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Abstract

We initiate the study of fairness among classes of agents in
online bipartite matching where there is a given set of offline
vertices (aka agents) and another set of vertices (aka items)
that arrive online and must be matched irrevocably upon ar-
rival. In this setting, agents are partitioned into classes and
the matching is required to be fair with respect to the classes.
We adopt popular fairness notions (e.g. envy-freeness, pro-
portionality, and maximin share) and their relaxations to this
setting and study deterministic algorithms for matching indi-
visible items (leading to integral matchings) and for matching
divisible items (leading to fractional matchings). For match-
ing indivisible items, we propose an adaptive-priority-based
algorithm, MATCH-AND-SHIFT, prove that it achieves 1/2-
approximation of both class envy-freeness up to one item and
class maximin share fairness, and show that each guarantee is
tight. For matching divisible items, we design a water-filling-
based algorithm, EQUAL-FILLING, that achieves (1 − 1/e)-
approximation of class envy-freeness and class proportional-
ity; we prove 1− 1/e to be tight for class proportionality and
establish a 3/4 upper bound on class envy-freeness.

1 Introduction
The one-sided matching problem is a fundamental sub-
ject within economics and computation that deals with the
matching of a set of items to a set of agents. Its primary
objective is to ensure desirable normative properties such
as economic efficiency and fairness. The advent of Inter-
net economics along with the introduction of novel mar-
ketplaces has posed new challenges in designing desirable
solutions for which, as noted by Moulin (2019), “we need
division rules that are both transparent and agreeable, in
other words, fair.” A wide array of these applications are in-
herently online, that is, items (or goods) arrive in an online
fashion, and need to be matched immediately and irrevoca-
bly to the participating agents: consider the examples of al-
locating advertisement slots to Internet advertisers (Mehta
et al. 2007), assigning packets to output ports in switch
routing (Azar and Richter 2005), distributing food dona-
tions among nonprofit charitable organizations (Lee et al.
2019), and matching riders to drivers in ridesharing plat-
forms (Banerjee and Johari 2019).
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Over the past few decades, a large body of literature—
within the field of online algorithm design—is devoted to
the study of online bipartite matching problems. Their pri-
mary goal is to satisfy some notion of economic efficiency—
e.g. maximizing the size of the final matching—with no
knowledge of which items will arrive in the future and in
what order. Algorithms designed for this problem are judged
by their competitive ratio, which is the worst-case approx-
imation ratio of the size of the matching produced to the
maximum possible size in hindsight. It is well known that
the best deterministic algorithm can only achieve a 1/2-
approximation of this efficiency goal, e.g., by using a greedy
algorithm to get a maximal matching. Notably, the seminal
work of Karp, Vazirani, and Vazirani (1990) provides a ran-
domized algorithm called RANKING with the best possible
(1− 1/e)-approximation.

While the literature offers online algorithms with optimal
efficiency guarantees, little work has been done in ensuring
that these algorithms treat agents, or rather, classes of agents
fairly. Consider the example of a food bank that wishes to
distribute the donated items among nonprofit organizations
and homeless shelters. The perishable food items donated
to the food bank must be assigned upon their arrival. How
should an online matching algorithm distribute these dona-
tions to the nonprofits and shelters in such a manner that the
communities they serve are treated equitably?
Class fairness. We initiate the study of class fairness in on-
line matching, where a set of items arriving online must be
assigned to agents who are partitioned into known classes,
with the goal of achieving fairness among classes. Agents
either like an item (value 1) or don’t like it (value 0). We
adopt classical notions from the fair division literature that
typically apply to individual agents—such as envy-freeness
(EF), proportionality (Prop), and maximin share guarantee
(MMS)—to classes of agents. Our extensions ensure that
different classes are treated fairly, regardless of their sizes
(e.g., in the food bank example above, different communi-
ties are treated equally, even if some have many more orga-
nizations serving them).

In the standard fair division model, the impossibility of
achieving envy-freeness has motivated relaxations such as
envy-freeness up to one item (EF1), which can be guaran-
teed (Lipton et al. 2004). When applied to classes, our class
envy-freeness up to one item (CEF1) requires that envy of
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Figure 1: An adversarial instance where CEF1 cannot be
achieved together with non-wastefulness.

any class towards another class to be eliminated after the re-
moval of at most one item that is matched to an agent within
the envied class. When all items are available up front, it
is known that CEF1 can be achieved without unnecessarily
throwing away items (Benabbou et al. 2020).1 Can it still be
achieved in the online setting?
Impossibility of CEF1 in online matching. First, note that
“class-awareness” is necessary for any algorithm; otherwise
an algorithm that is blind to the class information may vio-
late CEF1 by assigning two arriving items to the same class,
when there is another class that likes both items. Unfortu-
nately, a slightly larger example shows that even class-aware
online algorithms cannot always achieve CEF1.
Example 1. Consider the example in Figure 1, in which six
agents are partitioned into two classes N1 = {a1, a2, a3}
and N2 = {b1, b2, b3}. Four items arrive sequentially in the
order (o1, o2, o3, o4). An edge indicates that an agent likes
an item; thick edges indicate the matching. Assume that we
do not wish to throw away any item as long as there is an
unmatched agent who likes it. For i ∈ {1, 2, 3}, item oi is
liked by agents ai and bi. The first item o1 can be matched
to either a1 or b1; without loss of generality, suppose it is
matched to a1 ∈ N1. When o2 arrives, it must be matched
to b2 ∈ N2 in order to satisfy CEF1. The third item o3 can
again be matched to either of a3 and b3; without loss of gen-
erality, suppose it is matched to b3 ∈ N2. Now, o4 arrives,
and it is liked only by a1 (who is already matched) and b1
(who is unmatched). The algorithm must assign it to b1 due
to non-wastefulness, which leaves class N1 envious of class
N2, even if we ignore any one of the items assigned to N2.

Given this impossibility, we seek online matching algo-
rithms that achieve the fairness notions approximately, often
in conjunction with approximate efficiency guarantees. We
aim to answer the following theoretical questions:

Can we design deterministic algorithms for match-
ing indivisible or divisible items that achieve approx-
imate class fairness while adhering to efficiency re-
quirements? And, can we surpass their guarantees by
using randomization?

Our Results Our first contribution (Section 2) is developing
a detailed mathematical framework in which we adopt clas-
sical fairness concepts to online matching. We consider two

1We later formalize the latter restriction as non-wastefulness
(NW). This is required because CEF1, on its own, can be achieved
vacuously via an empty matching by throwing away all the items.

types of online matching models, one with indivisible items,
wherein an item must be matched in its entirety to a single
agent, and one with divisible items, wherein an item may be
fractionally divided between multiple agents.

For both settings, we design online algorithms that
achieve approximate fairness and efficiency guarantees, and
also provide upper bounds on the approximations that can
be achieved by any online algorithm. Our algorithms sat-
isfy non-wastefulness, which implies 1/2-approximation of
the optimal utilitarian social welfare (USW); the utilitarian
social welfare, i.e., the sum of agent utilities, is effectively
the size of the matching. Specifically, we make the following
contributions (summarized in Table 1):

• Indivisible matching: For indivisible items, we develop
a deterministic algorithm, MATCH-AND-SHIFT, that si-
multaneously achieves non-wastefulness, 1/2-CEF1, 1/2-
CMMS, and 1/2-USW (Theorem 1). The algorithm uses
an adaptive priority queue over classes, in which a class
is shifted to the end of the queue immediately upon re-
ceiving an item. Further, we prove that no deterministic
algorithm can achieve any of α-CEF1 (subject to non-
wastefulness), α-CMMS, or α-USW, for any α > 1/2
(Theorem 2), establishing our algorithm to be simultane-
ously optimal for each guarantee.

• Divisible matching: For divisible items, we improve
the above bounds via a different algorithm, EQUAL-
FILLING. This algorithm divides items equally between
the classes, but uses water-filling to divide the portion
of an item assigned to a class between the agents in
that class. This algorithm simultaneously achieves non-
wastefulness, (1− 1/e)-CEF, (1− 1/e)-CPROP, and 1/2-
USW (Theorem 3). Further, no deterministic algorithm
can achieve α-CEF for any α > 3/4, or α-USW for any
α > 1− 1/e, and (1− 1/e)-CPROP is tight (Theorem 4).

Related Work We refer readers to Mehta (2013) for a sur-
vey of the vast literature on online matching, and summarize
some results that are the most related to this paper. Our prob-
lem can be seen as a fair division problem by considering
each class to be a meta-agent; the value of this meta-agent
for a bundle of items is the maximum total value obtained by
matching the items to the agents in the class, which induces
OXS valuations (Paes Leme 2017) (these are not additive).
Benabbou et al. (2019) studied a model similar to ours in
the offline setting, and showed that an allocation satisfying
EF1 and non-wastefulness exists and can be computed in
polynomial time. Subsequent papers (Benabbou et al. 2020;
Babaioff, Ezra, and Feige 2021; Barman and Verma 2021)
considered a more general class of submodular valuations
with dichotomous marginals and proved that EF1 and op-
timal USW can be achieved together; Barman and Verma
(2021) proved a similar result for MMS and optimal USW.
Our paper is also related to the growing line of work on on-
line fair division (Benade et al. 2018; Banerjee et al. 2022;
Zeng and Psomas 2020; Walsh 2011; Aleksandrov et al.
2015), but a majority of this work focuses on additive valua-
tions, and hence, their techniques do not apply to our match-
ing setting. In the full version (Hosseini et al. 2022), we pro-
vide an extended review on the related literature.
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Indivisible Divisible
Fairness Algorithm Upper Bound Fairness Algorithm Upper Bound
α-CEF1 + NW 1/2 1/2 α-CEF + NW 1− 1

e
3/4

α-CMMS 1/2 1/2 α-CPROP 1− 1
e

1− 1
e

α-USW 1/2 1/2 α-USW 1/2 1− 1
e

Table 1: The summary of our results on deterministic algorithms for matching indivisible and divisible items. Each algorithm
achieves its three guarantees simultaneously, while the upper bound holds for any algorithm, separately for each guarantee.

2 Model
For t ∈ N, define [t] = {1, . . . , t}. First, let us introduce
an offline version of our model and the solution concepts we
seek. Later, we will discuss the online model and algorithms
in that model.

Consider a bipartite graph G = (N,M,E), where N rep-
resents a set of vertices called agents, M a set of vertices
called items, and E the set of edges. We say that agent a
likes item o if a is adjacent to o, i.e., (a, o) ∈ E. The set
of agents N is partitioned into k known classes N1, . . . , Nk

so that Ni ∩ Nj = ∅ for all i ̸= j and ∪k
i=1Ni = N . For

simplicity, we refer to class Ni simply as class i.

Matching. We consider the cases of divisible items (where
each item can be matched to multiple agents fractionally)
and indivisible items (where each item must be matched to
a single agent integrally). A (divisible) matching is a matrix
X = (xa,o)a∈N,o∈M ∈ [0, 1]N×M satisfying

∑
a∈N xa,o ⩽

1 for each item o ∈ M , and
∑

o∈M xa,o ⩽ 1 for each
agent a ∈ N . We say that matching X is indivisible if
xa,o ∈ {0, 1} for each agent a ∈ N and item o ∈
M . Given a matching X , we say that agent a is satu-
rated if

∑
o∈M xa,o = 1, and item o is fully assigned if∑

a∈N xa,o = 1.
For a matching X , we write Y (X) =

(
∑

a∈Ni
xa,o)i∈[k],o∈M as the matrix containing the

total fraction of each item assigned to agents in each class.
Let Yi(X) denote the row of Y (X) corresponding to class
i. For an indivisible matching X , we may abuse the notation
and use Yi(X) to refer to the set of items matched to agents
in class i, i.e., {o ∈ M | xa,o = 1 for some a ∈ Ni}. We
may omit the argument X from Y (X) and Yi(X) if it is
clear from the context.

Class valuations. The value derived by agent a from
matching X is Va(X) =

∑
o∈M :(a,o)∈E xa,o. We define the

value of class i from matching X as the utilitarian social
welfare of the agents in class i under matching X , denoted
Vi(X) =

∑
a∈Ni

Va(X).
In order to define fairness at the level of classes, we need

to also define how much hypothetical value agents in class
i could derive from the items matched to agents in another
class j. However, it is not obvious how one should define
this value because it depends on how the items matched to
agents in Nj would be matched to agents in Ni in this hypo-
thetical scenario. Following (Benabbou et al. 2019), we use
the following optimistic valuations.

Given a vector y = (yo)o∈M ∈ [0, 1]M representing frac-
tions of different items, the optimistic valuation V ∗

i (y) of

class i for y is the size of the maximum fractional matching
between the agents of Ni and y; namely, V ∗

i (y) is given by
the optimal value of the following LP:

max
∑

a∈Ni

∑
o∈M :(a,o)∈E xa,o

s.t.
∑

a∈Ni
xa,o ⩽ yo ∀o ∈ M,∑

o∈M xa,o ⩽ 1 ∀a ∈ Ni,

xa,o ⩾ 0 ∀a ∈ Ni, o ∈ M.

For S ⊆ M , let eS ∈ {0, 1}M denote the incidence vector
such that eSo = 1 if o ∈ S and eSo = 0 otherwise; we may
write V ∗

i (e
S) as V ∗

i (S) for ease of notation. For an integral
vector y, it is known that there is an integral optimal solution
to the above LP (see, e.g., Section 5 of (Korte and Vygen
2006)); thus, V ∗

i (S) coincides with the maximum size of an
integral matching between S and the agents in Ni.

2.1 Solution Concepts
We consider classical fairness notions from the fair divi-
sion literature and extend these notions to ensure fairness
between classes of agents.
(Approximate) class envy-freeness. Envy-freeness be-
tween individual agents demands that every agent values
the resources allocated to her at least as much as she val-
ues the resources allocated to another agent. When applied
to classes, we compare the value Vi(X) derived by class i
for its matched items with class i’s optimistic valuation for
the items matched to another class j, i.e. V ∗

i (Yj(X)). Note
that this results in a strong class envy-freeness notion: even
if, hypothetically, class i were to be matched to the items
currently matched to class j under X in an optimal manner,
they would still not be any happier overall.

Definition 1 (Class envy-freeness). A matching X is α-
class envy-free (α-CEF) if for all classes i, j ∈ [k], Vi(X) ⩾
α · V ∗

i (Yj(X)). When α = 1, we simply refer to it as class
envy-freeness (CEF).

It is impossible to achieve exact CEF with an indivisible
matching in general, e.g., consider when one desirable item
has to be allocated among two classes. Hence, we consider
the following relaxation of CEF for integral matchings.

Definition 2 (Class envy-freeness up to one item). An in-
tegral matching X is α-class envy-free up to one item (α-
CEF1) if for every pair of classes i, j ∈ [k], either Yj(X) =
∅ or there exists an item o ∈ Yj(X) such that Vi(X) ⩾
α · V ∗

i (Yj(X) \ {o}). When α = 1, we simply refer to it as
class envy-freeness up to one item (CEF1).
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We remark that CEF1 is called type-wise EF1 (TEF1) by
(Benabbou et al. 2019); we use the terminology “class” in-
stead of “type” because letting agents of the same “type”
have different incident edges may be confusing.
(Approximate) class proportionality and maximin share
fairness. Another classical fairness concept is proportional-
ity. In the traditional fair division model where agent valu-
ations are additive, proportionality is typically stated as re-
quiring that each agent receives value that is at least 1/n-th
of her value for the set of all items, where n is the number of
agents. This can be equivalently viewed as demanding that
each agent receives at least the maximum value she can re-
ceive from the worst bundle among all fractional partitions
of the items into n bundles. We use the latter version as the
appropriate definition of proportionality in our model. We
define the proportional share of class i as

propi = max
X∈X

min
j∈[k]

V ∗
i (Yj(X)),

where X is the set of (divisible) matchings of the set of items
M to the set of agents N .
Definition 3 (Class proportionality). We say that matching
X is α-class proportional (α-CPROP) if for every class i ∈
[k], Vi(X) ⩾ α · propi. When α = 1, we simply refer to it
as class proportionality (CPROP).

As in the case with class envy-freeness, class proportion-
ality is impossible to guarantee via indivisible matchings.
Nevertheless, we can naturally relax the notion of propor-
tionality by only taking into account indivisible matchings
in the definition of proportional share above. Formally, the
maximin share of class i is defined as

mmsi = max
X∈I

min
j∈[k]

V ∗
i (Yj(X)),

where I is the set of indivisible matchings of the set of items
M to the set of agents N .
Definition 4 (Class maximin share fairness). We say that
matching X is α-class maximin share fair (α-CMMS) if for
every class i ∈ [k], Vi(X) ⩾ α · mmsi. When α = 1, we
simply refer to it as class maximin share fairness (CMMS).
Efficiency. We consider two notions of efficiency. Non-
wastefulness demands that each item to be fully assigned,
unless all the agents who like it are saturated.
Definition 5 (Non-wastefulness). We say that matching X
is non-wasteful (NW) if there is no pair of agent a and item o
such that (i) o is allocated to a (i.e., xa,o > 0) but a does not
like o, or (ii) a likes o, a is not saturated (i.e.,

∑
o′∈M xa,o′ <

1), and o is not fully assigned (i.e.,
∑

a′∈N xa′,o < 1).
A more quantitative notion of efficiency is the utilitarian

social welfare, which, in our context, is the size of the (divis-
ible) matching. Note that this is the classical objective that
the literature on online matching optimizes, in the absence
of any fairness constraints.
Definition 6 (Utilitarian social welfare). The utilitarian so-
cial welfare (USW) of a matching X is given by usw(X) =∑

a∈N

∑
o∈M :(a,o)∈E xa,o. We say that a divisible (resp.,

indivisible) matching X is α-USW if usw(X) ⩾ α ·

a1

a2

b1

b2

o1

o2

o3

o4

Figure 2: Class envy-freeness (CEF), non-wastefulness
(NW), and utilitarian social welfare approximation (USW):
an empty matching is CEF1 but wasteful; wiggly lines show
a CEF1 and NW matching; thick lines indicate a CEF1 and
1-USW matching.

usw(X∗) for all divisible (resp., indivisible) matchings X∗.
When α = 1, we refer to X as the USW-optimal matching.

The following is a known relation between maximal (non-
wasteful) and maximum matchings in both divisible and in-
divisible cases.
Proposition 1. Every non-wasteful (divisible or indivisible)
matching is 1/2-USW.

Let us illustrate the above concepts of fairness and effi-
ciency using examples.
Example 2. Consider the example given in Figure 2, where
there are four items (o1, o2, o3, and o4), agents a1 and a2
belong to one class, and agents b1 and b2 belong to an-
other class. An edge between an agent and an item indicates
that the agent likes the item; thick and wiggly lines indicate
matchings. An empty matching is class envy-free (CEF) but
wasteful. The wiggly lines show a CEF1 and non-wasteful
matching . Finally, thick lines show a matching that achieves
CEF1 along with optimal utilitarian social welfare.

2.2 Online Model
Let us now introduce our online model. In this model, the
items in M arrive one-by-one in an arbitrary order. We refer
to the step in which item o ∈ M arrives as step o.

When item o arrives, all agents reveal whether or not they
like the item. In other words, the edges incident to item o are
revealed in graph G. At this point, an online algorithm must
make an immediate and irrevocable decision to “match” the
item to the agents in N , i.e., set the values of (xa,o)a∈N . We
consider algorithms which set these values deterministically.

For the algorithms we design, we prove that they achieve
the desired guarantees (approximate CEF, CEF1, CPROP,
CMMS, USW, or non-wastefulness) at every step. However,
a key property of our algorithms is that they do not need to
know in advance the number of items that will arrive, which
means that proving the desired guarantees at the end implies
that they hold at every step. In contrast, our upper bounds
(impossibility results) will hold even if the desired guaran-
tees are required to hold only at the end.
Definition 7. For α ∈ (0, 1], a deterministic online algo-
rithm for matching divisible or indivisible items is α-CEF
(resp., α-CEF1, α-CPROP, α-CMMS, α-USW, or NW) if it
produces an α-CEF (resp., α-CEF1, α-CPROP, α-CMMS,
α-USW, or NW) matching when all items have arrived.
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Because CMMS and CPROP place only a lower bound on
the utility of every agent, there is no tension between them
and non-wastefulness. Any algorithm achieving an approx-
imation of these notions can be made non-wasteful without
losing the said fairness approximation.

Proposition 2. For α ∈ (0, 1], if there is a deterministic on-
line algorithm satisfying α-CMMS (resp., α-CPROP), then
there is a non-wasteful deterministic online algorithm satis-
fying α-CMMS (resp., α-CPROP). This holds for matching
both divisible and indivisible items.

3 Indivisible Items
We start by focusing on deterministic algorithms for match-
ing indivisible items. We study possible approximations of
two fairness concepts, CEF1 and CMMS, along with ef-
ficiency guarantees in terms of non-wastefulness and the
utilitarian social welfare. When matching indivisible items,
CEF1 may seem trivial to achieve: only match an item to
some agent in some class if this preserves CEF1, and discard
the item otherwise. However, this algorithm may ‘waste’ too
many items and lose significant efficiency.2 Example 1 illus-
trated that CEF1 and non-wastefulness are incompatible in
the online setting.3 In this light, for arbitrary classes, it is
natural to ask what approximation of CEF1 can be achieved
subject to non-wastefulness.

3.1 Algorithm MATCH-AND-SHIFT

One way to achieve approximate CEF1 is to ensure a bal-
anced treatment of all classes by providing them approxi-
mately equal ‘opportunity’ for receiving an item. This ap-
proach is inspired by the well-studied Round-Robin al-
gorithm in fair division (Caragiannis et al. 2016) and its
widely-adopted cousin, Draft, that is used in sports for se-
lecting players (Brams and Straffin 1979; Brams and Taylor
2000) or assigning courses to college students (Budish and
Cantillon 2012).

However, running such algorithms naı̈vely in our online
setting, where not all items are available upfront, can be
problematic: if we do a round-robin over classes, a class
can be disadvantaged if the item arriving in its turn is not
liked by any unmatched agent in the class. Further, non-
wastefulness requires that any arriving item be matched as
long as there is an unsaturated agent who likes it, even if this
agent does not belong to the class whose turn it is. Keeping
these observations in mind, we design MATCH-AND-SHIFT
(Algorithm 1), which provides equal treatment to the differ-
ent classes while achieving non-wastefulness.

Algorithm description. Fix an arbitrary priority ordering
π = (π1, π2, . . . , πk) over the k classes, where π1 is the
class with the highest priority. Upon arrival of each item,

2In fact, discarding all items—an empty matching—is vacu-
ously class envy-free.

3In Appendix B.1 of the full version (Hosseini et al. 2022),
we show that this incompatibility holds even after weakening the
CEF1 requirement to account for ‘pessimistic’ valuations, i.e, when
each class evaluates the items matched to another class through a
minimum-cardinality maximal matching.

ALGORITHM 1: MATCH-AND-SHIFT

1 Fix a priority ordering over classes, π = (π1, . . . , πk)
2 when item o ∈M arrives do
3 for i = 1 to k do
4 Let Nπi,o be the set of unmatched agents a ∈ Nπi

such that (a, o) ∈ E
5 if Nπi,o ̸= ∅ then
6 Arbitrarily match o to an agent in Nπi,o

7 π ← (π1, . . . , πi−1, πi+1, . . . , πk, πi)
8 break

pick the first class Nπi
in the priority ordering that contains

an unmatched agent who likes the item. Match the item to
any unmatched agent—there may be several such agents—
in Nπi who likes the item. Update the priority ordering π by
moving class πi to the end.

The following theorem establishes approximate fairness
and efficiency guarantees of MATCH-AND-SHIFT; later, in
Theorem 2, we prove that these guarantees are tight.
Theorem 1. For deterministic matching of indivisible
items, MATCH-AND-SHIFT (Algorithm 1) satisfies non-
wastefulness, 1/2-CEF1, 1/2-CMMS, and 1/2-USW.

Proof. Let X be the matching returned by the algorithm.
NW & 1/2-USW. Non-wastefulness of X follows imme-
diately from the description of the algorithm: at each step,
the arriving item is matched to an agent who likes it when-
ever such an agent exists. Because X is non-wasteful, due to
Proposition 1 it also satisfies 1/2-USW.
Now, we turn our attention to the fairness guarantees. Recall
that for each i ∈ [k], Yi denotes the set of items matched
to agents in class i. Fix any class i. Let t = |Yi| denote the
number of items matched to the agents in class i under X .
Due to non-wastefulness, we have Vi(X) = t.
1/2-CEF1. Consider any class j ∈ [k] \ {i}. Let Y ∗

j ⊆ Yj

be the set of items matched to class j that are liked by at
least one unmatched agent in class i. The claim immediately
holds when Y ∗

j = ∅: in this case, the optimistic value of
class i for Yj is V ∗

i (Yj) ⩽ t = Vi(X), implying that X
satisfies CEF for i. Thus, we assume that at least one item in
Yj is liked by at least one unmatched agent of class i.

By construction of the algorithm, we have |Y ∗
j | ⩽ t + 1.

This is because every time class j receives an item in Y ∗
j

(that is liked by an agent in class i who remains unmatched
till the end, and, therefore, is unmatched at the time of the
item’s arrival), class j must have a higher priority than class
i. Hence, the algorithm must match an item to class i before
it can match another item in Y ∗

j to class j. Thus, |Y ∗
j | ⩽

1+|Yi| = t+1. Fix an arbitrary item o ∈ Y ∗
j ⊆ Yj . We claim

that V ∗
i (Yj \ {o}) ⩽ 2t, which establishes the 1/2-CEF1

claim. Note that the t matched agents in class i can derive
a maximum total utility of t from these items. Further, the
total utility that the unmatched agents in class i can derive
from these items is upper bounded by |Y ∗

j \{o} | ⩽ t. Hence,
V ∗
i (Yj \ {o}) ⩽ 2t.

1/2-CMMS. Assume for contradiction that t = Vi(X) <
(1/2) · mmsi. Because mmsi is an integer, this implies 2t +
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1 ⩽ mmsi. Let (S1, S2, . . . , Sk) be a maximin partition of
the items for class i such that V ∗

i (Sj) ⩾ mmsi for every
j ∈ [k]. By our assumption, we have V ∗

i (Sj) ⩾ 2t + 1 for
every j ∈ [k]. For each j ∈ [k], we let S∗

j denote the set of
items in Sj that are liked by at least one unmatched agent in
class i. Note that V ∗

i (Sj) ⩽ t+ |S∗
j |: the t matched agents in

class i can derive total utility at most t, and the unmatched
agents can derive total utility at most |S∗

j |.
Recall that |Yi| = t and we have already established

|Y ∗
j | ⩽ t + 1 for every class j ∈ [k] \ {i}. Further, by non-

wastefulness, none of the unmatched agents of class i likes
any item in M \

⋃
h∈[k] Yh. Thus, we have |

⋃
j∈[k] S

∗
j | ⩽

|Yi ∪ (
⋃

j∈[k]\{i} Y
∗
j )| ⩽ t + (k − 1)(t + 1), meaning that

there exists some h ∈ [k] such that |S∗
h| ⩽ t. Thus, we have

V ∗
i (Sh) ⩽ 2t < 2t+ 1, a contradiction.

Before we turn to proving these guarantees to be the best
possible in our online setting, we remark that in the of-
fline setting, it is known that (exact) CEF1 and NW can be
achieved simultaneously (Benabbou et al. 2019). However,
whether they can be achieved together with α-CMMS, for
any α > 0, is an interesting open question.

3.2 Impossibility Results
In this section, we show that each of the fairness and effi-
ciency guarantees achieved by MATCH-AND-SHIFT (The-
orem 1) is tight; no deterministic online algorithm for
matching indivisible items can achieve a better approx-
imation. Note that our CEF1 upper bound is subject to
non-wastefulness because an algorithm can trivially achieve
CEF1 by throwing away every item. The constructions are
based on creating instances in which a subset of agents in
one class gets saturated early on, rendering the class envious
of another class at the end since all the remaining items can
only be matched to the agents in that other class.
Theorem 2. No deterministic online algorithm for match-
ing indivisible items can achieve any of the following guar-
antees:
• α-CEF1 for any α > 1/2 and non-wastefulness,
• α-CMMS for any α > 1/2,
• α-USW for any α > 1/2.

Proof. We argue each impossibility result separately.
CEF1 and NW. Consider Example 1 in the introduction. In
that example, we argued that any deterministic online algo-
rithm satisfying non-wastefulness ends up matching (with-
out loss of generality) Y2 = {o2, o3, o4} to class 2 and
Y1 = {o1} to class 1. One can check that V ∗

1 (Y2 \ {o}) = 2
for any o ∈ Y2, whereas V1(X) = 1, implying that the algo-
rithm cannot achieve α-CEF1 for any α > 1/2.
CMMS. We will prove that no deterministic online algo-
rithm satisfying non-wastefulness can achieve α-CMMS for
any α > 1/2. Proposition 2 implies that no deterministic al-
gorithm, regardless of whether it satisfies non-wastefulness,
can guarantee α-CMMS for any α > 1/2.

Since we have assumed non-wastefulness, we can repeat
the construction used above for the CEF1 upper bound. Con-
sider the same example again, and consider the partition

the items into (Ỹ1 = {o1, o2} , Ỹ2 = {o3, o4}). Note that
V ∗
1 (Ỹ1) = V ∗

1 (Ỹ2) = 2, implying that the maximin share
of class 1 is mms1 ⩾ 2. Since the value derived by class
1 is V1(X) = 1, we see that the algorithm cannot achieve
α-CMMS for any α > 1/2.
USW. Note that the USW guarantee does not depend on the
class structure; hence, the well-known upper bound of 1/2
on the approximation of a maximum matching by any deter-
ministic algorithm carries over to our model, and implies the
desired 1/2-USW upper bound.

Following Theorem 2, a natural question is whether there
is any way to circumvent this impossibility result. We show
that two such approaches do not work, demonstrating ro-
bustness of Theorem 2.

Remark 1 (Reshuffling items within each class cannot
help.). One idea is to only require the online algorithm to
match each item to a class, and allow every class to op-
timally distribute the items matched to it among its mem-
bers at the end. This effectively increases the utility of class
i from Vi(X) to V ∗

i (Yi). However, in Example 1 used for
the CEF1 and CMMS upper bounds in the proof above, the
matching produced already assigns items optimally within
each class (i.e., satisfies Vi(X) = V ∗

i (Yi) for each class
i). Hence, reshuffling items at the end cannot improve the
value any further. This shows that we must use randomiza-
tion when deciding which class should receive an item in
order to achieve a better approximation.

Remark 2. Another natural direction is to weaken the re-
quirements in Theorem 2. In our online setting, there is
a weakening of our α-CMMS guarantee that also makes
sense. Instead of computing the MMS values by partition-
ing the set of all items, we can first observe the matching
X produced by an algorithm and then compute the MMS
values by having each class partition only the set of items
allocated under X . This produces smaller (or equal) values,
making this CMMS with respect to allocated items a weaker
requirement than our CMMS with respect to all items.

MATCH-AND-SHIFT achieves a 1/2-approximation of the
stronger requirement. In contrast, the proof of Theorem 2
shows that no non-wasteful4 algorithm can achieve (1/2+ϵ)-
approximation of even the weaker requirement, for any ϵ >
0, because all items are allocated in our construction.

4 Divisible Items
We now turn our attention to online matching of divisi-
ble items. First, we design an algorithm that simultaneously
achieves non-wastefulness, (1−1/e)-CEF, (1−1/e)-CPROP,
and 1/2-USW. Later, we prove upper bounds on the approx-
imation ratio of each guarantee that hold for any algorithm.

4.1 Algorithm EQUAL-FILLING

We propose an algorithm, EQUAL-FILLING (presented as
Algorithm 2), that divides items equally at the class level and
performs water-filling to further divide the items assigned

4Seeking the weaker requirement makes sense only with non-
wastefulness since the empty matching vacuously satisfies it.
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ALGORITHM 2: EQUAL-FILLING

1 Initialize X = (xa,o)a∈N,o∈M so that xa,o = 0 for every
agent a and item o

2 Initialize Y = (yi,o)i∈[k],o∈M so that yi,o = 0 for every
class i and item o

3 when item o ∈M arrives do
4 /*class-phase*/
5 Let Ni,o denote the set of neighbours of item o in class

i, i.e., Ni,o = {a ∈ Ni : (a, o) ∈ E}
6 Define the demand of each class i ∈ [k] as

di,o =
∑

a∈Ni,o
(1−

∑
o′∈M xa,o′)

7 Find the largest βo ⩽ 1 satisfying∑
i∈[k] min{βo, di,o} ⩽ 1

8 Set yi,o = min{βo, di,o} for each i ∈ [k]
9 for i = 1 to k do

10 /*individual-phase*/
11 Find the largest γi,o ⩽ 1 satisfying∑

j∈Ni,o
max

{
γi,o −

∑
o′∈M xa,o′ , 0

}
⩽ yi,o

12 Set xa,o = max
{
γi,o −

∑
o′∈M xa,o′ , 0

}
for all

a ∈ Ni,o

to each class between the agents in that class. Recall that
our model has a capacity constraint:

∑
o∈M xa,o ⩽ 1 for

each agent a. Agent a is saturated if
∑

o∈M xa,o = 1, and
unsaturated otherwise.

When item o arrives, EQUAL-FILLING continuously
splits the item equally among classes with at least one unsat-
urated agent who likes the item.5 At the end of this process,
each class either receives the same fraction βo of the item, or
has all of its agents who like item o saturated. This compu-
tation is performed in Line 8 of Algorithm 2. Then, to divide
fraction of item o assigned to each class i within its mem-
bers, we conduct water-filling among the members who like
o, which continuously prioritizes agents with the lowest util-
ity. At the end of this process, each member who likes item o
either receives the same final utility γi,o or is saturated. This
computation is performed in Line 12 of Algorithm 2.
Theorem 3. For deterministic matching of divisible items,
EQUAL-FILLING (Algorithm 2) satisfies non-wastefulness,
(1− 1/e)-CEF, (1− 1/e)-CPROP, and 1/2-USW.

4.2 Impossibility Results
Our goal in this section is to provide upper bounds on
the fairness and efficiency guarantees that hold for any de-
terministic online algorithm for matching divisible items.
We prove that the (1 − 1/e)-CPROP guarantee achieved
by EQUAL-FILLING is tight, and establish a weaker upper
bound on CEF and USW.
Theorem 4. No deterministic online algorithm for matching
divisible items can achieve any of the following guarantees:

• α-CEF for any α > 3/4 and non-wastefulness,
• α-CPROP for any α > 1− 1/e,

5We do not yet need to know how the fraction of item o assigned
to a class is divided between its members; we can simply keep track
of the total remaining capacity of the agents in the class who like
the item.

• α-USW for any α > 1− 1/e.

Remark 3. Similar to Remark 2, one may wonder what
we can say about a weaker notion of proportionality with
respect to only the allocated items, i.e., if the proportional
share of each class is defined on the divisible matchings of
the allocated items (instead of all items). In Proposition 7 in
the full version (Hosseini et al. 2022), we show that the up-
per bound of 1 − 1/e continues to hold even for this weaker
version. However, unlike in the case of indivisible items, this
does not follow from the proof above (which considers an
instance with a single class, for which, trivially, the weaker
version is exactly satisfied). The proof of this proposition is
much more intricate.

While EQUAL-FILLING achieves the optimal 1 − 1/e ap-
proximation of CPROP, its guarantees with respect to CEF
and USW identified in Theorem 3 are weaker than the upper
bounds in Theorem 4. One might wonder if this is simply
because our analysis in Theorem 3 is loose. We show that
this is not the case. Hence, future work must focus either
on proving better upper bounds, or on designing new algo-
rithms which might surpass EQUAL-FILLING.

Proposition 3. EQUAL-FILLING does not achieve any of
the following guarantees:

• α-CEF for any α > 1− 1/e,
• α-CPROP for any α > 1− 1/e,
• α-USW for any α > 1/2.

5 Discussion

Our work introduces the novel framework of class fairness
in online matching. We derive bounds on approximate fair-
ness and efficiency guarantees that deterministic and ran-
domized online algorithms can achieve in this framework
for matching divisible and indivisible items, and leave open
a number of exciting open questions. For example, can a de-
terministic algorithm for matching divisible items achieve
a CEF approximation together with non-wastefulness better
than 1 − 1/e? (We conjecture the answer to be no.) Can it
achieve any reasonable CEF or CPROP approximation to-
gether with a USW approximation better than 1/2 (ideally,
1 − 1/e)? Can a randomized algorithm for matching indi-
visible items achieve any reasonable CEF approximation to-
gether with either non-wastefulness or a USW approxima-
tion? In the full version (Hosseini et al. 2022), we explore
randomized algorithms for allocating indivisible goods in
hopes of breaking the 1/2 barrier. We discuss the challenges
in devising fair randomized algorithms and develop an ex-
tension to the EQUAL-FILLING algorithm that simultane-
ously achieves 0.593-CPROP and 1/2-USW in this setting.

More broadly, our basic framework paves the road for in-
teresting extensions. For example, one can allow agents to
have non-binary values for the items, consider class fair-
ness notions that give more importance to bigger classes,
consider both agents and items arriving online (Huang
et al. 2020), study weaker adversarial models, or consider
stochastic instead of adversarial arrivals.
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