(
∧

(x⃗ = e⃗[x⃗/y⃗]) ∧ ϕ[x⃗/y⃗])]]
Rψ?([[ϕ]]) = [[ϕ ∧ ψ]]

The proof is given in the long version of this paper
at https://sfrajaona.github.io/files/BelardinelliF.pdf.

In the next theorem, we prove that our translation is cor-
rect, that is, it preserves satisfaction between LPK and LFO.
Theorem 9. For every ϕ ∈ LFO, state s ∈ [[ϕ]], and α ∈ LPK
such that FV (ϕ) ∪ FV (α) ⊆ p⃗, we have that

([[ϕ]], s) |= α iff s |= τ(ϕ, α)
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The proof is given in the long version of this paper
at https://sfrajaona.github.io/files/BelardinelliF.pdf.

By Theorem 9 we can reduce the model checking problem
for LPK to satisfaction in first-order logic.

On Our Translation. We compare the translation above
with other similar methodologies in the literature.

Our translation is entirely recursive and does not need to
treat different parts of the logic distinctly, as (Gorogiannis,
Raimondi, and Boureanu 2017) did.

To see better how our translation stands out, let us detail
on the intuition and the main thrust of the translation. For
that, imagine a satisfaction queryM |= φ, withφ ∈ LPK and
M a Kripke structure. To compute the relation |=, one would
recursively produce sets [[subformula(φ)]] of states in M
that satisfy sub-formulas of φ. To this end, intuitively, our
translation τ(ϕ, φ) of a modal LPK formula into a quantified
FO formula keeps the evolving sets [[subformula(φ)]] in
the formula ϕ. In absolute terms, this ϕ encapsulates the set
of states in the model M which satisfy a FO logic formula
ϕ, i.e., [[ϕ]], which in turn equates to the set of states that sat-
isfy a subformula of φ. Then, τ(ϕ, φ) is recursively applied
until all subformulae of φ are consumed. In what follows,
we will refer to ϕ as the “satisfaction context” (rather than
“ satisfaction object”, as it was called in Section 3).

There are two points of main interest in the translation.
One is w.r.t. program assignments and the other w.r.t. to the
treatment of the K operator.

Regarding program assignments x := e (where e is an ex-
pression on program variables and x is a logic/program vari-
able), our translation τ(ϕ, [x := e]α) resorts to logic substi-
tutions [x/e] that are applied to both the recursive “satisfac-
tion context” ϕ and the LPK formula. So, program assign-
ments x := e are treated in our translation like in dynamic
epistemic logics (DEL) (Plaza 2007), creating an “update of
the model” via substitutions.

As for the translation of epistemic formulas Kaα[x/e],
the aforesaid substitutions are also used but have to care-
fully treat the dichotomy of observable vs. non-observable
variables. That is, a variable x non-observable by agent a
can be assigned to a value produced by expression e where
this expression e may contain values of variables observ-
able to a. This needs to be handled in such a way that the
non-observability of x is not affected. Thus, our translation
for epistemic formulae Kaα[x/e] contains an implicit dou-
ble quantification over the non-observable variables of agent
a and a renaming of variables in the “satisfaction context” ϕ
to make sure that the non-observability is not lost. All of
these allow us to evaluate variable at states coherently over
different “satisfaction contexts” and epistemic contexts.

4 Mechanisation
In this section, we primarily present the implementation of
the translation in Section 3.

Our code mechanising the translation and examples en-
coded/tested in/with it is available at
http://people.itcarlson.com/ioana/epistemic-program-verifier/src.

A Generic Mechanisation of LPK Verification. We
mechanise, in Haskell, the verification problem “M |=

α” for a model M and a formula α ∈ LPK, using our main
result in Theorem 9. To this end, we implement our transla-
tion τ in Section 3 and check satisfiability/validity of the
first-order formulae. To check the satisfiability/validity of
the first-order formula resulting from the translation, we use
the Haskell library SBV. The SBV—SMT Based Verifica-
tion (Erkök 2023)— is an Haskell library that allows to
call an SMT solver in Haskell. SBV allows to use several
SMT solvers, with Z3 as its default solver.

Our implementation takes as input the description of sys-
tem that constitutes a program (and produces the program in
program-operators terms), and as second input the problem
“ϕ |= α”. It then sets ϕ ∈ LFO as a constraint on the initial
states of the program, and proceeds with the implementa-
tion of the translation Section 3, to finally call Z3 on final
quantified first-order formula.

The implementation is generic, of the translation in Sec-
tion 3, and not specific/particular to a given input exam-
ple, as is the case in (Gorogiannis, Raimondi, and Boureanu
2017).

A Modular Mechanisation of LPK Verification. Our im-
plementation is modular. Our verifier contains three main
modules.

Logics module defines LFO, LK, and LPK, with the neces-
sary syntax for boolean and numerical expressions. This
module also defines the programming commands, neces-
sary for dynamic formulas [ρ]α.

Translation module implements the translation τ as de-
fined in Definition 7.

ToSBV module takes the problem inputs: the variables, the
constraint ϕ, and the property α, and transform the prob-
lem ϕ |= α into a predicate in SBV. To do so, the module
interprets expressions and formulas into SBV’s symbolic
types.

An additional module ToString provides function that
gives the string representation of all the objects (expres-
sions, programs, formulas). The modules Logics, Transla-
tion, and ToString can be used (independently from the mod-
ule ToSBV) to translate a modal satisfiability ϕ |= α into the
corresponding first order satisfiability ϕ |= τ(ϕ, α) (by The-
orem 9). The latter can be solved by an SMT-solver API,
other than SBV, or by a Theorem Prover such as Vampire
(Kovács and Voronkov 2013) or iProver (Korovin 2008).

Experiments. This work lends itself to checking several
canonical examples in epistemic verification and a quite
few others. In the benchmarks for these types of sys-
tems (Kacprzak et al. 2006, 2008; Lomuscio, Qu, and Rai-
mondi 2015), one de-facto example is the dining cryptogra-
phers example.

Dining Cryptographers. This system is described by n
cryptographers dining round a table (Chaum 1988). The
cryptographers may have paid for the dinner or their em-
ployer (the NSA) may have done. They execute a protocol
to reveal whether one of the cryptographers paid, but without
revealing which one. Each pair of cryptographers sitting next
to each other have an un-biased coin, which can be observed
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only by that pair. The pair tosses the coins. Each cryptog-
rapher announces the result of XORing three booleans: the
two coins they see and the fact of them having paid for the
dinner. The XOR of all announcements is proven to be equal
to the disjunction of whether any agent paid.

We follow the notation in (Gorogiannis, Raimondi, and
Boureanu 2017), and model this problem as follows.

The domain of variables is B = {T, F}. The pro-
gram variables are p⃗ = {x} ∪{pi, ci | 0 ≤ i < n}; x is the
XOR of announcements; pi encodes whether agent i has
paid; and, ci encodes the coin shared between agents i −
1 and i. Observable variables for agent i ∈ Ag are
o⃗i = {x, pi, ci, ci+1 mod n}, and n⃗i = p⃗ \ o⃗i. We model the
protocol by an assignment ρ:

x :=
⊕n−1

i=0 pi ⊕ ci ⊕ c(i+1 mod n) (ρ)

In the above, ⊕ denotes the XOR operator. The program
ρ is therefore the result of the tossing all the coins the pairs
of cryptographers see.

We check the following formulae:

α1 = ¬p0 ⇒
(
K0

(∧n−1
i=1 ¬pi

)
∨
∧n−1

i=1 ¬K0pi
)
,

α2 = [ρ]
(
K0

(
x ⇔

∨n−1
i=0 pi

))
,

α′
2 = K0

(
[ρ]

(
x ⇔

∨n−1
i=0 pi

))
,

α3 = K0p1.

We use the same formulae α1, α2 and α3 as defined
in (Gorogiannis, Raimondi, and Boureanu 2017) to make
meaningful comparison of our approach with theirs. We
added the formula α′

2, which, as far as we know, can be ex-
pressed only in our new framework. In particular, formula
α1 states that if cryptographer 0 has not paid then she knows
that no cryptographer paid, or (in case a cryptographer paid)
she does not know which one. Formula α2 states that cryp-
tographer 0 knows that x is true iff one of the cryptographers
paid. Formula α′

2 states cryptographer 0 knows that, at the
end of the program execution, x is true iff one of the cryp-
tographers paid, where x is the result of the coin tossing.
Finally, formula α3 states that cryptographer 0 knows that
cryptographer 1 has paid.

Note: To see more, please see our code, file
ExampleDiningCryptographer.hs.

In Table 1, all the answers to the formulas α1, α2, α′
2 and

α3 checked are as expected. In contrast to (Gorogiannis, Rai-
mondi, and Boureanu 2017), we see that our framework al-
lows for checking the formula α′

2 as well.
To see the performance, we report the time it took to get

the satisfaction results, for n = 5 and n = 10 cryptogra-
phers. In terms of speed performance, Table 1 shows a re-
duction of scalability in our approach compared to (Goro-
giannis, Raimondi, and Boureanu 2017). To give an exam-
ple, on the respective formulations of the same formula α2,
for 10 cryptographers, our translation takes approximatively
seven seconds to reply, whereas (Gorogiannis, Raimondi,
and Boureanu 2017) answers less than one second. In gen-
eral, from this table, we see that for n = 5 cryptographers
our reported times compare more closely with in (Gorogian-
nis, Raimondi, and Boureanu 2017), but for n = 10 cryp-
tographers our efficiency drops by a factor of 10, compared

to (Gorogiannis, Raimondi, and Boureanu 2017). Using the
data in (Gorogiannis, Raimondi, and Boureanu 2017), we
also see that we are generally twice faster than the model
checker MCMAS in checking the problem for n = 5 cryp-
tographers, but again much slower for n = 10.

However, the depreciation in scalability w.r.t. (Gorogian-
nis, Raimondi, and Boureanu 2017) is to be expected. On the
one hand, to be able to treat the K operator before the pro-
gram operator (e.g., checking α′

2) our translation uses more
complex satisfaction objects [[ϕ]] and their update inside our
translation happens in various points (i.e., see the translation
for K and the two satisfaction objects manipulated therein).
More on this aspect can be found in in the paragraph “On
Efficiency”. On the other hand, our current tool does not
make use of the full power of the SMT solver. Our trans-
lation yielding alternating quantifiers, yet these are not sup-
ported by the SBV. To this end, we transformed quantifiers
into conjunction and disjunctions. This was possible for our
examples working the finite domains, but foregoing quan-
tifiers in this way “kills” the optimisations of such SMT-
solving algorithms.

We note that the translation in (Gorogiannis, Raimondi,
and Boureanu 2017) is specific to the examples that they
study, and they do not provide a generic automation neither
for the translation, nor for transforming the translated for-
mulas into the right form for the SMT solver. Our formalism
could be implemented in a performant and generic tool by
feeding the translated first-order formula into a dedicated
theorem prover such as Vampire (Kovács and Voronkov
2013) or iProver (Korovin 2008).

A Simple Example Focused on Non-observability.
Now, we use an easy-to-follow program to show how the
translation behaves around non-observable variables. Our
simple program is “x := y” such that “reveals” the value of a
non-observable variable y, by assigning it into an observable
variable x. Formally, we consider the domain B = {T, F},
an agent ag, and the variables x ∈ oag, y ∈ nag .

Note:To see more, please see our code, file
ExampleRevelation.hs.

We checked the satisfiability of the following formulae:

α = [x := y](Kag(x⇔ T ))

α′ = Kag([x := y](x⇔ T ))

Our tool returned two satisfying states for α, namely the
states where y = T . Meanwhile, for formula α′, it answered
correctly saying it is unsatisfiable.

Note that these results returned by the tool are in line with
our semantics for these formulae. That is, for α, in our se-
mantics, at the states after the assignment of x to y == T ,
the agent will know that x is equal to T ; and there are two
such states, (x = T, y = T ) and (x = F, y = T ), right
before the assignment where α is evaluated and holds. How-
ever, for formula α′, at no state will the agent know in our
semantics that after x is attributed y, then x is equal to T ;
this is so since from any state s that one would consider to
evaluate α′ there exists a state s′ indistinguishable by ag
from s (since y ∈ nag) where ¬[x := y](x⇔ T ) holds.

Once again, this example and others like it were used by
us to empirically test the soundness of our implementation.
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SAT (our translation) SAT (Gorogiannis et al., 2017) MCMAS (Lomuscio et al., 2015)
Formula result time result time result time

n = 5 n = 10 n = 5 n = 10 n = 5 n = 10
¬α1 unsat 0.07s 70s unsat 0.03s 0.1s unsat 0.17s 0.18s
¬α2 unsat 0.03s 7s unsat 0.02s 0.1s unsat 0.10s 0.12s
¬α′

2 unsat 0.15s 17s N/A - 0.1s unsat 0.20s 0.25s
¬α3 sat 0.04s 7s sat 0.01s 0.1s sat 0.10s 0.12s

Table 1: Performances on Verifying the Dining-cryptographers Problem

On Efficiency. In (Gorogiannis, Raimondi, and Boureanu
2017), because they did not treat the case ofK operators be-
ing evaluated before program operators, then their “satisfac-
tion contexts” and epistemic contexts (i.e., set of states) were
sufficient to give their main result. In turn, our main result
(Th. 9) need an extra quantification: it quantifies over every
state s in such a “satisfaction contexts”/model [[ϕ]]. Also, our
translation of knowledge operators already contains one ex-
tra quantification compared to (Gorogiannis, Raimondi, and
Boureanu 2017) and inner variable renaming, to cater for
similar reason (i.e., programs changing variables “ahead” of
an epistemic operator be evaluated). Thus, all in all, for a
given formula containing one K operator to be translated, we
may iterate four times more over the state-space than (Goro-
giannis, Raimondi, and Boureanu 2017) had to. So, in prac-
tice, our ability to translate a richer logic to FO comes at a
depreciation in efficiency (on average) compared to (Goro-
giannis, Raimondi, and Boureanu 2017), yet we can solve
the dining cryptographers problems for 5 cryptographers ten
times faster than the MCMAS model checker (Lomuscio,
Qu, and Raimondi 2015) can.

5 Related Work
On SMT-Based Verification of Epistemic Properties of
Programs. With the work of Gorogiannis et al. (Gorogian-
nis, Raimondi, and Boureanu 2017), we compared in the
introduction already, so now we only discuss other related
lines. (Morgan 2006) verify epistemic properties of pro-
grams not via dynamic logic, but by reasoning with an
ignorance-preserving refinement. Like here, their notion of
knowledge is based on observability of arbitrary domain
program variables. Also, this work has no relation with first-
order satisfaction nor translations of validity of program-
epistemic logics to that, nor their implementation.

On Dynamic Epistemic Logics (DEL). DEL (Dit-
marsch, Hoek, and Kooi 2007)) is a family of logics that
extend epistemic logic with dynamic operators. On the one
hand, DEL logics are mostly propositional, and their exten-
sions with assignment only considered propositional assign-
ment (e.g., (van Ditmarsch, van der Hoek, and Kooi 2005));
contrarily, we support assignment on variables on arbitrary
domains. Also, we have a denotational semantics of pro-
grams (via predicate transformers), whereas DEL operates
on more abstract semantics. On the other, action models
in DEL can describe complex private communications that
cannot be encoded with our current programming language.
The line on semi-public environments in DEL also builds in-
distinguishability relations from the observability of propo-

sitional variables (Wooldridge and Lomuscio 2001; Char-
rier et al. 2016; Grossi et al. 2016). (Grossi et al. 2017)
explores the interaction between knowledge dynamics and
non-deterministic choice/sequential composition.

Current DEL model checkers include DEMO (van Eijck
2007) and SMCDEL (Van Benthem et al. 2015). We are not
aware of the verification of DEL fragments being reduced to
satisfiability problems. An online report (Wang 2016) dis-
cusses –at some high level– the translation SMCDEL knowl-
edge structures into QBF and the use of YICES.

Other Works. (Gorogiannis, Raimondi, and Boureanu
2017) discussed work related more tenuously, such as on
general verification of temporal-epistemic properties of sys-
tems which are not programs in tools like MCMAS (Lomus-
cio, Qu, and Raimondi 2015), MCK (Gammie and van der
Meyden 2004), VERICS (Kacprzak et al. 2008), or one line
of epistemic verification of models specifically of JAVA
programs (Balliu, Dam, and Le Guernic 2012). (Gorogian-
nis, Raimondi, and Boureanu 2017) also discussed some
incomplete method of SMT-based epistemic model check-
ing (Cimatti, Gario, and Tonetta 2016), or even bounded
model checking techniques, e.g., (Kacprzak et al. 2006). All
those are only loosely related to us, so no reiteration needed.

6 Conclusions

Why This Methodology. The value of our methodology is
in the AI-based theory, a well-founded combination of dy-
namic and epistemic logic in a way that can be used to
systematically verify knowledge over programs in a man-
ner that was not possible before. This can be used for, e.g.,
private-information flow verification or explaining why a
decision was taken under partial information (Viganò and
Magazzeni 2018). Even if our implementation is not yet effi-
cient, we stress that this is a proof-of-concept that can be fur-
ther optimised by us leveraging in the future the full power
of the SMT-solver, without us foregoing quantifications into
disjunctions/conjunctions.

We defined a rich program-epistemic logic (mixing a
Kleene-star-free fragment of LDL (De Giacomo and Vardi
2013b) with knowledge operators) and showed that its
model checking problem can be reduced to SMT-solving.
Indeed, our translation from our epistemic-program logic to
FO logic treats a richer and more generic logic than ever
before, w.r.t. knowledge of programs. We implemented this
translation and tested it against a number of use-cases.

6251



Acknowledgements
I. Boureanu and S. Rajaona were partly supported by the
EPSRC project “AutoPaSS”, EP/S024565/1.

References
Balliu, M.; Dam, M.; and Le Guernic, G. 2012. ENCoVer:
Symbolic Exploration for Information Flow Security. In
Proc. of CSF-25, 30–44.
Botincan, M.; Parkinson, M.; and Schulte, W. 2009. Separa-
tion Logic Verification of C Programs with an SMT Solver.
Electr. Notes Theor. Comput. Sci., 254: 5–23.
Charrier, T.; Herzig, A.; Lorini, E.; Maffre, F.; and
Schwarzentruber, F. 2016. Building epistemic logic from
observations and public announcements. In Fifteenth Inter-
national Conference on the Principles of Knowledge Repre-
sentation and Reasoning.
Chaum, D. 1988. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal of
Cryptology, 1(1): 65–75.
Cimatti, A.; Gario, M.; and Tonetta, S. 2016. A Lazy Ap-
proach to Temporal Epistemic Logic Model Checking. In
Proc. of AAMAS-38, 1218–1226. IFAAMAS. ISBN 978-1-
4503-4239-1.
De Giacomo, G.; and Vardi, M. Y. 2013a. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Pro-
ceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI ’13, 854–860. AAAI Press.
ISBN 9781577356332.
De Giacomo, G.; and Vardi, M. Y. 2013b. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Pro-
ceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI ’13, 854–860. AAAI Press.
ISBN 9781577356332.
Ditmarsch, H. v.; Hoek, W. v. d.; and Kooi, B. 2007. Dy-
namic Epistemic Logic. Synthese Library. Springer.
Erkök, L. 2023. SBV: SMT based verification in Haskell.
http://leventerkok.github.io/sbv/. Accessed 14/02/2023.
Fitting, M.; and Mendelsohn, R. L. 1999. First-Order
Modal Logic. USA: Kluwer Academic Publishers. ISBN
079235334X.
Gammie, P.; and van der Meyden, R. 2004. MCK: Model
Checking the Logic of Knowledge. In Proc. of CAV-16, 479–
483. Springer.
Giacomo, G. D.; and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on Finite Traces. In Yang, Q.; and Wooldridge,
M. J., eds., Proc. of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, 1558–1564. AAAI Press.
Gorogiannis, N.; Raimondi, F.; and Boureanu, I. 2017. A
Novel Symbolic Approach to Verifying Epistemic Proper-
ties of Programs. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
17, 206–212.
Grossi, D.; Herzig, A.; van der Hoek, W.; and Moyzes, C.
2017. Non-Determinism and the Dynamics of Knowledge.

In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence.
Grossi, D.; van der Hoek, W.; Moyzes, C.; and Wooldridge,
M. 2016. Program models and semi-public environments.
Journal of Logic and Computation, 29(7): 1071–1097.
Harel, D. 1984. Dynamic Logic, 497–604. Dordrecht:
Springer Netherlands. ISBN 978-94-009-6259-0.
Kacprzak, M.; Lomuscio, A.; Niewiadomski, A.; Penczek,
W.; Raimondi, F.; and Szreter, M. 2006. Comparing BDD
and SAT based techniques for model checking Chaum’s
dining cryptographers protocol. Fundamenta Informaticae,
72(1-3): 215–234.
Kacprzak, M.; Nabiałek, W.; Niewiadomski, A.; Penczek,
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