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Abstract

We study various models for the one-dimensional multi-stage
facility location problems with transient agents, where a tran-
sient agent arrives in some stage and stays for a number of
consecutive stages. In the problems, we need to serve each
agent in one of their stages by determining the location of the
facility at each stage. In the first model, we assume there is
no cost for moving the facility across the stages. We focus on
optimal algorithms to minimize both the social cost objective,
defined as the total distance of all agents to the facility over
all stages, and the maximum cost objective, defined as the
max distance of any agent to the facility over all stages. For
each objective, we give a slice-wise polynomial (XP) algo-
rithm (i.e., solvable in mf(k) for some fixed parameter k and
computable function f , where m is the input size) and show
that there is a polynomial-time algorithm when a natural first-
come-first-serve (FCFS) order of agent serving is enforced.
We then consider the mechanism design problem, when the
agents’ locations and arrival stages are private, and design a
group strategy-proof mechanism that achieves good approxi-
mation ratios for both objectives and settings with and with-
out FCFS ordering. In the second model, we consider the fa-
cility’s moving cost between adjacent stages under the social
cost objective, which accounts for the total moving distance
of the facility. Correspondingly, we design XP (and polyno-
mial time) algorithms and a group strategy-proof mechanism
for settings with or without the FCFS ordering.

1 Introduction
In this paper, we consider the Multi-Stage Facility Location
Problems with Transient Agents (MSFLP-TA). In the basic
setting, we have a set of agents arriving at different stages
with a tolerance rate that indicates at most how many stages
an agent can stay for before departure. A facility is reallo-
cated at every stage to serve some of the (existing) agents
such that all agents are served eventually, i.e., no agent will
leave without being served. We consider two different mod-
els of the MSFLP-TA based on whether there is a moving
cost of the facility between adjacent stages. As agents ap-
pear at different positions across stages, we also study the
variants where agents should be served according to the nat-
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ural first-come-first-serve (FCFS) ordering, i.e., an agent can
be served after all agents arriving in earlier stages are served.

Many real-world scenarios can be modeled using the
MSFLP-TA. For instance, consider the motivating example
for the no-moving-cost (NMC) model where we have a res-
idential street and the government aims to find a place each
stage (e.g., few hours or days) to set up a COVID-19 test-
ing site for residents who are at high risk of being infected
(Peto 2020). Naturally, residents want to visit the testing site
at different time from different locations. Because the gov-
ernment wants to test all the individuals timely (i.e., within
some period or tolerance rate) without overcrowding the
testing site, it needs to decide when/where the agents should
visit the testing site given the resident preference while op-
timizing some social objectives, e.g., minimizing the social
cost and maximum cost, associated with the travel distances
of individuals to the testing site across the stages. In this sce-
nario, the government may choose to serve the individuals in
an FCFS fashion to ensure some form of fairness.

Alternatively, consider another motivating example for
the with-moving-cost (WMC) model (De Keijzer and Wo-
jtczak 2018) where some customers on a line are trying to
buy snacks from a vendor. In their scenario, the vendor and
the same set of customers move around in each stage and the
vendor needs to serve all customers at every stage. Differ-
ently, in our model, the vendor can move to a different loca-
tion at each stage to serve the customers, whereas customers
stay at the same place for a certain period (i.e., tolerance
rate) upon arrival and different customers dynamically enter
the system. The goal for the vendor is to serve all the cus-
tomers once (possibly in FCFS ordering) before they leave
and minimize some social objectives.

We study each model and its FCFS variant from the algo-
rithmic and mechanism design perspectives. From the algo-
rithmic perspective, all of the information about agents are
publicly known. We are interested in minimizing the social
cost and the maximum cost, which are the total travel cost
(plus the facility’s moving costs in the WMC model) and the
maximum cost of the agents to the facilities across stages, re-
spectively. From the mechanism design perspective, agents’
locations and arrival stages are private. Our goal is to design
group strategy-proof mechanisms such that there is no joint
deviation of agents to jointly misreport their private infor-
mation such that all of them can gain.
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Result Summary NMC1 WMC2

Social Max. Social

Complexity without FCFS XP XP XP
Complexity with FCFS P P P

Group SP3 Mechanism FC FC GS
Approx. (w/, w/o FCFS) n 2 n

2 +O(T )
1NMC = No Moving Cost, 2WMC = With Moving Cost

3SP = Strategy-Proof

Table 1: Algorithmic & Mechanism Results for Different
Models.

Contribution. Our main modeling and technical contri-
butions are summarized as follows in Table 1.

We introduce the NMC model. From the algorithmic per-
spective, we give slice-wise polynomial (XP) algorithms
for the optimization problems of minimizing the social cost
and maximum cost objectives, where the tolerance rate and
the total number of stages are regarded as fixed param-
eters. Surprisingly, we show that under the FCFS order-
ing, the optimization problems can be solved in polynomial
time. From the mechanism design perspective, we intro-
duce the Full-Coverage (FC) randomized group strategy-
proof mechanism, which is similar to the Equal-Cost mecha-
nism proposed in (Fotakis and Tzamos 2013) that guarantees
strategy-proofness in the k-facility location problems. The
first difference between the two mechanisms is the compu-
tation of the SR profile, which requires us to develop new al-
gorithms for computing the SR profile (see Section 3). More-
over, in the Equal-Cost mechanism, it requires all output
facility locations to share one random variable to guaran-
tee strategy-proofness. This is no longer required in the FC
mechanism and the facility location at each stage can be in-
dependent from each other since the mechanism outputs the
assignment of agents to facilities such that agents can only
be served by the designated facilities.

We introduce the WMC model, where the total travel
distance of the facility is added to the social cost. From
the algorithmic perspective, we give an XP algorithm for
the general setting without FCFS ordering, while under
the FCFS ordering, it can be solved in polynomial time.
From the mechanism design perspective, we consider the
Global-Swinging (GS) group strategy-proof mechanism
which works differently depending on whether the FCFS or-
dering is enforced. Specifically, GS works as a deterministic
mechanism when there is no FCFS constraint and a random-
ized mechanism otherwise (see Section 4.2). As the max-
imum cost for the moving cost is not well-defined across
stages, we do not consider this objective in the WMC model.

1.1 Related Work
Algorithmic Perspective. The simplest problem of locat-
ing a single facility on a line to minimize social cost and
maximum cost can be solved in polynomial time (Konforty

and Tamir 1997). For locating k facilities, the problem of
minimizing social cost or maximum cost is already NP-
hard in the 2-dimensional setting (Megiddo and Supowit
1984). However, it can be solved in polynomial time in the
one-dimensional setting (Love 1976; Tamir 1994; Megiddo,
Zemel, and Hakimi 1983). Notice that locating k facilities on
a line is a special case for our NMC model when the agents’
tolerance rate is set to k and they all arrive at the initial stage.
Our models are more general and can be harder to analyze
as they are dynamic and highly stage-dependent. In partic-
ular, our models have multiple stages where new agents ar-
rive at each stage and agents that arrive earlier may or may
not stay in the system depending on whether the facility has
served them or not. De Keijzer and Wojtczak (2018) studied
the dynamic facility relocation problem where a facility can
be moved with a cost in each stage to serve the same set of
agents whose locations change over time. Their goal is to
minimize the total travel distance of agents and the facility.
Later, Fotakis et al. (2021) generalized the problem to relo-
cate k facilities where the optimal solution can be computed
in polynomial time. In their settings, the facility serves all
agents at each stage, and the served agents stay in the sys-
tem with different locations in each stage. In contrast, our
models assume the agents will leave the system after they
get the service, though they can wait for it at the same lo-
cation for a period of time (given by the tolerance rate), and
the facility is relocated at each stage to serve some agents
such that all of them get the service before leaving.

Mechanism Design Perspective. Procaccia and Tennen-
holtz (2013) initiated the approximate mechanism design
without money paradigm using a simple facility location
problem, which inspires works related to our models. Wada
et al. (2018) studied the dynamic facility location problem
from the mechanism design perspective where the same set
of agents, though at the same position, can choose to partic-
ipate in the game or not at different stages. However, in our
model, each agent is served only once in the duration of his
stay, and different agents dynamically enter and leave the
system over time. Fotakis and Tzamos (2014) showed that
there is no deterministic anonymous strategy-proof mecha-
nisms with a bounded approximation ratio for the k-facility
location problem on the line. Later, they proposed a random-
ized group strategy-proof mechanism to overcome the im-
possibility in the k-facility location problems with approx-
imation ratio O(n) for social cost and 2 for maximum cost
(Fotakis and Tzamos 2013). Interestingly, our WMC model,
which is a generalization of k-facility location problems,
shows that incorporating the moving cost circumvents the
inapproximability result for deterministic mechanisms. De
Keijzer and Wojtczak (2018) also proposed a strategy-proof
mechanism for k-facility relocation problem with social cost
objective. A recent survey on facility location problems can
be found in (Chan et al. 2021).

2 Preliminaries
For simplicity, ∀a ∈ N, we use [a] to denote the set
{1, . . . , a} and all sets are regarded as multisets in this pa-
per. An instance or input of the Multi-Stage Facility Loca-
tion Problems with Transient Agents (MSFLP-TA) is a tuple
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I = (T, r,X,N). The element T ∈ N is the total num-
ber of stages during which the agents might arrive. The el-
ement r ∈ N is the tolerance rate of the agents, indicat-
ing the maximum number of stages the agents are willing
to stay. The element N = (N1, . . . , NT ) ∈ NT is a vec-
tor containing the number of agents arriving at each stage.
We use n =

∑T
i=1 Ni to denote the total number of agents

and nmax = max(N) to denote the maximum number of
agents among all Nt. The element X = (X1, . . . , XT ) is
the agent profile where Xt ∈ RNt is the location of agents
arriving at stage t ∈ [T ], referred to as type t agents. With-
out loss of generality, we assume ∀t, Xt is an ordered set,
which indicates that Xt

i ≤ Xt
j , i.e., the ith agent is on the

left of the jth agent in Xt, if i < j. We use tuple x ∈ Rn

to represent all agents’ locations and similarly where x is
ordered. The output is a tuple O = (y, p). The facility pro-
file y = (y0, . . . , yT+r−1) ∈ RT+r is the locations to place
the facilities, where y0 is the initial position of the facility.
We call p = (p1, . . . , pT ) service profile where pt ∈ NNt

is a vector recording the stage where the agents in Xt are
served. We say a model is with FCFS ordering if ∀t < t′,
∀i, j, we have pti ≤ pt

′

j . For all models in this paper, we
call a service profile valid when every agent is served after
its arrival and before its departure, i.e., if ∀t ∈ T, i ∈ Nt,
t ≤ pti ≤ t+ r − 1.

In the NMC model, the social cost function is defined as

SCNMC(y, p,X) =
T∑

t=1

Nt∑
i=1

|ypt
i
−Xt

i |

Furthermore, the maximum cost function is given by
MCNMC(y, p,X) = max

t∈[T ],i∈Nt
|ypt

i
−Xt

i |

On the other hand, in the WMC model, we define the social
cost function as

SCWMC(y, p,X) =
T∑

t=1

Nt∑
i=1

|ypt
i
−Xt

i |+
T+r−1∑
t=1

|yt − yt−1|

A mechanism F is a function mapping an instance of the
problem to an output. We allow agents to have private in-
formation about their locations and arrival stages. For the
convenience of defining group strategy-proofness, we fur-
ther define X∗ and p∗ as one-to-one mappings from X and
p, respectively. Specifically, X∗

i ∈ R × [T ] is a tuple con-
taining the ith agent’s information about the location and
the arrival stage and p∗i is the stage that ith agent is served,
where i ∈ [n]. In other words, X∗ includes all agents’ lo-
cation and arrival stage information and p∗ records in which
stage they are served. Based on that, we define the cost of
agent i ∈ [n] as ci(y, p

∗, X∗) = |yp∗
i
− X∗

i |. Therefore,
we also have F (T, r,X∗, N) = (y, p∗). A mechanism F is
called group strategy-proof if for any coalition s ∈ [n], there
is no joint deviation of location and arrival stage by agents
in s, such that they all gain, i.e., ∀s, X̃∗

s ̸= X∗
s , ∃i ∈ s,

ci(F (T, r, (X̃∗
s , X

∗
−s), N), X∗) ≤ ci(F (T, r,X∗, n), X∗).

The approximation ratio is the canonical metric for assess-
ing a group strategy-proof mechanism’s performance (ex-
pected performance when the mechanism is randomized).

Over all potential inputs, it compares the performance of the
group strategy-proof mechanism to that of an optimal solu-
tion, which might not induce group strategy-proofness.

We further introduce some auxiliary functions which will
be used in later sections. We define med(W ) as the me-
dian point of agents in W . Based on that, function g(W ) =∑

w∈W |w − med(W )| is the cost of serving agents in W
when we put the facility at med(W ). Particularly, g(W ) = 0
when W = ∅.

Due to the space constraint, some proofs are either re-
placed by proof sketches or omitted.

3 No Moving Cost Model
3.1 Algorithm for without FCFS Ordering
We first discuss the most general model, i.e., the one without
moving cost and without FCFS ordering (NMC-NFCFS).
In terms of social cost (resp. maximum cost), we give an XP
algorithm for fixed T and r (resp. r).

Social Cost. The hardness of the problem comes from the
inter-dependency of agents in different stages. Namely, the
facility is allowed to choose arbitrary agents at any stage
provided that the service profile is valid. As we show next,
there exists a consecutive property in this model which al-
lows the optimal social cost to be computed in polynomial
time for fixed T and r. We say an agent set W is consecutive
on t if W = {Xt

i , X
t
i+1, . . . , X

t
j} for some i and j ∈ [r].

We call S a splitting of X , obtained by splitting each Xt for
all t ∈ [T ] into r agent sets (St,1, . . . , St,r), where ∀i ∈ [r],
St,i =

⋃
j∈[Nt],pt

j=t+i−1(X
t
j) and may be empty. The fol-

lowing lemma states that all type t agents served at the same
stage are consecutive on t.

Lemma 1. ∀t ∈ [T ], i ∈ [r], St,i is consecutive on t.

Proof. Assume the optimal facility profile is y∗. We first
show that ∀t ∈ [T ], i ∈ [r], agents in St,i’s nearest facil-
ity is y∗t+i−1 among all y∗t+j−1 where j ∈ [r], in the optimal
service profile p. Suppose there exists some agent Xt

k ∈ St,i,
such that |y∗t+i−1 −Xt

k| > |y∗t+j−1 −Xt
k|, where i ̸= j. If

we let y∗t+j−1 serve Xt
k, the social cost will decrease, which

contradicts the optimality where ptk = t + i − 1. Further-
more, suppose for contradiction there is some St

i that is not
consecutive on t. It suggests that there exists an agent in Xt,
that is between the leftmost and rightmost agents of St

i but
served by another facility other than y∗t+i−1. However, its
nearest facility should be the same as either the leftmost or
the rightmost agent in St

i , which are both y∗t+i−1, a contra-
diction.

We enumerate all the splittings, and the splitting in an op-
timal output must be one of them by Lemma 1. For each
splitting, we use dynamic programming to find the optimal
assignment of each agent set St,i to some stage t + j − 1,
where i, j ∈ [r]. The facility is put at the median point of all
agents assigned to it in each stage. We call M ∈ (0, 1)T×r

agent state such that Mt′,i denotes whether the set St′,i is
served or not. Let OPTNMC

S (t,M) be the minimum so-
cial cost for the NMC-NFCFS model to serve the remaining
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agents indicated by M starting from stage t to T+r−1 given
a fixed S. OPTNMC

S (T + r,M) is therefore 0 as there is no
agent left, and for t < T + r, we have OPTNMC

S (t,M) =

min
M ′∈(0,1)T×r

M ′≤M

{
OPTNMC

S (t+ 1,M ′) + gt,r(M,M ′)
}

where M ′ is changed from M by changing one entry for
each row among {max{1, t − r + 1}, . . . , t} from 0 to 1
and gt,r(M,M ′) = g(

⋃
t′∈{max{1,t−r+1},...,t}

i | (M ′−M)t′,i=1

St′,i), i.e., it

serves one agent in each stage from max{1, t − r + 1} to t
given by the difference between M and M ′. The subscript
M ′ ≤M indicates that ∀t′, i,M ′

t′,i ≤Mt,i.

Theorem 1. minS∈{splittings of X}{OPTNMC
S (1, {0}T×r)}

computes the optimal social cost for the NMC-NFCFS
model in O(T × rr+1 × (2(nmax + r))T×r) using dynamic
programming.

Maximum Cost. Our algorithm is inspired by the idea
in Equal-Cost mechanism given by Fotakis and Tzamos
(2013), which studies the group strategy-proof mechanism
for k-facility location problems. We define the serving range
(SR) of the facility at some stage such that the facility serves
all existing agents within that range. From this perspective,
if we place an SR at each stage and these SRs cover all agents
at least once within their duration of stay, the corresponding
service profile is valid.
Lemma 2. The minimum length l for SRs, which guarantees
a valid service profile must be a distance between two agents
Xt1

i and Xt2
j , where t1, t2 ∈ [T ], i ∈ [Nt1] and j ∈ [Nt2].

Lemma 2 shows that the number of possible lengths of l is
bounded by O(n2), through which we reduce an optimiza-
tion problem to a feasibility problem. We may also observe a
simple yet useful property which serves as a building block
of the algorithm. Namely, the SRs with the minimum length
l can be placed in such a way that their leftmost points are lo-
cated exactly at some agents’ locations. This property is true
because we can always move such SR to the right until the
left boundary touches the leftmost agent it covers, without
serving fewer agents.

We denote C = (L, l) as an SR profile. SR anchor is de-
fined as L = (L1, . . . , LT+r−1) ∈ nT+r, where the left-
most point of the SR in stage t is at xLt

and l is the length
of those SRs. From the above analysis, the optimal output
O can be easily obtained from SR profile C, as the facil-
ity is located at the middle point of each SR and each agent
is served by the first facility that covers him. If an SR pro-
file is obtained, the corresponding facility profile is given by
y = {xL1

+ l
2 , . . . , xLT+r−1

+ l
2}. In terms of the service

profile p, pti is given by the minimum j ∈ {t, . . . , t+ r− 1}
such that Xt

i ≤ xLj + l and Xt
i ≥ xLj . We call an SR

profile feasible if and only if its corresponding service pro-
file is valid. FEASIBLE1 (Algorithm 1) computes whether a
feasible SR profile starting from stage t can be obtained. No-
tice that when this function is called, we assume that agents
leaving before stage t are already served. Moreover, the pa-
rameter ai is set to −1 when i ≤ 0, representing that there
is no facility placed at stage i.

Algorithm 1: FEASIBLE1(at−(r−1), . . . , at−1, t)

Parameter: SR length l

1: for 1 ≤ i ≤ r − 1 do
2: if at−i ̸= −1 then
3: mark agents with locations among [xat−i

, xat−i
+l]

4: end if
5: end for
6: res← FALSE, k ← 1
7: while res = FALSE and 1 ≤ k ≤ n do
8: mark agents whose locations are within [xk, xk + l]
9: if all agents leaving at stage t are marked then

10: if t = T + r − 1 then
11: return TRUE
12: else
13: res← FEASIBLE1 (at−r+2, . . . , k, t+ 1)
14: end if
15: end if
16: k ← k + 1
17: end while
18: return res

Theorem 2. The optimal maximum cost for the NMC-
NFCFS model can be computed by choosing the minimum
parameter l among O(n2) possible agents’ distance1 such
that Algorithm 1 returns TRUE in O(T × nr+2 × (n + r))
using dynamic programming.

3.2 Algorithm for with FCFS Ordering
In this subsection, we discuss the NMC model with FCFS
ordering (NMC-WFCFS). We show that by enforcing this
reasonable assumption of serving order based on arrival
time, we can solve the optimization problem for both social
cost and maximum cost in polynomial time.

Social Cost. The FCFS ordering restricts type t agents to
be served after all type (t − 1) agents (if any). This implies
that if agents served at stage t contains those of different
types, these type numbers must be contiguous. Moreover,
suppose these types are {i, i + 1, . . . , j}, then all agents in
{Xi+1, . . . , Xj−1} plus part of (or possibly all) agents in
Xi and Xj are served at t. This significantly reduces the
constitution of types of agents served at some stage t com-
pared with that in the NMC-NFCFS model, where some
other types of agents might be served at t. Inspired by the
above observation on the types of agents served in each
stage, we partition each Xi into three subsets, namely, pre-
vious batch, individual batch and next batch. With the FCFS
ordering, agents are in previous batch (resp. next batch) of
Xi if they are served together with some agents in Xj ,
where i > j (resp. i < j). An agent is in the individual
batch of Xi if all agents served together with him are in Xi.

Similarly, we exploit the consecutive property. Informally,
for type i agents, its previous batch, next batch, and all agent
sets that are the subsets of individual batch and served at the
same stage, are consecutive on i. Notice that this property

1For Theorem 2 and Theorem 4, doing binary search for param-
eter l over O(n2) possibilities can reduce the complexity.
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Figure 1: Decomposition of OPTNMC-WFCFS(t, e, i, j)

follows directly from Lemma 1. We first introduce an aux-
iliary algorithm A(W, i, j), which returns the optimal cost
of serving agents in an agent set W ordered from left to
right (a subset of agents in Xt for some t ∈ [T ]), where
{W1, . . . ,Wi} need to be served in remaining j stages.

A(W, i, j) = min
1≤i′≤i

{
g

(
i⋃

k=i′

Wk

)
+A(W, i′ − 1, j − 1)

}
Since all agents must be served and the algorithm termi-

nates when there is no agent to serve, the initial states are
A(W, i, 1) = g

(⋃i
k=1 Wk

)
and A(W, 0, j) = 0, respec-

tively.
Next, we define OPTNMC-WFCFS(t, e, i, j) to be the

minimum social cost for the NMC-WFCFS model to
serve agents of types [e] except for those in

⋃j
k=i X

e
k

during the first t stages. Based on that, we have
OPTNMC-WFCFS(t, 1, i, j) = A(X1\

⋃j
k=i X

1
k , N1−(j−

i−1), t) if only type 1 agents need to be served. Meanwhile,
OPTNMC-WFCFS(1, e, i, j) = g

(⋃e
k=1 X

k \
⋃j

k=i X
e
k

)
if all remaining agents need to be served at stage 1. Finally,
for other cases, we have

OPTNMC-WFCFS(t, e, i, j) =

min
0<i′≤j′+1
0<e′<e

0<a≤b+1
[a,b]∩[i,j]=∅
I2<t′≤t−I1



OPTNMC-WFCFS(t′ − I2, e
′, i′, j′)

+g

(
e−1⋃

k=e′+1

Xk ∪
j′⋃

k=i′
Xe′

k ∪
b⋃

k=a

Xe
k

)

+A

 Xe \
{

b⋃
k=a

Xe
k ∪

j⋃
k=i

Xe
k

}
,

Ne − (j − i+ 1)− (b− a+ 1),
t− t′




where i′ = j′ + 1, a = b + 1 suggests that the correspond-
ing union of agents is empty. With a slight abuse of notation,
Iz ∈ {0, 1} indicates whether Xe \{

⋃b
k=a X

e
k ∪
⋃j

k=i X
e
k},

{
⋃e−1

k=e′+1 X
k ∪

⋃j′

k=i′ X
e′

k ∪
⋃b

k=a X
e
k},

⋃j′

k=i′ X
e′

k and⋃b
k=a X

e
k are empty or not for z = 1, 2, 3, 4, respectively.

In each recursion, the selection of e′ and t′ should also sat-
isfy the following restriction: max{e − 1 + I4, e

′ + I2} ≤
t′ ≤ e′ + r − 1 + I2 − I3, which guarantees all agents are
served before they leave and after their arrival. See Figure 1
for an illustration of the dynamic programming.

Theorem 3. OPTNMC-WFCFS(T + r − 1, T, 0, 0) com-
putes the optimal social cost for the NMC-WFCFS model
in O((T +r)2×T 2×n6

max+T ×n7
max×r) using dynamic

programming.

Algorithm 2: FEASIBLE2(a, t, s)
Parameter: SR length l

1: if t = T + 1 then
2: return TRUE
3: end if
4: if s− 1 ≥ t then
5: mark agents in Xt that are covered by [xa, xa + l]
6: end if
7: if all agents in Xt are marked then
8: res← FEASIBLE2(a, t+ 1, s)
9: else

10: res← FALSE
11: i← 1
12: while res = FALSE and 1 ≤ i ≤ n do
13: num ← number of stages needed to locate SRs

so as to mark those unmarked agents in Xt whose
locations are outside [xi, xi + l].

14: if s+ num ≤ t+ r − 1 then
15: res← FEASIBLE2 (i, t+ 1, s+ num+ 1)
16: end if
17: i← i+ 1
18: end while
19: return res
20: end if

Maximum Cost. FCFS ordering significantly reduces the
number of states in the dynamic programming for maxi-
mum cost. Moreover, with the FCFS ordering, we modify
the transition from SR profile C to service profile p. pti is
now the minimum j such that xLj

≤ Xt
i ≤ xLj

+ l, and
∀k < t, agents in Xk are served.

Algorithm 2 decides whether we can obtain a feasible SR
profile starting from stage s, given that agents of type [t− 1]
are served and a is the SR anchor at stage s− 1, i.e., the last
SR whose corresponding facility serves agents of type t− 1.

Notice that under the FCFS ordering, among all SRs
which have some agents in Xt served in the correspond-
ing service profile, only one of them can also serve agents
of type(s) greater than t. This indicates that when the al-
gorithm deals with agents in Xt, it only needs the SR an-
chor a of the last SR covering agents in Xt−1. However, the
SR anchor a can cover agents in Xt only if s − 1 ≥ t,
i.e., agents can only be served after their arrival. When
s− 1 ≥ t, in case [xa, xa + l] cannot cover all agents in Xt,
it also needs to track the SR anchor i of the last SR cover-
ing agents in Xt, and pass it as an argument to FEASIBLE2
(i, t + 1, s + num + 1) which is called recursively. Once
i is fixed, num, the number of intermediate SRs needed to
cover remaining agents in Xt whose locations are outside
[xa, xa + l] ∪ [xi, xi + l], can be greedily computed by as-
signing corresponding SR anchors from left to right. When
s− 1 < t, it simply ignores the SR anchor a.

Theorem 4. Algorithm 2 computes the optimal maximum
cost for the NMC-WFCFS model in O(n4×nmax×T × r)
using dynamic programming.
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3.3 Strategy-Proof Mechanism Design
In this subsection, we consider the Full-Coverage (FC) ran-
domized mechanism which can be used for our model with
or without FCFS ordering. This mechanism extends the re-
sult of Equal-Cost mechanism proposed by (Fotakis and
Tzamos 2013). They consider the setting of serving agents
using k facilities in one stage with any concave cost func-
tion. Their setting can be regarded as a degeneration of our
model where all agents arrive at the first stage with tolerance
rate r = k. Interestingly, as discussed in Section 1, a simi-
lar mechanism can be used in our model, and it satisfies our
desired properties.

Mechanism 1. The mechanism has 3 steps.

1. Compute the feasible SR profile C = (L, l) with mini-
mum l.

2. For each stage t, place the facility at xLt with probability
1/2 and xLt + l with probability 1/2.

3. Output O = (yrandom, p) is converted from C, where
yrandom contains the probability distribution of the fa-
cility location at each stage.

Notice that in step 1 of Mechanism 1, the resulting SR
profile depends on whether the FCFS ordering is enforced.
Therefore, we can use different optimal algorithms to com-
pute the maximum cost.

To show that Mechanism 1 is group strategy-proof, we
need to prove the following lemma which follows from (Fo-
takis and Tzamos 2013). It states that there exists a probabil-
ity distribution of facility locations such that all agents cov-
ered by SRs have the same expected cost and cannot benefit
from misreporting.

Lemma 3. All the agents within SR [start, end] have the
same expected cost, specifically end−start

2 , if we place the
facility at start with probability 1/2 and at end with prob-
ability 1/2. Those agents who are outside the SR have their
expected cost equal to the distance to the center of the SR.

Theorem 5. Mechanism 1 is group strategy-proof for the
NMC model.

Proof Sketch. A part of the proof is similar to the one for
Equal-Cost mechanism proposed in (Fotakis and Tzamos
2013). However, we need to show that the mechanism re-
mains strategy-proof where the agents’ locations and arrival
stages are both private in our setting. The key idea is that
the misreporting agent is either served outside of or within
the agent’s true duration of stay after misreporting. In the
first case, the agent will not misreport since it prefers to be
served with any cost than get no service at all. In the second
case, they can only gain by making the length of SRs smaller
by Lemma 3. However, if all misreporting agents are served
during their true duration of stay, it indicates that the result-
ing SR profile must be a subset of all SR profile considered
by the mechanism when agents report truthfully. Therefore,
they can only make the length of SRs larger by step 1.

Notice that if the SR profile computed from step 1 in
Mechanism 1 has l = 0, the mechanism returns the opti-
mal solution and guarantees group strategy-proofness at the
same time. The following theorem gives the upper bound for

FC’s performance in terms of social cost and maximum cost
when l > 0.

Theorem 6. When the SR profile has l > 0, Mechanism 1
achieves a tight approximation ratio of 2 for maximum cost
and n for social cost in the NMC model.

4 With Moving Cost Model
We investigate in this section the model with moving cost
(WMC), i.e., the moving cost of the facility between adja-
cent stages. The target objective function is the social cost
as discussed before.

Our algorithm relies on the following lemma, which ex-
tends the result of De Keijzer and Wojtczak (2018) to our
model. Its key idea is that it suffices to consider the facility
profile y where in each stage, its location is either one of the
agents’ locations or the initial facility’s location.

Lemma 4. The optimal facility profile y satisfies the prop-
erty that for all t ∈ [T + r − 1], yt ∈ {y0} ∪ x.

Since we incorporate the moving cost in SCWMC(y, p),
putting the facility at the median of agents to be served at
some stage, i.e., using function g, is no longer optimal. In the
following two subsections, we will modify the algorithms in
Section 3 to accommodate the introduced moving cost using
Lemma 4. The key point is to explicitly examine all possible
O(n) optimal placement of the facility, i.e., x∪{y0} in each
stage instead of applying the median rule when the agents to
be served at some stage are determined.

4.1 Algorithm
In this subsection, we first study the WMC model without
FCFS ordering. OPTWMC

S (t,M, P ) is defined by adding a
new parameter in OPTNMC

S (t,M), where P ∈ N adds an
additional constraint that we place the facility at the position
of the P th element in x∪{y0} at stage t. By Lemma 4, once
we find the optimal service profile, it must consist of loca-
tions in x ∪ {y0}. The recurrence works almost the same
except that we examine all possible P ∈ [|x ∪ {y0}|] after
determining which agents to serve at t. This parameter en-
larges the size of the dynamic programming table by a factor
of O(n), and it increases the running time by O(n) during
the computation for each state.

Corollary 1. There exists an algorithm that computes the
optimal social cost for the WMC-NFCFS model in O(T ×
rr+1 × (2(nmax + r))T×r × n2).

We then investigate the WMC model with the FCFS or-
dering. Similarly, we obtain new algorithms B(x, i, j, P )
and OPTWMC-WFCFS(t, e, i, j, P ) by adding a new dimen-
sion P to record the placement of the facility in algorithms
A(x, i, j) and OPTNMC-WFCFS(t, e, i, j). Utilizing B and
OPTWMC-WFCFS, we obtain the following corollary.

Corollary 2. There exists an algorithm that computes the
optimal social cost for the WMC-WFCFS model in O(((T+
r)2 × T 2 × n6

max + T × n7
max × r)× n2).
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4.2 Strategy-Proof Mechanism Design
We consider the Global-Swinging (GS) group strategy-
proof mechanism for the WMC model in this subsection.
We denote the leftmost (resp. the rightmost) agent among
all stages as lt(x) (resp. rt(x)).

Mechanism 2. The mechanism works differently in terms of
the WMC-NFCFS model and the WMC-WFCFS model. It
outputs O = (y, p) given I = (T, r,X,N).

For WMC-NFCFS: Deterministic Mechanism
• When r = 1, ∀t ∈ [T ], yt = med(Xt) and ∀t ∈
[T ], i ∈ [Nt], p

t
i = t.

• When r > 1, ∀t ∈ [T+r−1], yt = lt(x) if t is odd and
yt = rt(x) if t is even. ∀i ∈ [T ], j ∈ [Ni], if i is odd
and Xi

j ∈ [lt(x), (lt(x) + rt(x))/2] or i is even and
Xi

j ∈ [(lt(x) + rt(x))/2, rt(x)], pij = i. Otherwise,
pij = i+ 1.

For WMC-WFCFS: Randomized Mechanism
∀t ∈ [T ], yt = lt(x) with probability 1/2 and yt = rt(x)
with probability 1/2. ∀t ∈ [T ], i ∈ [Nt], pti = t.

The idea of the mechanism for WMC-NFCFS is that if
r = 1, all agents are immediately served upon arrival by
placing the facility at the median point of them. Notice that
when r = 1, the model degenerates to the multi-stage dy-
namic facility location problem considered by De Keijzer
and Wojtczak (2018), except that in their model, the number
of agents in each stage is the same. Similarly, they also place
the facility at the median of the arrived agents in each stage.
When r > 1, the facility is put at the global leftmost agent’s
location and rightmost agent’s location, i.e. lt(x) and rt(x)
in a round-robin fashion and for each stage, it serves all ex-
isting agents with locations between (lt(x) + rt(x))/2 and
itself. However, when r > 1, as agents of different types
can be served at the same stage even though not all smaller
type agents have been served, the deterministic version fails
to obey the FCFS ordering in the WMC-WFCFS model. A
randomized version is therefore proposed to fulfill the re-
quirement by serving all agents immediately. Interestingly,
both versions of GS have the same approximation ratio.

Theorem 7. Mechanism 2 is group strategy-proof for the
WMC model.

Fotakis and Tzamos (2014) showed that there is no anony-
mous deterministic strategy-proof mechanism for the k-
facility location problem, which is a degeneration of our
NMC model. Their intuition of the unbounded approxima-
tion ratio comes from the fact that a strategy-proof mecha-
nism needs to place a facility far from an agent which incurs
a large cost, while the optimal solution has a negligible cost.
However, in the WMC model, the following lemma shows
the incorporated moving cost also needs to be considered in
the optimal solution, making the cost of the optimal solution
no longer negligible.

Lemma 5. The social cost for any mechanism to serve all
the agents (regardless of enforcing FCFS ordering or not) is
at least rt(x)− lt(x) + min(|y0 − lt(x)|, |y0 − rt(x)|).

Proof Sketch. It suffices to consider the cost of serving lt(x)
and rt(x) plus the moving cost of the facility. The sum of
these two costs must be at least rt(x) − lt(x) + min(|y0 −
lt(x)|, |y0 − rt(x)|) by applying the triangle inequality.

Theorem 8. Mechanism 2 achieves an approximation ratio
of n

2 +O(T ) for social cost in the WMC model.

Proof. We first consider the mechanism for the WMC-
NFCFS model. When r = 1, denote the optimal cost as
OPT and the cost returned by the mechanism as COST =
Cagent + Cmov , where Cagent is the cost of serving the
agents and Cmov is the cost induced by moving the fa-
cility. Since we put the facility at the median of agents
in each stage, Cagent is optimal if the moving cost is
not considered. Hence, Cagent ≤ OPT . On the other
hand, the moving cost of the facility, i.e., Cmov is at most
T × (rt(x) − lt(x)) + dis ≤ (T + 1) × OPT , where
dis = min(|y0 − lt(x)|, |y0 − rt(x)|). Therefore, the ap-
proximation ratio for deterministic version of Mechanism 2
when r = 1 is COST

OPT =
Cagent+Cmov

OPT ≤ (T+2)×OPT
OPT =

T + 2 = O(T ). When r > 1, the cost of serving any
agent is at most (rt(x) − lt(x))/2 and the moving cost is
bounded by T × (rt(x) − lt(x)) + (rt(x) − lt(x) + dis).
Therefore, the social cost is upper bounded by (n2 + T +
1) × (rt(x) − lt(x)) + dis. Moreover, Lemma 5 provides
a lower-bound rt(x) − lt(x) + dis for social cost given
any mechanism. Correspondingly, the approximation ratio
for deterministic version of Mechanism 2 when r > 1
is (n

2 +T+1)×(rt(x)−lt(x))+dis

rt(x)−lt(x)+dis ≤ (n
2 +T+1)×(rt(x)−lt(x))

rt(x)−lt(x) =
n
2 +O(T ).

We then consider the mechanism for the WMC-WFCFS
model. By Lemma 3, the expected cost for all agents is
rt(x)−lt(x)

2 . On the other hand, the expected moving cost of
the facility is bounded by O(T )×(rt(x)−lt(x)). Therefore,
the approximation ratio for randomized version of Mecha-
nism 2 is n

2 +O(T ).

5 Conclusion and Discussion
We study the multi-stage facility location problems with
transient agents in different settings from both algorithmic
and mechanism design perspectives. Collectively, we es-
tablish several non-trivial dynamic programming algorithms
which require key insights into the properties of the models.
Moreover, we consider these models under the private infor-
mation setting and design group strategy-proof mechanisms
with approximation guarantees.

There are many interesting directions for future work. The
most important one is whether it is possible to improve the
approximation ratio for group strategy-proof mechanisms.
On the other hand, the model can be extended where agents’
tolerance rates are different. All the algorithmic results and
strategy-proof mechanisms in this paper can be modified to
accommodate the setting when agents of different types can
have different tolerance rates. Nevertheless, the fundamen-
tal building blocks of the positive results collapse when the
tolerance rates for agents of the same type can be different.
Additionally, we conjecture that the optimization problems
without FCFS ordering are NP-hard.
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