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Abstract
Active Learning is an essential method for label-efficient
deep learning. As a Bayesian active learning method,
Bayesian Active Learning by Disagreement (BALD) success-
fully selects the most representative samples by maximizing
the mutual information between the model prediction and
model parameters. However, when applied to a batch ac-
quisition mode, like batch construction with greedy search,
BALD suffers from poor performance, especially with noises
of near-duplicate data. To address this shortcoming, we pro-
pose a diverse beam search optimized batch active learning
method, which explores a graph for every batch construction
by expanding the highest scored samples of a predetermined
number. To avoid near duplicate beam branches (very simi-
lar beams generated from the same root and similar samples),
which is undesirable for lacking diverse representations in the
feature space, we design a self-adapted constraint within can-
didate beams. The proposed method is able to acquire data
that can better represent the distribution of the unlabeled pool,
and at the same time, be significantly different from existing
beams. We observe that the proposed method achieves higher
batch performance than the baseline methods on three bench-
mark datasets.

Introduction
Supervised learning performs well under the scenarios with
access to a training set of high quality and quantity. How-
ever, as training models have grown more and more com-
plicated in recent years, enormous training data has become
required. However, obtaining a sufficient labeled set can be
extremely difficult since the annotation processes are usually
time-consuming and thus expensive, especially when exper-
tise is required (Settles 2009). A promising way for solving
this problem is active learning by iteratively selecting a min-
imal set of samples for oracles to label and then retraining
the model (Ren et al. 2021). This ensures that with this min-
imized training set, the model can still maintain an accept-
able prediction accuracy. Active learning has made a lot of
practical impact in various tasks, such as object detection (Li
et al. 2021), image classification (Wu et al. 2020), and natu-
ral language processing(NLP) tasks (Saisho et al. 2021).

According to the definition of active learning, the most in-
formative samples should be selected for each training iter-
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ation from the pool of unlabeled data (Huang, Jin, and Zhou
2010). As a surrogate model in active learning, acquisition
functions are responsible for detecting these samples. Mul-
tiple information theoretic heuristics can be used to design
the acquisition functions that need to be both computation-
ally efficient and accurate in judging the samples’ informa-
tiveness. Some of them concern the samples that can reduce
the model uncertainty most (Seung, Opper, and Sompolin-
sky 1992), while others take the data distribution into ac-
count when selecting the most representative samples (Yu
et al. 2018). Recently, attempts have been made by (Kirsch,
Rainforth, and Gal 2021) to combine the samples’ informa-
tiveness and the evaluation dataset’s distribution to achieve
better performance with noisy data.

Within these heuristics, Bayesian Active Learning by Dis-
agreement (BALD) (Houlsby et al. 2011) performs extraor-
dinarily well by using the mutual information between the
model prediction and the model parameters to estimate sam-
ples’ acquisition scores. However, even though BALD per-
forms well when a single sample is acquired for every train-
ing iteration, retraining the model after adding every single
labeled sample is undesired due to the expensive computa-
tional cost. Instead, batch acquisition that can also achieve a
comparable predictive accuracy as single sampling is ideal.
BatchBALD (Kirsch, Van Amersfoort, and Gal 2019) se-
lects a batch of multiple informative samples jointly using
a greedy algorithm that adds samples into the batch one by
one. In BatchBALD, joint mutual information representing
the joint informativeness of samples in the batch is calcu-
lated after every sample is added to the batch. This approach
suffers from two problems. First, as a greedy acquisition al-
gorithm, it selects only one best candidate sample for la-
beling at each time step. Choosing only one candidate may
be suitable for the current time step. However, eventually,
another beam, instead of the initial candidate may become
the best choice for the whole optimization process. Sec-
ond, jointly estimating the informativeness of all the com-
binations of the remaining pool set and existing samples
in the batch for every time step of batch construction can
be very computationally expensive. Adaptively escaping the
near duplicate samples in the unlabeled pool is desirable.

We introduce a diverse beam search algorithm for BALD
that selects alternative samples of a predetermined number
(beam width) at each time step of batch construction. Ap-
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Figure 1: Acquisition batch construction of conventional
beam search (top) and beam search with self-adapted con-
straint (bottom)

parently, a higher beam width gives a better cover of fea-
ture representation and leads to a higher possibility of good
learning performances. However, higher beam width also
means more computational cost; similar to greedy search,
adaptively escaping some near duplicate samples is also cru-
cial for reducing the computation cost in beam search opti-
mized active learning. Furthermore, we observe that the re-
sult beams usually turn out to be only slightly different and
often from a common parent as in Figure 1(top), which is
undesirable because the diverse features and multimodal na-
ture of samples cannot be captured and compared for se-
lecting the best batches. To address these issues, we ap-
ply a self-adapted constraint within candidate beams help-
ing produce beams that are significantly different from each
other as illustrated in Figure 1(bottom). Moreover, the con-
straint adapts itself in accordance with the density in the pool
that intuitively escapes most of the near-duplicating samples
from the pool and consequently reduces the computational
cost for constructing the beams.

We report results on three benchmark datasets. Experi-
mental results show that our method consistently outper-
forms baseline methods including BALD and BatchBALD
in terms of both model quality metrics and acceptable com-
putational cost. Moreover, we find that both of these im-
provements mainly benefit from the self-adapted constraint
when compared with regular beam search without any con-
straint. Overall, our method produces beams of high qual-
ity for each time step of batch construction under accept-
able computation and memory cost compared with baseline
methods.

Preliminaries

In this section, we first revisit the Bayesian neural network in
active learning, and then describe how to apply top-s, greedy,
and plain beam search techniques (without any constraint)
into active learning. We will be using these batch acquisition
algorithms for comparison with the proposed method.

Bayesian Active Learning
Bayesian active learning aims at maximizing the informa-
tion gain from the selected samples while reducing the pos-
sible hypotheses of models. The merit of incorporating a
Bayesian neural network into active learning is that it can ex-
press information gain from labeled samples in terms of the
model’s predictive entropies, which is more tractable than
other approximation approaches (Houlsby et al. 2011).

BALD (Gal, Islam, and Ghahramani 2017) minimizes the
uncertainty of the model parameters by selecting samples
that can maximize the decrease in expected posterior en-
tropy H[ω|D] of model. Here we assume the model’s latent
parameters, ω, and model’s predictions, p(y|ω). Having an
unlabeled pool Dpool, and current training set D, we can in-
fer a posterior distribution over the model’s parameters as
p(ω|D). The decrease in expected posterior entropy if we
try to add a sample (x, y) from the poolDpool to the training
set D looks like:

arg max
x

H[ω|D]− Ey∼p(y|x,D)[H[ω|y, x,D]] (1)

which equals the conditional mutual information between
unknown output y ∼ p(y|x,D) and the model parameters
ω:

I[ω; y|x,D] = I[y;ω|x,D] (2)
The right term is easier to compute since we can variation-
ally approximate the distribution over parameters using MC-
dropout (Gal and Ghahramani 2016), which is much easier
to implement.

Batch Acquisition: Top-S and Greedy Because retrain-
ing the model sequentially (after every single sample is
added from the pool to the training set) is extremely time-
consuming, adding a batch of samples at each acquisition
step is desirable. BALD selects a batch for every acquisi-
tion step by taking the top s mutual information scored sam-
ples (Gal and Ghahramani 2016) (Janz, van der Westhuizen,
and Hernández-Lobato 2017):

arg max
x1,...,xs⊆Dpool

s∑
i=1

I(yi;ω|xi, Dtrain) (3)

(Kirsch, Van Amersfoort, and Gal 2019) find this naive ap-
proach can only assure that the acquired samples are indi-
vidually informative (top k informative in the pool), but not
necessarily jointly informative. They propose BatchBALD
to solve this problem by selecting samples whose joint in-
formativeness is high:

arg max
x1,...,xs⊆Dpool

I(y1, ..., ys;ω|x1, ..., xs, Dtrain)) (4)

As illustrated in Algorithm 1, a greedy algorithm is used
to approximately choose samples to construct a batch. Joint
mutual entropies are calculated after every sample in the
pool is added into the batch sequentially. This ensures that
every candidate sample is most informative at least for the
current time step. However, it cannot be guaranteed to still
be most suitable after the whole batch is constructed.

In light of this, to enhance the batch performance, we try
to apply beam search for constructing a batch in our study.
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Algorithm 1: Greedy algorithm for batch acquisition
Input: Acquisition batch size s, unlabeled dataset Dpool,

model parameters ω under the train data DT in this ac-
quisition step T , let αT (A) = I(YA;ω|XA,DT )

1: A(0) = ∅
2: for i = 1 to s do
3: for all d ∈ Dpool\A(i−1) do
4: sd ← αT (A(i−1) ⋃{d})
5: end for
6: A(i) ← A(i−1) ⋃{arg maxd sd}
7: end for
8: return A(s)

Obviously, there will be trade-offs between the batch perfor-
mance and beam computational cost. Our method attempts
to achieve high batch performance while maintaining a low
computational cost.

Plain Beam Search for Batch Acquisition
As a widely used heuristic search algorithm, beam search
is able to cover more diverse features of data than greedy
search. At the same time, it stays computationally tractable
compared with exhaustive search, which tries every possible
combination of all the samples. We first design a prelimi-
nary experiment illustrating how plain beam search works
in active learning for comparison with our method.

Preliminary Experiment Design In our preliminary ex-
periment, we apply plain beam search into active learning
as a limited-width breadth-first search for a batch of sam-
ples maximizing the acquisition scores at each search step.
Denote set of K solutions after time t − 1 as Bt−1 =
{b1

t−1, ...,b
K
t−1}, given a set of remaining samples in the

pool Dpool, search a candidate beam set Bt = {bkt }Kk=1, in
which one beam looks like: bkt = (dk0 , ..., d

k
t ):

Bt = arg max
b1,...,bK∈Bt

∑
αT (bk), αT (b) = I(Yb;ω|Xb,DTtrain)︸ ︷︷ ︸

Mutual information scores

s.t.bi 6= bj , ∀i 6= j and i, j ∈ [K]︸ ︷︷ ︸
only remove exactly identical beams

(5)

Search is through: Bt = {bkt−1
⋃
d | bkt−1 ∈ Bkt−1, d ∈

Dpool}Kk=1, d = x with a search span K × |Dpool|, on AL
acquisition step T .

Approach
In this section, we present a diverse beam search optimized
active learning method, which consists of a diverse beam
search algorithm and a self-adapted constraint within beams.

Motivation and Overview
In the preliminary experiment that we conducted on ReM-
NIST digits (Kirsch, Van Amersfoort, and Gal 2019), we
directly apply plain beam search (beam width of 32 and ac-
quisition size of 5) to BALD for the batch construction of

Figure 2: Performance (acquisition size of 5) on ReMNIST
of Top-s algorithm, Greedy algorithm, and Beam Algorithm
with/without self-adapted constraint: Batch acquisition with
plain beam search did not outperform others, while the pro-
posed method (Batch acquisition using beam search with
self-adapted constraint) did

each acquisition step T . Obviously, if we apply beam search
without any constraints, during the whole beam search pro-
cess for constructing a batch, we can only remove the exactly
identical beams. In other words, there could be many nearly
identical beams in our result just as illustrated in Figure 1
(top), which leads to a lack of diverse feature representation
though our batch construction.

Figure 2 shows that batch acquisition using beam search
fails to improve the active learning accuracy significantly
in comparison with top-s algorithm and greedy algorithm.
Again, we infer that this poor performance should be at-
tributed to there being too many similar beams that are inad-
equate to reflect the whole feature space.

Therefore, intuitively, finding beams that are more di-
verse, just as shown in Figure 1 (bottom), is desired. Fol-
lowing this intuition, we formalize the task of generating
diverse beams in active learning by defining a dissimilar-
ity constraint within beams for each acquisition step T . The
main idea is to select a beam element with the dissimilar-
ity constraint conditioned on previous beams to make sure
that for each beam search time step t, the generated beams
would not be nearly identical. We further extend this idea by
designing a self-adapted constraint that not only guarantees
the diversity of beams but also takes the data density of the
unlabeled pool into account for batch acquisition.

Diverse Beam Search for Active Learning
We want to make every new beam solution more diverse
than previous beams, so following the normal M-best so-
lutions (Batra et al. 2012), we should greedily update the
mth beam at time t (note that in this paper we denote the
time step in beam search as t; while the active learning ac-
quisition time step as T ) under the dissimilarity constraint.
Having a dissimilarity function Π(bm,bi), we enforce the
new beam solution bm to be dissimilar to the existing ones
{bi}m−1i=1 , and the dissimilarity should exceed a threshold
ki.

6086



Bmt = arg max
bm∈Bt

αT (bk), αT (b) = I(Yb;ω|Xb,DTtrain)

s.t. Π(bm,bi) ≥ ki, ∀i < m︸ ︷︷ ︸
dissimilarity−constrained

and m < K (6)

Since data samples forming beams are naturally different
from each other in terms of features and surrounding density,
the threshold ki on dissimilarity should be self-adapted with
these characteristics.

In this case, we consider ki to be self-adapted with density
around the candidate data point. Let ∆(·, ·) measures simi-
larity between beams, and Θ(bi) be the self-adapted thresh-
old of the new beam solution bi, when trying to find themth

beam candidate, we can rewrite the constraint as:

Bmt = arg max
bm∈Bt

αT (bk)︸ ︷︷ ︸
Findmth new beam solution

, αT (b) = I(Yb;ω|Xb,DTtrain)

s.t. ∆(bm,bi) ≤ Θ(bi) , ∀i < m︸ ︷︷ ︸
Self adapted constraint

and m < K (7)

Self-Adapted Constraint
Both the similarity function ∆ and the density threshold
function Θ can take various forms - e.g. KL divergence of
model prediction, or natural clustering distance on the ba-
sis of the raw features of input samples. In our study, we
estimate the similarity and constraint with consideration of
active learning’s iterative training process. In this section,
we introduce how the self-adapted constraint works for se-
lecting a beam set with abundant diversity.

Beam Similarity Estimation Since active learning is an
iterative learning loop in which the feature space (in view
of the model) is actually changing after every training step,
we choose the feature space generated by the model to es-
timate the similarity between samples. As shown in Fig-
ure 3, having the discriminative model Φ = θcls(θfea) con-
sisting of two general layers, the feature extraction layer
θfea (e.g., convolution layers or recurrent neural network
(RNN) feature extraction layers), and the classification layer
θcla (e.g., flatten layers, fully connected layers), we esti-
mate the similarity between different data points di, dj in
the pool Dpool after every acquisition/training step T , fol-
lowing Gaussian Radial Basis Function (to make similarity
vary sharply though data points):

δT (di, dj) = exp(−γ||θfeaT (di)− θfeaT (dj)||2)

di, dj ∈ Dpool (8)
Then, the similarity between beams can be calculated in

Hausdorff style, which estimates the smaller similarity in the
two oriented similarities (from bm to bn, and the opposite)
:

∆(bm,bn) = min[h(bm,bn), h(bn,bm)] (9)
in which:

h(bm,bn) = inf
di∈bm

sup
dj∈bn

δ(di, dj) (10)

Figure 3: Similarity estimation after every acquisi-
tion(retraining) step in active learning process

Density Based Threshold of Similarity In the prelimi-
nary experiment, we observe that for some samples (e.g.,
Label 1 in ReMNIST) the neighbor samples around them ob-
tain very high similarities with themselves, while for other
samples (e.g., Label 4 or 5), their neighbors obtained low
similarity values. This infers, for different beams, the den-
sity around the beam element samples in the unlabeled pool
varies sharply. In other words, instead of applying a fixed
threshold of similarity for all the beams, a self-adapted con-
straint in terms of the density around the sample should be
used for identifying the near duplicate beams. Moreover,
since the samples’ feature embeddings are changing during
the whole active learning process, the density around a sam-
ple in the unlabeled pool, let us say di, also varies across
every training iteration.

Taking these factors into consideration, we estimate the
similarity of a data point di on behalf of its surrounding den-
sity. First, we find j − nearest neighbors of di by using the
samples’ similarity estimation in Equation. 8. This forms a
cluster of samples around di, and then we obtain the sample
dr on the radii of the cluster:

arg max
d1,...,dJ∈Dpool

∑
δ(di, dj)︸ ︷︷ ︸

find j nearest neighbors

, j ∈ {1, ..., J} (11)

dr = arg min
d∈{d1,..,dJ}

δ(di, d)︸ ︷︷ ︸
point on the radii

(12)

We calculate the density of sample di as the similarity
between it and the its’ jth nearest neighbor dr as follows:

ε(di) = δ(di, dr) (13)

Threshold of the beam similarity for self-adapted con-
straint in accordance with the density is calculated as:

Θ(bi) =
1

γ
min{ε(dc)}dc∈bi (14)

Here, γ indicates the degree of the diversity on the ba-
sis of which we require the learning process to perform the
filtering out of near duplicated beams.

By estimating the similarity and self-adapted constraint in
this way, when try to filter out the near duplicate beams, we
are able to identify the areas of high density and then adapt a
tight similarity constraint (compared with low density areas)
to the beams containing these samples.
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Algorithm 2: Beam search with self-adapted constraint for
batch acquisition in active learning
Input: Beam size K, acquisition batch size s, unla-

beled dataset D̂pool, model parameters ω under the
train data in this step, for beam b, let αT (b) =
I(Yb;ω|Xb,DTtrain)

Output: Acquired batch Aacquired = {d1, d2, ..., ds}
1: B(0) = {(∅, 0)}
2: for i = 1 to s do
3: B(i) = {}
4: for all (bparent, s) ∈ B(i−1) do
5: for all d ∈ D̂pool\bparent do
6: if bm = bparent

⋃
{d} not in B(i) then

7: if ∆(bm,bj) ≤ Θ(bj) ∀(bj , s) ∈ B(i) then
8: B(i) ←

B(i)
⋃
{(bparent

⋃
{x}, αT (bm)}

9: end if
10: end if
11: end for
12: end for
13: B(i) ← take top-K scored (A, scores) from B(i)

14: end for
15: (Aacquired, score) ← take top-1 scored (A, scores)

from B(k)

16: return Aacquired

Efficient Implementation
Next, we design a quick adapting algorithm to conduct the
scoring process more efficiently. First, we conduct data re-
duction on the unlabeled pool set to reduce the pool size to
D̂pool =

|Dpool|
λ2K by a greedy search for samples of low sim-

ilarities in terms of δ with samples that are already in the
reduced pool. Here let K be the beam width in the diverse
beam search and λ2 be degree of diversity. Generally, our
method is formalized in Algorithm 2. If we compare it with
Algorithm 1, we find two major differences:

(1) Beam search is applied by keeping K candidates for
every beam search step t. Here suppose the scoring function
αT (B) performs under the same time cost. Since we reduce
the pool size to D̂pool and λ2 > 1, we will not consume
more time for beam scoring than the greedy algorithm.

(2) Note that we put the self-adapted constraint in line 7,
before calculating the score of beams. This indicates that we
escape a bunch of beams without the time-consuming joint
mutual information calculation, which will significantly re-
duce the processing time of each active learning iteration.

Experiments
We evaluate the performance of our method and other base-
line methods including BALD (top-s acquisition algorithm)
and BatchBALD (greedy acquisition algorithm). We also do
the ablation study on self-adapted constraint, beam width,
and beam diversity. Here we report results on different sizes
of training set size.

Active Learning Performance
The datasets, MNIST( (LeCun et al. 1998)), ReM-
NIST( (Kirsch, Van Amersfoort, and Gal 2019)), and
CIFAR-10, are used in our experiments.

The network architectures and the training procedure are
set identically to (Kirsch, Van Amersfoort, and Gal 2019).
Correspondingly, we choose 10 MC dropout samples for
ReMNIST and 100 of them for MINIST and CIFAR-10. We
use a convolutional neural network (CNN) consisting of two
blocks of convolution (with 32 and 64 5×5 filters), dropout,
max pooling, and ReLU. Following these two blocks, there
are a fully connected layer of 128 hidden units and MC
dropout. All dropouts are with a probability of 0.5. All mod-
els are optimized with the Adam optimizer with a learning
rate of 0.001 and betas(0.9, 0.999). The initial samples are
randomly selected but of the same number per class. We
also stop early after three epochs with declining accuracy
on validation set for avoiding overfitting. Each experiment
is repeated five times with different seeds and different ini-
tial samples. Median of these five trials and the lower/upper
quartiles are used to draw the accuracy figures. All beam
searches are conducted with a width of 32.

ReMNIST We first examine our method’s performance
on ReMNIST in which there are many near duplicate data
points containing isotropic Gaussian noise with standard de-
viation of 0.1. We use a validation set of 2000 samples, a
balanced test set of 20,000, and randomly select 20 samples
for initial training set (2 per class).

The test accuracy of batch acquisition size 5 and 10 are
shown in Figures 2 and 4, respectively. Our method can
significantly outperform all other batch acquisition algo-
rithms in terms of accuracy. The performance is consistent
across all acquisition steps and is more obvious when we in-
crease the acquisition size. As also demonstrated in (Kirsch,
Van Amersfoort, and Gal 2019), a dataset with near dupli-
cate samples such like ReMNIST leads to poor performance
if we do not consider batch diversity. We can infer from our
result that the proposed method can achieve abundant beam
diversity while being applied to these datasets.

MNIST and CIFAR-10 For MNIST and CIFAR-10, we
use a validation set of 1000 samples and a balanced test set
of 10,000 (1000 per class). We set acquisition size of 10 for
both of them. The training set is initialized with 20 samples
(2 per class). We tune γ and set it as 1.1.

For both of the two datasets and ReMNIST, our method
dominates other batch acquisition algorithms as shown in
Table. 1. Moreover, compared with BatchBALD, the total
time including acquisition and training time decreased about
30% for all of these datasets. This should be attributed to the
constraint for escaping about half of the samples during the
pool resizing and acquisition.

Ablation Study
Next, we discuss how the self-adapted constraint and beam
width influence the experimental results.
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Figure 4: Performance (acquisition size of 10) on ReMNIST
of Top-s Algorithm, Greedy algorithm (BatchBALD) and
Beam algorithm with/without self-adapted constraint: the
proposed method (Batch acquisition using beam search with
self-adapted constraint) outperforms others

MNIST ReMNIST CIFAR-10
Random 0.891±0.013 0.887±0.011 0.292±0.017

top-s 0.922±0.011 0.910±0.009 0.295±0.012

greedy 0.941±0.008 0.924±0.007 0.301±0.011

Proposed 0.948±0.006 0.939±0.005 0.309±0.012

Table 1: Average accuracy (over five runs) when training set
size reaches 200

Dataset Beam optimized active learning
w/o constraint w/ constraint

ReMNIST 0.918 ± 0.006 0.927 ± 0.005
MNIST 0.928 ± 0.004 0.931 ± 0.004

CIFAR-10 0.289 ± 0.006 0.306 ± 0.005

Table 2: Average accuracy (over five runs): Learning with
constraint outperforms that without any constraint

Ablation Study on Self-Adapted Constraint We exam-
ine the performance of beam search optimized active learn-
ing with/without self-adapted constraint. In Table 2, we re-
port the average accuracy of our model when the training
set size reaches 150. The results indicate the effectiveness of
self-adapted constraint on all of these datasets.

Ablation Study on Beam Width We examine the perfor-
mance of beam search optimized active learning with self-
adapted constraint, but under different beam width as shown
in Figure 5. We set acquisition size of 10, MC dropout num-
ber of 10 as well as other parameters all fixed as in the sec-
tion Active Learning Performance. We train our model with
different beam width 2n where n ∈ {0, 1, 2, 3, 4, 5, 6} on
ReMNIST and report the average accuracy. Beam search
with higher beam width performs better in general. How-
ever, after increasing beam width to 32, no more obvious
enhancement is observed.

Figure 5: Ablation study on beam width when training set
size reaches 100 (top) and 200 (bottom)

γ 100 data points acquired
Acquisition Size 5 Acquisition Size 10

0.001 0.878 ± 0.006 0.865 ± 0.004
0.1 0.882 ± 0.004 0.869 ± 0.003
0.3 0.887 ± 0.003 0.879 ± 0.006
0.5 0.897 ± 0.007 0.893 ± 0.006
0.9 0.897 ± 0.006 0.894 ± 0.005
1.2 0.897 ± 0.008 0.893 ± 0.006
1.4 0.889 ± 0.006 0.878 ± 0.006
100 0.601 ± 0.006 0.506 ± 0.005

Table 3: Average accuracy (over three runs): Beam diversity
strength affects model performance

Ablation Study on Beam Diversity We examine the per-
formance of beam search optimized active learning with
self-adapted constraint, but under different beam diversity
that is adjusted by the parameter γ. We set acquisition
size of 5 and 10, MC dropout number of 10 as well as
other parameters all fixed as in the section Active Learn-
ing Performance. As shown in Table 3, we train our model
with different beam diversity by changing γ where γ ∈
{0.001, 0.1, 0.3, 0.5, 0.9, 1.2, 1.4, 100} on ReMNIST, and
report the average accuracy when the size of training dataset
reaches 100. We find that γ in range (0.5, 1.2) works well
without an obvious difference in performance, but with a
value too large like 100, the model accuracy drops even more
sharply than in greedy search.

Discussion
In this section, we analyze the possible performance bound
of the proposed method theoretically and give suggestions
for setting proper hyperparameters that are related to both
the model performance and computation cost.

First, as described above, when try to find the mth solu-
tion during every search iteration, we consider maximizing
the score of each beam under the self-adapted constraint as
follows:

max
bm∈Bt

αT (bk)

s.t.∆(bm,bi) ≤ Θ(bi) , ∀i < m (15)

6089



We refer to the above formulation as DivBeam(∆,Θ).
We can find out the accuracy bound of the pro-
posed method by studying the Lagrangian relaxation of
DivBeam(∆,Θ), in which Lagrange multipliers λ =
{λi|i ∈ 1, 2, ...,m− 1},λ ≥ 0 are designed for the penalty
of the dissimilarity constraint.

L(λ) = max
bm∈Bt

αT (bk)−
m−1∑
i=1

λi(∆(bm,bi)−Θ(bi))

(16)
Intuitively, by solving the Lagrangian dual problem

minλ≥0 L(λ), we can find a upper-bound on the value of
DivBeam(∆,Θ), while L(·) is concave in λ. In other
words, minλ≥0 L(λ) ≥ DivBeam(∆,Θ). As presented
by (Zhao, Luh, and Wang 1999), assume both ∆ and Θ
can be approximated into high-order potentials, eventhough
the dual problem for solving this case is nondifferentiable, a
surrogate subgradient of λ can be used to estimate the final
model performance. (Vijayakumar et al. 2018) tunes λ with
fixed values directly for maximizing L(·) representing a lin-
ear trade-off between model score and diversity of solutions.
In our method, λ is considered to be a very large value forc-
ing the model to consider diversity of beam solutions first.
This can considerably save computing cost for escaping a
lot of score computation. Instead of tuning λ, we tune the
diversity strength γ for scaling the count of beams solutions
that we are going to make escape from score computing.

Analysis of Hyperparameters
Following the analysis above, we discuss the impact of the
hyperparameters.

Strength of Diversity The proposed method trades off be-
tween the diversity of beam solutions and the mutual infor-
mation score. Hyper-parameter γ is responsible for adjust-
ing the diversity strength. If γ is set too high, diversity of
beams can over-power the mutual information score. Since
the result beam can only contain a determined beam size K,
an oversized γ may lead to ignoring several informative data
points and result in lower model accuracy. Moreover, since
more diversity in the selected beams means more data points
that are similar to the existing ones will escape from the mu-
tual information computing, a high γ also leads to a lower
computation cost. On the other hand, if γ is set too low, it
may lead to many near-duplicate solutions in the final beam
set and result in poor performance during active learning.
Lower diversity that escapes fewer beam solutions leads to
higher computation costs of mutual information calculation.

Although we assume setting an appropriate value for γ is
a task-dependent problem, in our ideal application, we set γ
to make sure that we can make at least 1 − 1/K candidate
beam solutions escape. This can ensure our method main-
tains a nearly equivalent computing cost compared with the
baseline solutions. The additional computation cost for com-
puting the similarities of beam solutions can be offset by a
higher escaping rate or the implementation of data reduction.

Beam Size Beam size trades off between model perfor-
mance and computation cost. A big beam size can explore

the search space better in contrast with a small one, but
it also causes longer computation time. Besides, increas-
ing beam size does not lead to a higher upper bound of the
method, but gives a better chance to reach it. With diversity
strength following the settings in our experiment, a beam
size in the range 30 to 40 is desired.

Batch Size If batch size increases too much, differences
between beams naturally become unobvious; thus, the ef-
fectiveness of our method will decrease correspondently. At
the same time, our method will consume more time. But we
consider that there should be a tradeoff between the model’s
time-consuming and human labor for annotating.

Related Work
Different heuristic approaches have been proposed for main-
taining the samples’ diversity in batch acquisition of active
learning. (Azimi et al. 2012) leverages the availability of
high-quality and efficient sequential active-learning policies.
(Hoi, Jin, and Lyu 2006) maximizes the Fisher Information
of a classification model. (Guo and Schuurmans 2007) for-
mulates the diverse instance selection task as a continuous
optimization problem while taking unlabeled samples into
consideration. (Janz, van der Westhuizen, and Hernández-
Lobato 2017) restricts the MC dropout inference samples
while calculating the acquisition scores for more batch di-
versity. (Ash et al. 2020) detects samples which are dis-
parate and high-magnitude embedded in a hallucinated gra-
dient space for incorporating both predictive uncertainty and
sample diversity into selected batches.

Some researchers have investigated generating diverse
beams (or other structured outputs) from probabilistic mod-
els. Theoretically, (Batra et al. 2012) formalizes diverse M-
best tasks as the DivMBest problem. Extending DivMBest,
(Gimpel et al. 2013) introduces a family of dissimilarity
functions for Machine Translation for generating diverse
translation beams. (Kirillov et al. 2015) considers the Di-
vMBest problem as a greedy approximate task. In NLP
tasks, (Li et al. 2016b) produces diverse decoding for
RNNs. (Li et al. 2016a) produces more diverse beams by
maximizing mutual information in RNNs. (Li and Juraf-
sky 2016) increases diversity in the N-best list by discour-
aging beams from the same root. (Vijayakumar et al. 2018)
incorporates diversity constraints with groups of candidate
sequences during decoding for generating beams that are
significantly different from each other. (Cohen and Beck
2019), and (Ott et al. 2018) improves beam search in terms
of degradation.

Conclusion
In this work, we introduced a diverse beam search optimized
active learning method, in which a self-adapted constraint
is applied within candidate beams to acquire significantly
different samples and better represent the distribution of the
unlabeled pool in the dataset. Experiment results show that
our method consistently outperforms other baseline methods
and the plain beam search across all the experiments of batch
mode active learning without too much extra computational
cost substantially.
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