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Abstract

We study the combinatorial assignment domain, which in-
cludes combinatorial auctions and course allocation. The
main challenge in this domain is that the bundle space grows
exponentially in the number of items. To address this, sev-
eral papers have recently proposed machine learning-based
preference elicitation algorithms that aim to elicit only the
most important information from agents. However, the main
shortcoming of this prior work is that it does not model a
mechanism’s uncertainty over values for not yet elicited bun-
dles. In this paper, we address this shortcoming by present-
ing a Bayesian optimization-based combinatorial assignment
(BOCA) mechanism. Our key technical contribution is to inte-
grate a method for capturing model uncertainty into an itera-
tive combinatorial auction mechanism. Concretely, we design
a new method for estimating an upper uncertainty bound that
can be used to define an acquisition function to determine
the next query to the agents. This enables the mechanism
to properly explore (and not just exploit) the bundle space
during its preference elicitation phase. We run computational
experiments in several spectrum auction domains to evaluate
BOCA’s performance. Our results show that BOCA achieves
higher allocative efficiency than state-of-the-art approaches.

1 Introduction
Many economic problems require finding an efficient com-
binatorial assignment of multiple indivisible items to mul-
tiple agents. Popular examples include combinatorial auc-
tions (CAs), combinatorial exchanges (CEs), and combina-
torial course allocation. In CAs, heterogeneous items are al-
located among a set of bidders, e.g., for the sale of spectrum
licenses (Cramton 2013). In CEs, items are allocated among
agents who can be sellers and buyers at the same time, e.g.,
for the reallocation of catch shares (Bichler, Fux, and Go-
eree 2019). In course allocation, course seats are allocated
among students at universities (Budish 2011).

In all these domains, agents have preferences over bun-
dles of items. In particular, agents’ preferences may ex-
hibit complementarities and substitutabilities among items.
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A mechanism that allows agents to report values for bundles
rather than just for individual items can achieve significantly
higher efficiency. However, this also implies that agents’
preferences are exponentially-sized (i.e., for m items there
are 2m different bundles), which implies that agents cannot
report values for all bundles. Therefore, the key challenge in
combinatorial assignment is the design of a preference elic-
itation (PE) algorithm that is (i) practically feasible w.r.t.
elicitation costs and (ii) smart, i.e., it should elicit the infor-
mation that is “most useful” for achieving high efficiency.

1.1 Iterative Combinatorial Auctions (ICAs)
While the PE challenge is common to all combinatorial as-
signment problems, it has been studied most intensely in the
CA domain (Sandholm and Boutilier 2006). In CAs with
general valuations, the amount of communication needed
to guarantee full efficiency is exponential in the number
of items (Nisan and Segal 2006). Thus, practical CAs can-
not provide efficiency guarantees. In practice, iterative com-
binatorial auctions (ICAs) are therefore employed, where
the auctioneer interacts with bidders over rounds, eliciting
a limited (and thus practically feasible) amount of infor-
mation, aiming to find a highly efficient allocation. ICAs
are widely used; e.g., for the sale of licenses to build off-
shore wind farms (Ausubel and Cramton 2011). The provi-
sion of spectrum licenses via the combinatorial clock auc-
tion (CCA) (Ausubel, Cramton, and Milgrom 2006) has gen-
erated more than $20 billion in total revenue (Ausubel and
Baranov 2017). Thus, increasing the efficiency of such real-
world ICAs by only 1% point translates into monetary gains
of hundreds of millions of dollars.

1.2 ML-Powered Preference Elicitation
In recent years, researchers have used machine learning
(ML) to design smart PE algorithms. Most related to this pa-
per is the work by Brero, Lubin, and Seuken (2018, 2021),
who developed the first practical ML-powered ICA that out-
performs the CCA. The main idea of their mechanism is
two-fold: first, they train a separate support vector regres-
sion model to learn each bidder’s full value function from
a small set of bids; second, they solve an ML-based winner
determination problem (WDP) to determine the allocation
with the highest predicted social welfare, and they use this
allocation to generate the next set of queries to all bidders.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5858



This process repeats in an iterative fashion until a fixed num-
ber of queries has been asked. Thus, their ML-powered ICA
can be interpreted as a form of combinatorial Bayesian opti-
mization (BO) (see Appendix C).

In several follow-up papers, this work has been extended
by developing more sophisticated ML methods for this prob-
lem. Weissteiner and Seuken (2020) integrated neural net-
works (NN) in their ICA and further increased efficiency.
Weissteiner et al. (2022b) used Fourier transforms (FTs)
to leverage different notions of sparsity of value functions.
Finally, Weissteiner et al. (2022a) achieved state-of-the-art
(SOTA) performance using monotone-value NNs (MVNNs),
which incorporate important prior domain knowledge.

The main shortcoming of this prior work is that all of
these approaches are myopic in the sense that the result-
ing mechanisms simply query the allocation with the highest
predicted welfare. In particular, the mechanisms do not have
any model of uncertainty over bidders’ values for not yet
elicited bundles, although handling uncertainty in a princi-
pled manner is one of the key requirements of a smart PE
algorithm (Bonilla, Guo, and Sanner 2010). Thus, the mech-
anisms cannot properly control the exploration-exploitation
trade-off inherent to BO. For ML-based ICAs, this means
that the mechanisms may get stuck in local minima, repeat-
edly querying one part of the allocation space while not ex-
ploring other, potentially more efficient allocations.

1.3 Our Contributions
In this paper, we address this main shortcoming of prior
work and show how to integrate a notion of model uncer-
tainty (i.e., epistemic uncertainty) over agents’ preferences
into iterative combinatorial assignment. Concretely, we de-
sign a Bayesian optimization-based combinatorial assign-
ment (BOCA)1 mechanism that makes use of model uncer-
tainty in its query generation module. The main technical
challenge is to design a new method for estimating an upper
uncertainty bound that can be used to define an acquisition
function to determine the next query. For this we combine
MVNNs (Weissteiner et al. 2022a) with neural optimization-
based model uncertainty (NOMU) (Heiss et al. 2022), a re-
cently introduced method to estimate model uncertainty for
NNs. In detail, we make the following contributions:
1. We present a modified NOMU algorithm (Section 3.1),

tailored to CAs, exploiting monotonicity of agents’ pref-
erences and the discrete (finite) nature of this setting.

2. We show that generic parameter initialization for mono-
tone NNs can dramatically fail and propose a new initial-
ization method for MVNNs based on uniform mixture
distributions (Section 3.2).

3. We present a more succinct mixed integer linear program
for MVNNs to solve the ML-based WDP (Section 3.3).

4. We experimentally show that BOCA outperforms prior
approaches in terms of efficiency (Section 4).
Although our contribution applies to any combinatorial

assignment setting, we focus on CAs to simplify the notation

1The acronym BOCA has also been used for a different method,
namely for Bayesian optimisation with continuous approximations
by Kandasamy et al. (2017).

and because there exist well-studied preference generators
for CAs that we use for our experiments.

Our source code is publicly available on GitHub via:
https://github.com/marketdesignresearch/BOCA.

1.4 Related Work on Model Uncertainty
Estimating model uncertainty for NNs is an active area of
research in AI and ML, with a plethora of new methods
proposed every year. Classic methods can be broadly cat-
egorized into (i) ensemble methods: training multiple dif-
ferent NNs to estimate model uncertainty (Gal and Ghahra-
mani 2016; Lakshminarayanan, Pritzel, and Blundell 2017;
Wenzel et al. 2020) and (ii) Bayesian NNs (BNNs): assum-
ing a prior distribution over parameters and then estimating
model uncertainty by approximating the intractable poste-
rior (Graves 2011; Blundell et al. 2015; Hernández-Lobato
and Adams 2015; Ober and Rasmussen 2019). However, for
ML-based iterative combinatorial assignment, a key require-
ment is to be able to efficiently solve the ML-based WDP
based on these uncertainty estimates. As there is no known
computationally tractable method to perform combinatorial
optimization over ensembles or BNNs, we cannot use these
approaches for ML-based ICAs. In contrast, NOMU (Heiss
et al. 2022) enables the computationally efficient optimiza-
tion over its uncertainty predictions, which is why we use it
as a building block for BOCA.

2 Preliminaries
In this section, we present our formal model (Section 2.1),
review the ML-based ICA by Brero, Lubin, and Seuken
(2021) (Section 2.2), briefly review Bayesian optimization
(BO) (Section 2.3), and review monotone-value neural net-
works (MVNNs) by Weissteiner et al. (2022a) (Section 2.4)
as well as neural optimization-based model uncertainty
(NOMU) by Heiss et al. (2022) (Section 2.5).

2.1 Formal Model for ICAs
We consider a CA with n bidders and m indivisible items.
Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set
of bidders and items. We denote by x ∈ X = {0, 1}m a
bundle of items represented as an indicator vector, where
xj = 1 iff item j ∈ M is contained in x. Bidders’ true
preferences over bundles are represented by their (private)
value functions vi : X → R+, i ∈ N , i.e., vi(x) represents
bidder i’s true value for bundle x ∈ X .

By a = (a1, . . . , an) ∈ Xn we denote an allocation
of bundles to bidders, where ai is the bundle bidder i ob-
tains. We denote the set of feasible allocations by F ={
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈M

}
. We let p ∈ Rn+ de-

note the bidders’ payments. We assume that bidders have
quasilinear utility functions ui of the form ui(a, p) =
vi(ai) − pi. This implies that the (true) social welfare
V (a) of an allocation a is equal to the sum of all bidders’
values

∑
i∈N vi(ai). We let a∗ ∈ argmaxa∈F V (a) de-

note a social-welfare maximizing, i.e., efficient, allocation.
The efficiency of any allocation a ∈ F is determined as
V (a)/V (a∗).
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An ICA mechanism defines how the bidders interact with
the auctioneer and how the allocation and payments are
determined. We denote a bidder’s (possibly untruthful) re-
ported value function by v̂i : X → R+. In this paper, we
consider ICAs that ask bidders to iteratively report their val-
ues v̂i(x) for bundles x selected by the mechanism. A finite
set of reported bundle-value pairs of bidder i is denoted as
Ri =

{(
x(l), v̂i(x

(l))
)}
, x(l) ∈ X . Let R = (R1, . . . , Rn)

be the tuple of reported bundle-value pairs obtained from all
bidders. We define the reported social welfare of an allo-
cation a given R as V̂ (a|R) :=

∑
i∈N : (ai,v̂i(ai))∈Ri

v̂i(ai),

where (ai, v̂i(ai)) ∈ Ri ensures that only values for reported
bundles contribute. The ICA’s optimal allocation a∗R ∈ F
and payments p(R) ∈ Rn+ are computed based on the
elicited reports R only. More formally, a∗R ∈ F given re-
ports R is defined as

a∗R ∈ argmax
a∈F

V̂ (a|R). (1)

As the auctioneer can only query a limited number of bun-
dles |Ri| ≤ Qmax (e.g., Qmax = 100), an ICA needs a practi-
cally feasible and smart PE algorithm.

2.2 A Machine Learning-Powered ICA
We now provide a high-level review of the machine
learning-powered combinatorial auction (MLCA) by Brero,
Lubin, and Seuken (2021) (please see Appendix A for fur-
ther details). MLCA proceeds in rounds until a maximum
number of value queries per bidder Qmax is reached. In each
round, for every bidder i, an ML model Ai is trained on the
bidder’s reports Ri to learn an approximation of bidders’
value functions. Next, MLCA generates new value queries
by computing the allocation with the highest predicted so-
cial welfare. Concretely, it computes qnew = (qnew

i )ni=1 with
qnew
i ∈ X \Ri by solving an ML-based WDP:

qnew ∈ argmax
a∈F

∑

i∈N
Ai(ai) (2)

The idea is the following: if the Ai’s are good surrogate
models of the bidders’ value functions, then the efficiency of
qnew is likely to be high as well. Thus, in each round, bidders
are providing value reports on bundles that are guaranteed to
fit into a feasible allocation and that together are predicted
to have high social welfare. Additionally, bidders are also
allowed to submit “push-bids,” enabling them to submit in-
formation to the auctioneer that they deem useful, even if
they are not explicitly queried about it. At the end of each
round, MLCA receives reports Rnew from all bidders for the
newly generated queries qnew, and updates the overall elicited
reports R. When Qmax is reached, MLCA computes an allo-
cation a∗R that maximizes the reported social welfare (Equa-
tion (1)) and determines VCG payments p(R) based on all
reports (see Appendix Definition B.1).
Remark 1 (IR, No-Deficit, and Incentives of MLCA).
Brero, Lubin, and Seuken (2021) showed that MLCA sat-
isfies individual rationality (IR) and no-deficit, with any ML
algorithm. They also studied MLCA’s incentive properties;
this is important, since manipulations may lower efficiency.

Like all deployed ICAs (including the CCA), MLCA is not
strategyproof. However, they argued that it has good incen-
tives in practice; and given two additional assumptions, bid-
ding truthfully is an ex-post Nash equilibrium. We present a
detailed summary of their incentive analysis in Appendix B.

2.3 Bayesian Optimization Background
In this section, we briefly review Bayesian optimization
(BO). BO refers to a class of machine learning-based
gradient-free optimization methods, which, for a given
black-box objective function f : X → R, aim to solve

max
x∈X

f(x) (3)

in an iterative manner. Specifically, given a budget of T
queries (i.e., function evaluations of f ), a BO algorithm gen-
erates queries {x(1), . . . , x(T )} with the aim that

max
x∈{x(1),...,x(T )}

f(x) ≈ max
x∈X

f(x). (4)

In each BO step t, the algorithm selects a new input point
x(t) ∈ X and observes a (potentially noisy) output

y(t) = f(x(t)) + ε(t), (5)

where ε(t) is typically assumed to be i.i.d. Gaussian, i.e.,
ε(t) ∼ N (0, σ2).2 The BO algorithm’s decision rule for se-
lecting the query x(t) is based on

1. A probabilistic model representing an (approximate)
posterior distribution over f (e.g., Gaussian processes,
NOMU, ensembles, BNNs, etc.).

2. An acquisition function A : X → R that uses this
probabilistic model to determine the next query x(t) ∈
argmaxx∈X A(x) by properly trading off exploration
and exploitation. See Appendix C.3 for popular exam-
ples of acquisition functions including:

• Upper uncertainty bound (uUB) (aka upper confidence
bound (UCB)) (Srinivas et al. 2012)

• Expected improvement (Frazier 2018, Section 4.1)
• Thompson sampling (Chapelle and Li 2011)

Remark 2. MLCA (Section 2.2) can be seen as a combi-
natorial BO algorithm with acquisition function A(a) :=∑
i∈N Ai(ai) (see Appendix C for a discussion).

2.4 MVNNs: Monotone-Value Neural Networks
MVNNs (Weissteiner et al. 2022a) are a new class of NNs
specifically designed to represent monotone combinatorial
valuations. First, we reprint the definition of MVNNs and
then discuss their desirable properties.

Definition 1 (MVNN, Weissteiner et al. (2022a)). An
MVNNMθ

i : X → R+ for bidder i ∈ N is defined as

Mθ
i (x) := W i,Kiϕ0,ti,Ki−1

(
. . . ϕ0,ti,1(W i,1x+ bi,1) . . .

)
(6)

• Ki+1 ∈ N is the number of layers (Ki−1 hidden layers),

2In this paper, we assume that σ2 = 0.
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• {ϕ0,ti,k}Ki−1
k=1 are the MVNN-specific activation functions

with cutoff ti,k > 0, called bounded ReLU (bReLU):

ϕ0,ti,k(·) := min(ti,k,max(0, ·)) (7)

• W i := (W i,k)Ki

k=1 with W i,k ≥ 0 and bi := (bi,k)Ki−1
k=1

with bi,k ≤ 0 are the non-negative weights and non-
positive biases of dimensions di,k×di,k−1 and di,k, whose
parameters are stored in θ = (W i, bi).

MVNNs are particularly well suited for the design of
combinatorial assignment mechanism for two reasons. First,
MVNNs are universal in the set of monotone and normal-
ized value functions (Weissteiner et al. 2022a, Theorem 1),
i.e., any v̂i : X → R+ that satisfies the following two prop-
erties can be represented exactly as an MVNNMθ

i :
1. Monotonicity (M) (“additional items increase value”):

For A,B ∈ 2M : if A ⊆ B it holds that v̂i(A) ≤ v̂i(B)

2. Normalization (N) (”no value for empty bundle”):
v̂i(∅) = v̂i((0, . . . , 0)) := 0,

Second, Weissteiner et al. (2022a) showed that an MVNN-
based WDP, i.e., argmax

a∈F

∑
i∈NMθ

i (ai), can be succinctly

encoded as a MILP, which is key for the design of MVNN-
based iterative combinatorial assignment mechanisms. Fi-
nally, Weissteiner et al. (2022a) experimentally showed that
using MVNNs asAi in MLCA leads to SOTA performance.

2.5 NOMU
Recently, Heiss et al. (2022) introduced a novel method to
estimate model uncertainty for NNs: neural optimization-
based model uncertainty (NOMU). In contrast to other meth-
ods (e.g., ensembles), NOMU represents an upper uncer-
tainty bound (uUB) as a single and MILP-formalizable NN.
Thus, NOMU is particularly well suited for iterative com-
binatorial assignment, where uUB-based winner determina-
tion problems (WDPs) need to be solved hundreds of times
to generate new informative queries. This, together with
NOMU’s strong performance in noiseless BO, is the reason
why we build on it and define a modified NOMU algorithm
tailored to iterative combinatorial assignment (Section 3.1).

3 Bayesian Optimization-Based ICA
In this section, we describe the design of our Bayesian
optimization-based combinatorial assignment (BOCA)
mechanism. While the design is general, we here present it
for the CA setting, leading to a BO-based ICA. Recall that
MLCA generates new value queries by solving the ML-
based WDP qnew ∈ argmax

a∈F

∑
i∈N
Ai(ai) (see Section 2.2).

For the design of BOCA, we integrate a proper notion of
uncertainty into MLCA by using a bidder-specific upper un-
certainty bound (uUB), taking the role of the ML model Ai,
to define our acquisition function A(a) :=

∑
i∈N Ai(ai).

To define our uUB and make it amenable to MLCA,
we proceed in three steps: First, we combine MVNNs
with a modified NOMU algorithm that is tailored to the
characteristics of combinatorial assignment (Section 3.1).
Second, we highlight the importance of proper parameter

initialization for MVNNs and propose a more robust method
(Section 3.2). Third, we present a more succinct MILP for
MVNNs (Section 3.3). In the remainder of the paper, we
make the following assumption:

Assumption 1. For all agents i ∈ N , the true and reported
value functions vi and v̂i fulfill the Monotonicity (M) and
Normalization (N) property (see Section 2.4).

3.1 Model Uncertainty for Monotone NNs
We propose a modified NOMU architecture and loss that
is specifically tailored to combinatorial assignment. Con-
cretely, our algorithm is based on the following two key
characteristics of combinatorial assignment: (i) since agents’
value functions are monotonically increasing, the uUBs
need to be monotonically increasing too, and (ii) due to the
(finite) discrete input space, one can derive a closed-form ex-
pression of the 100%-uUB as an MVNN. Before we present
our modified NOMU architecture and loss, we introduce the
MVNN-based 100%-uUB.

Let H denote a hypothesis class of functions f : X → R
for some input space X and let HDtrain := {f ∈ H :
f(x(l)) = y(l), l = 1, . . . , ntrain} denote the set of all
functions from H that fit exactly through training points

Dtrain =
{(
x(l), f(x(l))

)}ntrain

l=1
.

Definition 2 (100%-uUB). For a hypothesis class H
and a training set Dtrain, we define the 100%-uUB as
f 100%-uUB(x) := supf∈HDtrain

f(x) for every x ∈ X .

In the following, let

V := {v̂ : X → R+| satisfy (N) and (M)} (8)

denote the set of all value functions that satisfy the nor-
malization and monotonicity property. Next, we define the
100%-uUB. In Theorem 1, we show that for H = V the
100%-uUB can be explicitly represented as an MVNN.

Theorem 1 (MVNN-based 100%-uUB). Let
((1, . . . , 1), v̂i(1, . . . , 1)) ∈ Dtrain. Then for H = V it
holds that f 100%-uUB(x) = maxf∈VDtrain f(x) for all x ∈ X
and f 100%-uUB ∈ VDtrain can be represented as a two hidden
layer MVNN with ntrain neurons per layer, which we denote
asM100%-uUB

i going forward.3

Proof. The proof for Theorem 1 is provided in Ap-
pendix D.1. It follows a similar idea as the universality proof
in (Weissteiner et al. 2022a, Theorem 1). In particular, Equa-
tion (27) in Appendix D.1 provides the closed-form expres-
sion of f 100%-uUB as MVNNM100%-uUB

i .

Using the MVNN-based 100%-uUBM100%-uUB
i , we can

now define our modified NOMU architecture and loss.

The Architecture. Towards defining the architecture, we
first observe that if the true function is monotonically in-
creasing, the corresponding uUB needs to be monotonically
increasing as well (Proposition 1 and 2 in Appendix D.2).

3Note thatM100%-uUB
i (·) depends on a training setDtrain, but we

omit this dependency in our notation to improve readability.
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x ∈ X
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...

MuUB
i (x)

Mmean
i (x)

Mean-network

uUB-network

Figure 1: MNOMU
i : a modification of NOMU’s original ar-

chitecture for the combinatorial assignment domain.

Given that bidders’ value functions are monotone (Assump-
tion 1), this implies that our uUB must also be monotoni-
cally increasing. Thus, instead of the original NOMU archi-
tecture that outputs the (raw) uncertainty (i.e., an estimate
of the posterior standard deviation) which is not monotone,
we can modify NOMU’s architecture and directly output the
monotone uUB. Given this, we propose the following ar-
chitecture MNOMU

i to estimate the uUB for bidder i ∈ N .
MNOMU

i consists of two sub-MVNNs with two outputs: the
mean prediction Mmean

i : X → R and the estimated uUB
MuUB

i : X → R. In Figure 1, we provide a schematic repre-
sentation ofMNOMU

i (see Appendix D.2 for details).

The Loss. Next, we formulate a new NOMU loss func-
tion Lπ tailored to combinatorial assignment. Since we
have a closed-form expression of the 100%-uUB as MVNN
M100%-uUB

i (Theorem 1), we are able to enforce that
Mmean

i ≤ MuUB
i ≤ M100%-uUB

i via the design of our new
loss function. Let Mmean

i be a trained mean-MVNN with
a standard loss (e.g., MAE and L2-regularization). Using
Mmean

i and M100%-uUB
i , we then only train the parameters

θ of MuUB
i with loss Lπ and L2-regularization parameter

λ > 0, i.e., minimizing Lπ(MuUB
i ) + λ ‖θ‖22 via gradi-

ent descent. In particular, the parameters ofM100%-uUB
i and

Mmean
i are not influenced by the training ofMuUB

i (see Ap-
pendix D.3 for details on the loss and training procedure).

Definition 3 (NOMU Loss Tailored to Combinatorial
Assignment). Let π = (πsqr, πexp, cexp, π, π) ∈ R5

+

be a tuple of hyperparameters and let s(MuUB
i , x) :=

min{MuUB
i (x),M100%-uUB

i (x)} −Mmean
i (x) for all x ∈ X .

For a training set Dtrain, Lπ is defined as

Lπ(MuUB
i ) := πsqr

ntrain∑

l=1

Lβ1

(
MuUB

i (x(l)), y(l)
)

(9a)

+ πexp

∫

[0,1]m
g
(
−cexps(MuUB

i , x)
)
dx (9b)

+ πexpcexpπ

∫

[0,1]m
Lβ1
(
(MuUB

i (x)−M100%-uUB
i (x))+

)
dx

(9c)

+ πexpcexpπ

∫

[0,1]m
Lβ1
(
(Mmean

i (x)−MuUB
i (x))+

)
dx ,

(9d)

where Lβ1 is the smooth L1-loss with threshold β (see Ap-
pendix Definition D.1), (·)+ the positive part, and g := 1 +
ELU4 is convex monotonically increasing with ELU being
the exponential linear unit (see Appendix Definition D.2).

The interpretations of the four terms are as follows:

(9a) enforces thatMuUB
i fits through the training data.

(9b) pushesMuUB
i up as long as it is below the 100%-uUB

M100%-uUB
i . This force gets weaker the furtherMuUB

i is
above the mean Mmean

i (especially if cexp is large). πexp
controls the overall strength of (9b) and cexp controls how
fast this force increases when MuUB

i → Mmean
i . Thus,

increasing πexp increases the uUB and increasing cexp in-
creases the uUBs in regions where it is close toMmean

i .
Weakening (9b) (i.e., πexpcexp → 0) leads to MuUB

i ≈
Mmean

i . Strengthening (9b) by increasing πexpcexp in re-
lation to regularization5 leads toMuUB

i ≈M100%-uUB
i .

(9c) enforces thatMuUB
i ≤M100%-uUB

i . The strength of this
term is determined by π · (πexpcexp), where π is the (9c)-
specific hyperparameter and πexpcexp adjusts the strength
of (9c) to (9b).

(9d) enforcesMuUB
i ≥ Mmean

i . The interpretation of π and
πexpcexp is analogous to (9c).

As in (Heiss et al. 2022), in the implementation of
Lπ , we approximate Equations (9b) to (9d) via Monte
Carlo integration using additional, artificial input points

Dart :=
{
x(l)
}nart

l=1

i.i.d.∼ Unif([0, 1]m).

Visualization of the uUB. In Figure 2, we present a visu-
alization of the output ofMNOMU

i (i.e.,Mmean
i andMuUB

i )
and M100%-uUB

i for the national bidder in the LSVM do-
main of the spectrum auction test suite (SATS) (Weiss, Lu-
bin, and Seuken 2017). In noiseless regression, uncertainty
should vanish at observed training points, but (model) un-
certainty should remain about value predictions for bundles
that are very different from the bundles observed in train-
ing. Figure 2 shows that our uUBMuUB

i nicely fulfills this.
Moreover, we have shown in Appendix D.2 that MuUB

i is
monotonically increasing, since we assume that value func-
tions fulfill the monotonicity property. This implies that once
we observe a value for the full bundle, we obtain a glob-
ally bounded 100%-uUB, i.e., see M100%-uUB

i in Figure 2.
Furthermore, we see thatM100%-uUB

i jumps to a high value
when only a single item is added to an already queried bun-
dle, but then often stays constant (e.g., |x| = 12, . . . , 18
in Figure 2). Thus, using such a 100%-uUB in our acqui-
sition function, BOCA would only add a single item to an
already queried bundle to have more items left for the other
bidders instead of properly exploring the bundle space. Our
uUBMuUB

i circumvents this via implicit and explicit regu-
larization and yields a useful uUB.

4In our notation, g(·) is the analog of the function e(·) used in
the original NOMU loss in (Heiss et al. 2022).

5Regularization can be early stopping or a small number of neu-
rons (implicit) or L2-regularization on the parameters (explicit).
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Figure 2:Mmean
i ,MuUB

i andM100%-uUB
i along an increasing

1D subset-path (i.e., for all bundles x(j), x(k) on the x-axis
it holds that for j ≤ k : x(j) ⊂ x(k)).

3.2 Parameter Initialization for MVNNs
We now discuss how to properly initialize parameters for
MVNNs. Importantly, the MVNN-based uUBs MuUB

i are
MVNNs. As we will show next, to achieve the best perfor-
mance of BOCA (in fact of any MVNN training), an ad-
justed, non-generic parameter initialization is important.

Generic Initialization. For standard NNs, it is most
common to use a parameter initialization with zero
mean µk := E

[
W i,k
j,l

]
= 0 and non-zero variance

σ2
k := V

[
W i,k
j,l

]
6= 0. Then the mean of each pre-

activated neuron of the first hidden layer is zero and

the variance V
[(
W i,1x

)
j

]
= di,0σ2

1x
2, if

(
W i,1
j,l

)di,0
l=1

are i.i.d., where x2 = 1
di,0

∑di,0

l=1 x
2
l .6 Analogously,

one can compute the conditional mean and the condi-
tional variance of a pre-activated neuron in any layer
k by replacing x by the output zi,k−1 of the pre-
vious layer, i.e., E

[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

= 0 and

V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

= di,k−1σ2
k(zi,k−1)

2 . For σk ∝
1√

di,k−1
, the conditional mean and variance do not depend

on the layer dimensions di,k, which is why generic initializa-
tion methods scale the initial distribution by sk ∝ 1√

di,k−1
.

Problem. Unfortunately, this generic initialization ap-
proach can dramatically fail for MVNNs: For any non-zero
initialization, the non-negativity constraint of the weights
implies that the mean µk > 0. This implies that the
mean of a pre-activated neuron in the first hidden layer
is E

[(
W i,1x

)
j

]
= di,0µ1x̄. For a generic scaling sk

one would obtain µk ∝ 1√
di,k−1

and thus the mean

6We assume that the biases bi,k = 0 are all initialized to zero
throughout Section 3.2 to keep the notation simpler, while we for-
mulate everything for the general case including random biases in
Appendix E and in our code.
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Figure 3: In contrast to our proposed initialization (see Fig-
ure 2), training fails with generic initialization already for
relatively small [64,64]-architectures that were used here.

E
[(
W i,1x

)
j

]
∝ di,0 1√

di,0
x̄ =

√
di,0x̄ of the pre-activated

neurons diverges to infinity with a rate of
√
di,0 as di,0 →

∞. Analogously, the pre-activated neurons of every layer di-
verge to infinity as di,k−1 → ∞. This is particularly prob-
lematic for bReLUs (as used in MVNNs) as their gradient is
zero on [0, ti,k]c. Figure 3 shows that both MVNNsMmean

i
andMuUB

i get “stuck.” This happens because already at ini-
tialization, every neuron in the first hidden layer has a pre-
activation that is larger than ti,1 for every training point.

This could be solved by scaling down the initial weights
even more, e.g., W i,k

j,l ∼ Unif[0, 2
di,k−1 ] resulting in µk =

1
di,k−1 . However, since for W i,k

j,l ∼ Unif[0, 2
di,k−1 ] it holds

that σ2
k ∝ 1

(di,k−1)2
, this induces a new problem of van-

ishing conditional variance V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

with

a rate of O( 1
di,k−1 ) for wide (i.e., di,k−1 large) MVNNs.

Overall, it is impossible to simultaneously solve both
problems by just scaling the distribution by a factor sk,
because the conditional mean E

[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

scales with sk · di,k−1 and the conditional variance
V
[(
W i,kzi,k−1

)
j

∣∣∣zi,k−1
]

scales with s2k · di,k−1. Thus, for
wide MVNNs, one of those two problems (i.e., either diverg-
ing expectation or vanishing variance) would persist.

Solution. We introduce a new initialization method that
solves both problems at the same time. For this, we pro-
pose a mixture distribution of two different uniform distri-
butions (see Appendix Definition E.1). For each layer k, we
independently sample all weights W i,k

jl i.i.d. with probabil-
ity (1− pk) from Unif[0, Ak], and with probability pk from
Unif[0, Bk]. If we choose pk and Ak small enough, we can
get arbitrarily small µk while not reducing σk too much. In
Appendix E, we provide formulas for how to chooseAk,Bk
and pk depending on di,k−1. In Theorem 3 in Appendix E,
we prove that, if the parameters are chosen in this way, then
the conditional mean and conditional variance neither ex-
plode nor vanish with increasing di,k−1 but rather stay con-
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stant for large di,k−1. Note that, in Figure 2, forMmean
i and

MuUB
i , we used our proposed initialization method for suit-

able Ak, Bk and pk, such that the problem induced by a
generic initialization from Figure 3 is resolved.

3.3 Mixed Integer Linear Program (MILP)
A key step in ML-powered iterative combinatorial assign-
ment mechanisms is finding the (predicted) social welfare-
maximizing allocation, i.e., solving the ML-based WDP.
Thus, a key requirement posed on any acquisition func-
tion A in such a mechanism is to be able to efficiently
solve max

a∈F
A(a). Recall that, to define our acquisition func-

tion A, we use A(a) =
∑
i∈N Ai(ai) where the Ai’s are

bidder-specific upper uncertainty bounds. Thus, the ML-
based WDP becomes

max
a∈F

∑

i∈N
Ai(ai). (10)

Weissteiner et al. (2022a) proposed a MILP for MVNNs
withAi :=Mθ

i to efficiently solve eq. (10). Their MILP was
based on a reformulation of the min(·, ·) and max(·, ·) in the
bReLU activation min(max(·, 0), t). Thus, it required twice
the number of binary variables and linear constraints as for a
plain ReLU-NN. Since we use an MVNN-based uUBAi :=
MuUB

i to define our acquisition function, we could directly
use their MILP formulation. However, instead, we propose
a new MILP, which is significantly more succinct. For this,
let oi,k := W i,kzi,k−1 + bi,k be the pre-activated output
and zi,k := ϕ0,ti,k(oi,k) be the output of the kth layer with
li,k ≤ oi,k ≤ ui,k, where the tight lower (upper) bound
li,k (ui,k) is derived by forward-propagating the empty (full)
bundle (Weissteiner et al. 2022a, Fact 1). In Theorem 2, we
state our new MILP (see Appendix F.1 for the proof).7

Theorem 2 (MVNN MILP Tailored to Combinatorial As-
signment). Let Ai = MuUB

i be our MVNN-based uUBs.
The ML-based WDP (10) can be formulated as the following
MILP:

max
a∈F ,zi,k,αi,k,βi,k

{∑

i∈N
W i,Kizi,Ki−1

}
(11)

s.t. for i ∈ N and k ∈ {1, . . . ,Ki − 1}
zi,0 = ai (12)

zi,k ≤ αi,k · ti,k (13)

zi,k ≤ oi,k − li,k · (1− αi,k) (14)

zi,k ≥ βi,k · ti,k (15)

zi,k ≥ oi,k + (ti,k − u)βi,k (16)

αi,k ∈ {0, 1}di,k , βi,k ∈ {0, 1}di,k (17)

Note that for each neuron of Ai =MuUB
i , our new MILP

has only 4 linear constraints, i.e., respective components
of eqs. (13) to (16), compared to 8 in (Weissteiner et al.
2022a). Moreover, in contrast to the MILP in (Weissteiner
et al. 2022a), our MILP does not make use of any “big-M”
constraints, which are known to be numerically unstable.

7All vector inequalities should be understood component-wise.

4 Experiments
In this section, we experimentally evaluate the performance
of BOCA in CAs. To this end, we equip the MLCA mech-
anism (see Section 2.2) with our new acquisition function
A(a) =

∑
i∈NMuUB

i (ai). We compare the efficiency of
BOCA against the previously proposed MVNN-based and
NN-based MLCA from (Weissteiner et al. 2022a) which do
not explicitly model the mechanism’s uncertainty over val-
ues for not yet elicited bundles.8 We use our new parameter
initialization method (Section 3.2) for MuUB

i , and we use
our new MILP (Theorem 2) for solving the WDPs.

Experiment Setup. To generate synthetic CA instances,
we use the following three domains from the spectrum auc-
tion test suite (SATS) (Weiss, Lubin, and Seuken 2017):
LSVM, SRVM, and MRVM (see Appendix G.1 for de-
tails).9 SATS gives us access to the true optimal alloca-
tion a∗, which we use to measure the efficiency loss, i.e.,
1− V (a∗R)/V (a∗) when eliciting reports R via MLCA. We
report efficiency loss (and not revenue), as spectrum auc-
tions are government-run, with a mandate to maximize wel-
fare (Cramton 2013). See Appendix G.6 for a discussion
of the corresponding results on revenue. To enable a fair
comparison against prior work, for each domain, we use
Qinit = 40 initial random queries (including the full bundle
for the calculation ofM100%-uUB

i ) and set the query budget
to Qmax = 100 (see Appendix G.8 for results for Qinit = 20).
We terminate any mechanism in an intermediate iteration if
it already found an allocation with 0% efficiency loss.

Hyperparameter Optimization (HPO). We use random
search (RS) (Bergstra and Bengio 2012) to optimize the
hyperparameters of the mean MVNN Mmean

i and of our
MVNN-based uUB MuUB

i . The HPO includes the NN-
architecture parameters, training parameters, NOMU pa-
rameters, and initialization parameters (see Section 3.2).
RS was carried out independently for each bidder type and
SATS domain with a budget of 500 configurations, where
each configuration was evaluated on 100 SATS instances.
For each instance, the MVNNs Mmean

i and MuUB
i were

trained on uniformly at random chosen bundle-value pairs
Dtrain and evaluated on a disjoint test set of different bundle-
value pairsDtest. To select the winner configuration, we con-
sider as evaluation metric the quantile-loss on the test set and
the MAE on the training set, i.e., for each configuration and
instance we calculate

1

|Dtest|
∑

(x,y)∈Dtest

max{(y−MuUB
i (x))q, (MuUB

i (x)−y)(1−q)}

+ MAE(Dtrain), (18)

which we then average over all 100 instances. We used four
quantile parameters q ∈ {0.6, 0.75, 0.9, 0.95} in eq. (18)

8In these methods, uncertainty over not yet elicited bundles is
only modeled via the retraining of the (MV)NNs in each round,
i.e., the random parameter initialization of the (MV)NNs. This can
be seen as simple form of Thompson sampling (see last paragraph
in Appendix C).

9We do not use GSVM, as Weissteiner et al. (2022a) already
achieved 0% efficiency loss in GSVM via MVNN-based MLCA.
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EFFICIENCY LOSS IN % ↓ T-TEST FOR EFFICIENCY:

DOMAIN QMAX BOCA MVNN-MLCA NN-MLCA FT-MLCA RS H0 : µMVNN-MLCA ≤ µBOCA H0 : µNN-MLCA ≤ µBOCA

LSVM 100 0.39±0.30 00.70±0.40 02.91±1.44 01.54 ±0.65 31.73±2.15 pVAL = 9e−2 pVAL = 3e−4
SRVM 100 0.06±0.02 00.23±0.06 01.13±0.22 00.72±0.16 28.56±1.74 pVAL = 5e−6 pVAL = 2e−13
MRVM 100 7.77±0.34 08.16±0.41 09.05±0.53 10.37±0.57 48.79±1.13 pVAL = 8e−2 pVAL = 2e−5

Table 1: BOCA vs MVNN-MLCA, NN-MLCA, Fourier transform (FT)-MLCA and random search (RS). Shown are averages
and a 95% CI on a test set of 50 instances. Winners based on a t-test with significance level of 1% are marked in grey.
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Figure 4: Efficiency loss paths (i.e., regret plots) of BOCA compared to the results from Weissteiner et al. (2022a) of MVNN-
MLCA and NN-MLCA without any notion of uncertainty. Shown are averages with 95% CIs over 50 CA instances.

to achieve different levels of exploration (i.e., the resulting
uUBs become larger the more we increase q in eq. (18)).
This evaluation metric simultaneously measures the quality
of the uUB on the test data (via the quantile-loss) as well as
the quality of the uUB predictions on the training data (via
the MAE). For each quantile q and SATS domain, we then
proceed with the winner configuration ofMuUB

i and evaluate
the efficiency of BOCA on a separate set of 50 instances.
Details on hyperparameter ranges and the training procedure
are provided in Appendices G.2 and G.3.

Results. In Table 1, we show the average efficiency loss of
each approach after Qmax = 100 queries (see Appendix G.5
for details). We see that BOCA significantly outperforms
MVNN-MLCA (Weissteiner et al. 2022a) in SRVM, and it
performs on-par in LSVM and MRVM, with a better aver-
age performance. Since MVNNs previously achieved SOTA
performance, BOCA also outperforms the other benchmarks
(i.e., NN (Weissteiner and Seuken 2020) and FT-MLCA
(Weissteiner et al. 2022b)). RS’s poor performance high-
lights the intrinsic difficulty of this task. The amount of ex-
ploration needed is domain dependent (e.g., multi-modality
of the objective), which explains why the significance of
BOCA’s improvement varies across domains. However, our
results also show that using an uUB (as in BOCA) instead of
just a mean prediction (as in MVNN-MLCA) never hurts.

Figure 4 shows the efficiency loss path for all domains.
We see that the superior (average) performance of MuUB

i
does not only hold at the end of the auction (at Qmax = 100),
but also for a large range of queries: in LSVM, BOCA is

better for [70,100]; in SRVM, BOCA is significantly better
for [70,100]; in MRVM, BOCA is better for [50,100]. See
Appendix G.6 for results on revenue where BOCA signifi-
cantly outperforms MVNN-MLCA also for MRVM. In Ap-
pendix G.7, we study to what degree BOCA’s performance
increase is due to (a) our uncertainty model (Section 3.1)
versus (b) our new parameter initialization method (Sec-
tion 3.2). Finally, in Appendix G.8, we provide further ex-
periments for a reduced number of Qinit = 20 initial queries,
which lead to similar results as shown in Table 1.

5 Conclusion

In this paper, we have proposed a Bayesian optimization-
based combinatorial assignment (BOCA) mechanism. On
a conceptual level, our main contribution was the integra-
tion of model uncertainty over agents’ preferences into ML-
based preference elicitation. On a technical level, we have
designed a new method for estimating an upper uncertainty
bound that exploits the monotonicity of agents’ preferences
in the combinatorial assignment domain and the finite na-
ture of this setting. Our experiments have shown that BOCA
performs as good or better than the SOTA in terms of effi-
ciency. An interesting direction for future work is the evalu-
ation of BOCA in other combinatorial assignment domains,
such as combinatorial exchanges or course allocation (e.g.,
see (Soumalias et al. 2023)). Finally, it would also be inter-
esting to apply BOCA’s conceptual idea in the combinatorial
BO settings outside of combinatorial assignment.
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