
Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack
Graphs

Mingyu Guo1, Max Ward2,3, Aneta Neumann1, Frank Neumann1, Hung Nguyen1

1 School of Computer and Mathematical Sciences, University of Adelaide, Australia
2 School of Physics, Maths and Computing, Computer Science and Software Engineering, University of Western Australia

3 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
{mingyu.guo, aneta.neumann, frank.neumann, hung.nguyen}@adelaide.edu.au, max.ward@uwa.edu.au

Abstract

Active Directory (AD) is the default security management
system for Windows domain networks. An AD environment
naturally describes an attack graph where nodes represent
computers/accounts/security groups, and edges represent ex-
isting accesses/known exploits that allow the attacker to gain
access from one node to another. Motivated by practical AD
use cases, we study a Stackelberg game between one attacker
and one defender. There are multiple entry nodes for the at-
tacker to choose from and there is a single target (Domain Ad-
min). Every edge has a failure rate. The attacker chooses the
attack path with the maximum success rate. The defender can
block a limited number of edges (i.e., revoke accesses) from
a set of blockable edges, limited by budget. The defender’s
aim is to minimize the attacker’s success rate.
We exploit the tree-likeness of practical AD graphs to design
scalable algorithms. We propose two novel methods that com-
bine theoretical fixed parameter analysis and practical optimi-
sation techniques.
For graphs with small tree widths, we propose a tree decom-
position based dynamic program. We then propose a gen-
eral method for converting tree decomposition based dynamic
programs to reinforcement learning environments, which
leads to an anytime algorithm that scales better, but loses the
optimality guarantee.
For graphs with small numbers of non-splitting paths (a pa-
rameter we invent specifically for AD graphs), we propose
a kernelization technique that significantly downsizes the
model, which is then solved via mixed-integer programming.
Experimentally, our algorithms scale to handle synthetic AD
graphs with tens of thousands of nodes.

Introduction
Active Directory (AD) is the default system for managing
access and security in Windows domain networks. Given its
prevalence among large and small organisations worldwide,
Active Directory has become a major target by cyber attack-
ers.1 An AD environment naturally describes a cyber attack
graph — a conceptual model for describing the causal rela-
tionship of cyber events. In an AD graph, the nodes are com-
puters/user accounts/security groups. An edge from node A

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Enterprise Management Associates (2021) found that 50% of
organizations surveyed had experienced an AD attack since 2019.

to node B represents that an attacker can gain access from A
to B via an existing access or a known exploit. Unlike many
attack graph models that are of theoretical interest only,2 AD
attack graphs are actively being used by real attackers and IT
admins. Several software tools (including both open source
and commercial software) have been developed for scan-
ning, visualizing and analyzing AD graphs. Among them,
one prominent tool is called BLOODHOUND, which models
the identity snowball attack. In such an attack, the attacker
starts from a low-privilege account, which is called the at-
tacker’s entry node (i.e., obtained via phishing emails). The
attacker then travels from one node to another, where the
end goal is to reach the highest-privilege account called the
DOMAIN ADMIN (DA).

Given an entry node, BLOODHOUND generates a short-
est attack path to DA, where a path’s distance is equal
to the number of hops (fewer hops implies less chance of
failure/being detected). Before the invention of BLOOD-
HOUND, attackers used personal experience and heuristics
to explore the attack graph, hoping to reach DA by chance.
BLOODHOUND makes it easier to attack Active Directory.

Besides the attackers, defenders also study Active Di-
rectory attack graphs. The original paper that motivated
BLOODHOUND (Dunagan, Zheng, and Simon 2009) pro-
posed a heuristic for blocking edges of Active Directory at-
tack graphs. The goal is to cut the attack graph into multi-
ple disconnected regions, which would prevent the attacker
from reaching DA. In an AD environment, edge blocking
is achieved by revoking accesses or introducing monitoring.
Not all edges are blockable. Some accesses are required for
the organisation’s normal operations. Blocking is also costly
(i.e., auditing may be needed before blocking an edge).

We study how to optimally block a limited number of
edges in order to minimize a strategic attacker’s success rate
(chance of success) for reaching DA. In our model, we as-
sume that different edges have different failure rates. The
defender can block a blockable edge to increase the failure
rate of that edge (from its original failure rate) to 100%. The
defender can block at most b edges, where b is the defensive
budget. For example, if it takes 1 hour for an IT admin to
block an edge (auditing, reporting, implementation) and one

2(Lallie, Debattista, and Bal 2020) surveyed over 180 attack
graphs/trees from academic literatures on cyber security.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5649

eight-hour day is dedicated to AD cleanup, then b = 8.
We study both pure and mixed strategy blocking. A pure

strategy blocks b edges deterministically. A mixed strategy
specifies multiple sets of b edges, and a distribution over the
sets. We follow the standard Stackelberg game model by as-
suming that the attacker can observe the defender’s strategy
and play a best response. For mixed strategy blocking, the
attacker can only observe the probabilities, not the actual re-
alizations. There is a set of entry nodes for the attacker to
choose from. The attacker’s strategy specifies an entry node
and from it an attack path to DA. The attacker’s goal is to
maximize the success rate by choosing the best path.

The pure strategy version of our model can be reduced
to the single-source single-destination shortest path edge
interdiction problem, which is known to be NP-hard (Bar-
noy, Khuller, and Schieber 1995). However, NP-hardness
on general graphs does not rule out efficient algorithms for
practical AD graphs. Active Directory style attack graphs
exhibit special graph structures and we can exploit these
structures to derive scalable algorithms. We adopt fixed-
parameter analysis. Formally, given an NP-hard problem
with problem size n, let the easy-to-solve instances be
characterized by special parameters k1, . . . , kc. If we are
able to derive an algorithm that solves these instances in
O(f(k1, . . . , kc)POLY(n)), then we claim that the problem
is fixed-parameter tractable (FPT) with respect to the kis.
Here, f is an arbitrary function that is allowed to be expo-
nential. We do require that the running time be polynomial
in the input size n. That is, an FPT problem is practically
solvable for large inputs, as long as the special parameters
are small (i.e., they indeed describe easy instances).

It should be noted that this paper’s focus is not to push
the frontier of theoretical fixed-parameter analysis. Instead,
fixed-parameter analysis is our means to design scalable
algorithms for our specific application on AD graphs. As
a matter of fact, our approaches combine theoretical fixed-
parameter analysis and practical optimisation techniques.

We observe that practical AD graphs have two notice-
able structural features.3 We first observe that the attack
paths tend to be short. Note that we are not claiming that
long paths do not exist (i.e., there are cycles in AD graphs).
The phrase “attack paths” refer to shortest paths that the at-
tacker would actually use. The BLOODHOUND team uses
the phrase “six degrees of domain admin” to draw the anal-
ogy to the famous “six degree of separation” idea from the
small-world problem (Milgram 1967) (i.e., all people in this
world are on average six or fewer social connections away
from each other). That is, in an organisation, it is expected
that it takes only a few hops to travel from an intern’s ac-
count to the CEO’s account. Similar to the “small-world”
hypothesis, attack paths being short is an unproven observa-
tion that we expect to hold true for practical purposes.

The second structural feature is that AD graphs are very
similar to trees. The tree-like structure comes from the fact

3The AD environment of an organisation is considered sensi-
tive. In this paper, we only reference synthetic AD graphs generated
using two tools: BLOODHOUND team’s DBCREATOR and another
open source tool called ADSIMULATOR.

that it is considered a best practise for the AD environment to
follow the organisation chart. For example, human resources
would form one tree branch while marketing would form an-
other tree branch. However, an Active Directory attack graph
is almost never exactly a tree, because there could be valid
reasons for an account in human resources to access data
on a computer that belongs to marketing. We could interpret
Active Directory attack graphs as trees with extra non-tree
edges that represent security exceptions.

Our aim is to design practically scalable algorithms for
optimal pure and mixed strategy edge blocking. For organ-
isations with thousands of computers in internal networks,
the AD graphs generally involve tens of thousands of nodes.
We manage to scale to such magnitude by exploiting the
aforementioned structural features of practical AD graphs.

We first show that having short attack paths alone is not
enough to derive efficient algorithms. Even if the maximum
attack path length is a constant, both pure and mixed strategy
blocking are NP-hard. We then focus on exploring the tree-
likeness of practical AD graphs.

Our first approach focuses on pure strategy blocking only.
For graphs with small tree widths, we propose a tree decom-
position based dynamic program, which scales better than
existing algorithms from (Guo et al. 2022). We then propose
a general method for converting tree decomposition based
dynamic programs to reinforcement learning environments.
When tree widths are small, the derived reinforcement learn-
ing environments’ observation and action spaces are both
small. This leads to an anytime algorithm that scales better
than dynamic program, but loses the optimality guarantee.

Our second approach handles both pure and mixed strat-
egy blocking. We invent a non-standard fixed parameter
specifically for our application on AD graphs. A typical
attack path describes a privilege escalation pathway. It is
rare for a node to have more than one privilege escalat-
ing out-going edges (as such edges often represent security
exceptions or misconfigurations). We observe that practical
AD graphs consist of non-splitting paths (paths where every
node has one out-going edge). For graphs with small num-
bers of non-splitting paths, we propose a kernelization tech-
nique that significantly downsizes the model, which is then
solved via mixed-integer programming. We experimentally
verify that this approach scales exceptionally well on syn-
thetic AD graphs generated by two open source AD graph
generators (DBCREATOR and ADSIMULATOR).

Related Research
(Guo et al. 2022) studied edge interdiction for AD graphs,
where the attacker is given an entry node by nature. In (Guo
et al. 2022), the defensive goal is to maximize the attacker’s
expected attack path length (i.e., number of hops). In this pa-
per, the defensive goal is to minimize the attacker’s worst-
case success rate, based on the assumption that different
edges may have different failure rates. The authors proposed
a tree decomposition based dynamic program, but it only ap-
plies to acyclic AD graphs. Practical AD graphs do contain
cycles so this algorithm does not apply. The authors resorted
to graph convolutional neural network as a heuristic to han-
dle large AD graphs with cycles. Our proposed algorithms

5650

can handle cycles, scale better, and produce the optimal re-
sults (instead of being mere heuristics). Furthermore, (Guo
et al. 2022) only studied pure strategy blocking.

(Goel et al. 2022) studied a different model on edge inter-
diction for AD graphs. Under the authors’ model, both the
attacker’s and the defender’s problem are #P-hard, and the
authors proposed a defensive heuristic based on combining
neural networks and diversity evolutionary computation.

The model studied in this paper is similar to the bounded
length cut problem studied in (Golovach and Thilikos 2011)
and (Dvořák and Knop 2018), where the goal is to re-
move some edges so that the minimum path length be-
tween a source and a destination meets a minimum thresh-
old. (Dvořák and Knop 2018) proposed a tree decomposition
based dynamic program for the bounded length cut problem.
The authors’ algorithms require that all source and destina-
tion nodes be added to every bag in the tree decomposition.
This is fine for showing the theoretical existence of FPT al-
gorithms, but it is practically not scalable. Furthermore, for
bounded length cut, if a path is shorter than the threshold,
then it must be cut and if a path is longer than the threshold,
then it can be safely ignored. This is a much clearer picture
than our model where we need to judge the relative impor-
tance of edges and spend the budget on the most vital ones.

(Jain and Korzhyk 2011) proposed a double-oracle algo-
rithm for equilibrium calculation on attack graphs, whose
model is defined differently. Their approach is designed for
general graphs so it only scales to a few hundred nodes
and therefore is not suitable for practical AD graphs. (Aziz
et al. 2018; Aziz, Gaspers, and Najeebullah 2017) studied
node interdiction for minimizing inverse geodesic length.
(Durkota et al. 2019) and (Milani et al. 2020) studied de-
ception based defense on cyber attack graphs.

Formal Model Description
We use a directed graph G = (V,E) to describe the Active
Directory environment. Every edge e has a failure rate f(e).
There is one destination node DA (Domain Admin). There
are s entry nodes. The attacker can start from any entry node
and take any route. The attacker’s goal is to maximize the
success rate to reach DA, by picking an optimal entry node
and an optimal attack path. The defender picks b edges to
block from a set of blockable edges Eb ⊆ E, where b is the
defensive budget. The aim of the defender is to minimize the
attacker’s success rate.

Figure 1: Example attack graph. Node 0 is DA. Node 4, 3, 5
are entry nodes (marked using ∗). Edge labels represent the
edges’ failure rates. Thick edges (i.e., 1 → 0) are not block-
able.

We study both pure and mixed strategy blocking. We

use B(e) to describe the probability that a blockable edge
e ∈ Eb is blocked. For pure strategy blocking, B(e) equals
either 0 or 1. For mixed strategy blocking, B(e) is in [0, 1].
The budget constraint is

∑
e∈Eb

B(e) ≤ b. We adopt the
standard Stackelberg game model by assuming that the at-
tacker can observe the defensive strategy and then plays a
best response. For a mixed strategy defense, we assume that
the attacker can observe B(e)’s probabilistic values, but not
the realisations.

Given B, the attacker’s optimal attack path can be
found via maxp∈P

{∏
e∈p(1− f(e))(1−B(e))

}
,

where P is the set of all attack paths from all entry
nodes. This maximization problem is equivalent to
minp∈P

{∑
e∈p (− ln(1− f(e))− ln(1−B(e)))

}
. By

applying natural log to convert from product to sum, we
treat an edge’s “distance” as − ln(1− f(e))− ln(1−B(e))
(nonnegative). The attacker’s optimal attack path can be
solved using Dijkstra’s shortest path algorithm (Dijkstra
1959). Let SR(B) be the success rate of the attacker facing
blocking policy B. The defender’s problem is minB SR(B).

Earlier we mentioned that our plan is to exploit the special
structural features of practical AD graphs. Our first result is
a negative result, which shows that having short attack paths
alone is not enough to derive efficient algorithms. That is,
we do need to consider the tree-like features.

Theorem 1. Both pure and mixed strategy blocking are NP-
hard for constant maximum attack path length.

Proof is omitted due to space constraint.

Tree Decomposition Based Dynamic Program
for Pure Strategy Blocking

Tree decomposition is a process that converts a general graph
to a tree, where every tree node is a bag (set) of graph ver-
tices. The maximum bag size minus one is called the tree
width. A small tree width indicates that the graph is close
to a tree. Many NP-hard combinatorial problems for general
graphs become tractable if we focus on graphs with small
tree widths. We show that this is also true for our model. For
the rest of this section, we assume the readers are already
familiar with tree decomposition related terminologies.

Throughout the discussion, we use nodes to refer to tree
nodes in the tree decomposition and vertices to refer to ver-
tices in AD graphs.

Besides assuming a small tree width, another key assump-
tion of our dynamic program is that we assume a path’s suc-
cess rate is from a small set of at most H values. A path’s
success rate is the attacker’s success rate for going through
it without any blocking. If all edges have the same failure
rate, then H is just the maximum attack path length l plus
2 (0 to l hops, plus “no path”). In general, if the number of
edge types is a small constant k, then H ∈ O(lk). In our
experiments, we assume that there are two types of edges
(high-failure-rate and low-failure-rate edges), which corre-
sponds to H ∈ O(l2). It should be noted that H is only used
for worst-case complexity analysis. In experiments, given a
specific graph, a path’s number of possible success rates is

5651

often significantly less (i.e., if the path is not blockable alto-
gether, then there is only one possible success rate).

We call our DP TDCYCLE (tree decomposition with cy-
cles4). The first step is to treat the attack graph as an undi-
rected graph and then generate a tree decomposition. It
should be noted that the optimal tree decomposition with
the minimum tree width is NP-hard to compute (Arnborg,
Corneil, and Proskurowski 1987). In our experiments, we
adopt the vertex elimination heuristic for generating tree
decomposition (Bodlaender et al. 2006). We then convert
the resulting tree decomposition into a nice tree decompo-
sition (Cygan et al. 2015), where the root node is a bag con-
taining DA only and all the leaf nodes are bags of size one.
We use TD to denote the resulting nice tree decomposition.
TD has O(wn) nodes where w is the tree width.

Lemma 1. Let (u, v) be an arbitrary edge from the original
AD graph. Under TD, there exists one and only one forget
node X , whose child is denoted as X ′, where {u, v} ⊆ X ′

and X ′ \X is either {u} or {v}.

The above lemma basically says that every edge can
be “assigned” to exactly one forget node. For forget node
(x2, x3, . . . , xk) with child (x1, x2, . . . , xk) (i.e., x1 is
forgotten), we assign all edges between x1 and one of
x2, . . . , xk to this forget node. The high-level process of our
dynamic program is that we first remove all edges from the
graph. We then go through TD bottom up. At forget node
X , we examine all the edges assigned to X . If an edge is not
blockable or we decide not to block it, then we put it back
into the graph. Otherwise, we do not put it back. After we
finish the whole tree (while ensuring that the budget spent is
at most b ⇐⇒ we have put back at least |E| − b edges), we
end up with a complete blocking policy.

Let X = (x1, x2, . . . , xk) be a tree node (k ≤ w + 1).
Let St(X) be the subtree of TD rooted at X . Let Ch(X)
be the set of all graph vertices referenced in St(X). Let
Ch(X)′ = Ch(X) \X . Ch(X)′ is then the set of vertices
already forgotten after we process St(X) in the bottom-
up fashion. A known property of tree decomposition is that
the vertices in Ch(X)′ cannot directly reach any vertex in
V \ Ch(X). That is, any attack path from an entry vertex
in Ch(X)′ to DA must pass through some xi in X . Also,
any attack path (not necessarily originating from Ch(X)′)
may involve vertices in Ch(X)′ by entering the graph region
form by Ch(X)′ via a certain xi and then exit the region via
a different node xj . An attack path may “enter and exit” the
region multiple times but all entries and exists must be via
the vertices in X .

Suppose we have spent b′ units of budget on (forget nodes
of) St(X). We do not need to keep track of the specifics of
which edges have been blocked. We only need to track the
total budget spending and the following “distance” matrix:

M =

d11 d12 . . . d1k
. . .
dk1 dk2 . . . dkk

4This is to differentiate from the dynamic program proposed in

(Guo et al. 2022), which cannot handle cycles and does not guaran-
tee correctness for practical AD graphs as they do contain cycles.

dij represents the minimum path distance5 between xi

and xj , where the intermediate edges used are the edges we
have already put back after processing St(X). Diagonal el-
ement dii represents the minimum path distance from any
entry vertex (among Ch(X)) to xi. We say the tuple (M, b′)
is possible at X if and only if it is possible to spent b′ (b′ ≤ b)
on St(X) to achieve the distance matrix M .

Every tree node of TD corresponds to a DP subproblem
and there are O(wn) subproblems. The subproblem corre-
sponding to X is denoted as DP (X). DP (X) simply re-
turns the collection of all possible tuples at node X .

Base cases: For a leaf node X = {x}, if x is an entry ver-
tex, then DP (X) contains one tuple, which is ([0], 0). Oth-
erwise, the only possible tuple in DP (X) is ([∞], 0).

Original problem: The root of TD is {DA}. The original
problem is then DP ({DA}), which returns the collection of
all possible tuples at the root. Every tuple from the collection
has the form ([dDA,DA], b

′), which represents that it is pos-
sible to spend b′ to ensure that the attacker’s distance from
DA is dDA,DA. The maximum dDA,DA in DP ({DA}) corre-
sponds to the attacker’s success rate facing optimal blocking.

We then present the recursive relationship for our DP:

Introduce node: Let X = (x1, . . . , xk, y) be an introduce
node, whose child is X ′ = (x1, . . . , xk). Given a possible
tuple in DP (X ′), we generate a new tuple as follows, which
should belong to DP (X). dyy is 0 if y is an entry vertex and
it is ∞ otherwise (when y is introduced, all its edges have
not been put back yet so it is disconnected from the xi).d11 . . . d1k

. . .
dk1 . . . dkk

 , b′

 →

d11 . . . d1k ∞
. . .
dk1 . . . dkk ∞
∞ . . . ∞ dyy

 , b′

Forget node: Let X = (x2, . . . , xk) be a forget node, whose
child is X ′ = (x1, . . . , xk). At X , we need to determine
how to block edges connecting x1 and the rest x2, . . . , xk.
There are at most k− 1 edges to block so we simply go over
at most 2k−1 blocking options. For each specific blocking
option (corresponding to a spending of b′′), we convert a
tuple in DP (X ′) to a tuple in DP (X) as follows (the new
tuple is discarded if b′ + b′′ > b):

d11 . . . d1k
. . .
dk1 . . . dkk

 , b′

 →

d′22 . . . d′2k
. . .
d′k2 . . . d′kk

 , b′ + b′′

The d′ij are updated distances considering the newly put

back edges. We need to run an all-pair shortest path algo-
rithm with complexity O(k3) for this update.

Join node: Let X be a join node with two children X1 and
X2. For (M1, b1) ∈ DP (X1) and (M2, b2) ∈ DP (X2), we
label (M ′, b1+b2) as a possible tuple in DP (X) if b1+b2 ≤
b. M ′ is the element-wise minimum between M1 and M2.

5Recall that given an edge with failure rate f(e), we treat the
edge’s “distance” as − ln(1− f(e)) when it is not blocked.

5652

Theorem 2. TDCYCLE’s complexity is O(H2w2

b2w2n).
Proof is omitted due to space constraint.
To summarize our dynamic program, we follow a bottom-

up order (from leaf nodes of nice tree decomposition TD to
the root). We propagate the set of all possible tuples (M, b′)
as we process the nodes. At introduce/join nodes, we fol-
low a pre-determined propagation rule and do not make any
blocking decisions. At forget nodes, we decide which edges
to block from at most w edges. Given a specific AD graph
and its corresponding tree decomposition TD, we can con-
vert our dynamic program to a reinforcement learning en-
vironment as follows, which leads to an anytime algorithm
that scales better than dynamic program (i.e., RL can always
produce a solution, which may or may not be optimal, and
generally improves over time; on the other hand, dynamic
program cannot scale to handle slightly larger tree widths).
Our conversion technique can potentially be applied to tree
decomposition based dynamic programs for other combina-
torial optimisation problems.

• We use post-order traversal on TD to create an ordering
of the nodes (children are processed before parents).

• Instead of propagating all possible tuples (M, b′), we
only propagate the best tuple (we have found so far dur-
ing RL training). For example, consider a forget node X
with child X ′. The best tuple at node X ′ is passed on to
X as observation. The action for this observation is then
to decide which edges to block at X .

• Specifically to our model, for forget node X , if there are
k (k ≤ w) edges to block, then we treat it as k separate
steps in our reinforcement learning environment. That is,
every step makes a blocking decision on a single edge
and the action space is always binary.

• For introduce/join nodes, since we do not need to make
any decisions, our reinforcement learning environment
automatically processes these nodes (between steps).

• We set a final reward that is equal to the solution quality.

After we convert a specific AD graph into a reinforcement
learning environment, we can then apply standard RL algo-
rithms to search for the optimal blocking policy for the AD
graph under discussion.

Following our conversion, both the observation and the
action spaces are small when tree widths are small. Unfor-
tunately, one downside of the above conversion technique is
that there is no guarantee on having a small episode length.
We could argue that it is impossible to guarantee small ob-
servation space, small action space, and small episode length
at the same time, unless the AD graph is relatively small
in scale. After all, we are solving NP-hard problems. Ex-
perimentally, for smaller AD graphs, we are able to achieve
near-optimal performances as the episode lengths are man-
ageable. For larger AD graphs, the episode lengths are too
long. We introduce the following heuristic for limiting the
episode length. Let T be the target episode length. Our idea
is to hand-pick T relatively important edges and set the un-
picked edges not blockable. In our experiments, we first cal-
culate the min cut that separates the entry nodes from DA
(unblockable edges’ capacities are set to be large). Let the

number of blockable edges in the min cut be C. If C ≥ T ,
then we simply treat these C edges as important and set the
episode length to C. If C < T , then we add in T −C block-
able edges that are closest to DA.

It should be noted that our RL-based approach is not
merely performing “random searching” via exploration. It
is indeed capable of “learning” to react to the given observa-
tion. Under our original approach, the observation contains
the distance matrix M , the budget spent b′, and also the cur-
rent step index. If we replace M by the zero matrix or by a
random matrix, then the training results significantly down-
grade in experiments.

Kernelization
Kernelization is a commonly used fixed-parameter analysis
technique that preprocesses a given problem instance and
converts it to a much smaller equivalent problem, called the
kernel. We require that the kernel’s size be bounded by the
special parameters (and not depend on n).

As mentioned in the introduction, for practical AD
graphs, most nodes have at most one out-going edge. If an
edge is not useful for the attacker, then we can remove it
without loss of generality. If an edge is useful for the at-
tacker, then generally, it is privilege escalating. It is rare for
a node to have two separate privilege escalating out-going
edges (as they often correspond to security exceptions or
misconfigurations). We use SPLIT to denote the set of all
splitting nodes (nodes with multiple out-going edges). We
use SPLIT+DA to denote SPLIT with DA added. We use
ENTRY to denote the set of all entry nodes. We invent a
new parameter called the number of non-splitting paths. Ex-
perimentally, this parameter leads to algorithms that scale
exceptionally well for synthetic AD graphs generated using
two different open source AD graph generators.
Definition 1 (Non-splitting path). Given node u, let v be
one of u’s successors. The non-splitting path NSP(u, v) is
defined recursively:

• If v ∈ SPLIT+DA, then NSP(u, v) is u → v.
• Otherwise, v must have a unique successor v′. NSP(u, v)

is the path that combines u → v and NSP(v, v′).

In words, NSP(u, v) is the path that goes from u to v, then
repeatedly moves onto the only successor of v if v has only
one successor, until we reach either a splitting node or DA.
We use DEST(u, v) to denote the ending node of NSP(u, v).
We have DEST(u, v) ∈ SPLIT+DA. A non-splitting path is
called blockable if at least one of its edges is blockable.

An AD graph can be viewed as the joint of the follow-
ing set of non-splitting paths. Our parameter (the number of
non-splitting paths #NSP) is the size of this set.

{NSP(u, v)|u ∈ SPLIT ∪ ENTRY, v ∈ SUCCESSORS(u)}

The blockable edge furthest away from u on the path
NSP(u, v) is denoted as BW(u, v). BW stands for block-
worthy due to the following lemma.
Lemma 2. For both pure and mixed strategy blocking, we
never need to spend more than one unit of budget on a non-
splitting path. There exists an optimal defense that blocks

5653

only edges from the following set BW:

{BW(u, v)|u ∈ SPLIT ∪ ENTRY, v ∈ SUCCESSORS(u)}

We present how to formulate our model as a nonlinear
program, based on the aforementioned non-splitting path in-
terpretation. The nonlinear program can then be converted
to MIPs and be efficiently solved using state-of-the-art MIP
solvers. We use Be to denote the unit of budget spent on
edge e. Be is binary for pure strategy blocking and is be-
tween 0 and 1 for mixed strategy blocking. As mentioned
earlier, Be ≥ 0 for e ∈ BW and Be = 0 for e /∈ BW.
We use ru to denote the success rate of node u. The suc-
cess rate of a node is the success rate of the optimal at-
tack path starting from this node, under the current defense
(i.e., the Be). We use cu,v to denote the success rate of the
non-splitting path NSP(u, v) when no blocking is applied.
cu,v =

∏
e∈NSP(u,v)(1 − f(e)). The cu,v are constants. We

use r∗ to represent the attacker’s optimal success rate.

C = {(u, v)|u ∈ SPLIT∪ENTRY, v ∈ SUCCESSORS(u)}

C+ = {(u, v)|(u, v) ∈ C, NSP(u, v) blockable}
C− = {(u, v)|(u, v) ∈ C, NSP(u, v) not blockable}

We have the following nonlinear program:

min r∗

r∗ ≥ ru ∀u ∈ ENTRY
ru ≥ rDEST(u,v)cu,v(1−BBW(u,v)) ∀(u, v) ∈ C+

ru ≥ rDEST(u,v)cu,v ∀(u, v) ∈ C−

b ≥
∑

e∈BW Be

rDA = 1
ru, r

∗ ∈ [0, 1]
Be ∈ {0, 1} or [0, 1]

The above program has at most O(#NSP) variables and
at most O(#NSP) constraints (both do not depend on n).

Integer program for pure strategy blocking: For pure
strategy blocking, the above program can be converted to
an IP by rewriting ru ≥ rDEST(u,v) ·cu,v · (1−BBW(u,v)) into
an equivalent linear form ru ≥ rDEST(u,v) · cu,v −BBW(u,v).

Mixed Strategy Blocking
We can convert the nonlinear program from the previous sec-
tion into a program that is almost linear. We first observe that
if under the optimal mixed strategy defense, the attacker’s
success rate is at least ϵ, then that means we never want to
block any edge with a probability that is strictly more than
1 − ϵ. Due to this observation, we artificially enforce that
we do not block an edge with more than 1 − ϵ probabil-
ity and solve for the optimal defense under this restriction.
If in the end result, the attacker’s success rate is at least ϵ,
then our restriction is not actually a restriction at all. If our
solution says that the attacker’s success rate is less than ϵ,
then we have an almost optimal defense anyway. In this pa-
per, we set ϵ = 0.01. That is, for e ∈ BW, we require that
0 ≤ Be ≤ 0.99 instead of 0 ≤ Be ≤ 1.

With the above observation, we can convert the nonlin-
ear program, which involves multiplication, to an almost

linear program as follows. Our trick is to replace ru by
r′u = − ln(ru), replace r∗ by r′∗ = − ln(r∗), replace
Be by B′

e = − ln(1 − Be), and finally replace cu,v by
c′u,v = − ln(cu,v). Our variables are now r′∗, the r′u and
the B′

e. Due to monotonicity of natural log, we can rewrite
the earlier nonlinear program as:

max r′∗

r′∗ ≤ r′u ∀u ∈ ENTRY
r′u ≤ r′DEST(u,v) + c′u,v +B′

BW(u,v) ∀(u, v) ∈ C+

r′u ≤ r′DEST(u,v) + c′u,v ∀(u, v) ∈ C−

b ≥
∑

e∈BW(1− e−B′
e)

r′DA = 0
r′u, r

′∗ ∈ [0,∞)
B′

e ∈ [0,− ln(0.01)]

Unfortunately, the above program is not linear as the bud-
get constraint is not linear. Furthermore, the above program
is not even convex: Since 1− e−x is concave, the average of
two feasible solutions may violate the budget constraint.

Iterative LP Based Approximation Heuristic
We note that 1 − e−x is increasing. That is, as long as we
push down the total of B′

e, we eventually will reach a sit-
uation where the budget constraint is satisfied. That is, we
rewrite the budget constraint as b′ ≥

∑
e∈BW B′

e, which is a
linear constraint. We guess a value for b′ and then solve the
corresponding LP. We verify whether the LP solution also
satisfies the original nonlinear budget constraint. If it does,
then that means we could increase our guess of b′ (increasing
b′ means spending more budget). If our LP solution violates
the original nonlinear budget constraint, then it means we
should decrease our guess of b′. A good guess of b′ can be
obtained via a binary search from 0 to −|BW| ln(0.01).

MIP Based Approximation
Another way to address the nonlinear budget constraint is to
add the Be back into the model (0 ≤ Be ≤ 0.99 for e ∈
BW). The budget constraint

∑
e∈BW Be ≤ b is now back to

linear. Of course, this cannot be the end of the story, since we
also need to link the Be and the B′

e together. We essentially
have introduced a new set of nonlinear constraints, which
are B′

e = − ln(1−Be) for e ∈ BW.
The function − ln(1 − x) is close to a straight line if we

focus on a small interval. If x ∈ [a, b], the straight line con-
necting (a,− ln(1 − a)) and (b,− ln(1 − b)) is an upper
bound of − ln(1 − x). A straight line representing a lower
bound of − ln(1−x) is the tangent line at the interval’s mid
point a+b

2 .
Given a specific Be, we could divide Be’s region [0, 0.99]

into multiple smaller intervals. For each region, we have two
straight lines that represent the lower and upper bounds on
− ln(1 − x). We could join the regions and compose gL(x)
and gU (x), which are the piece-wise linear lower and up-
per bounds on − ln(1− x). We replace B′

e = − ln(1−Be)
by B′

e = gL(Be) or B′
e = gU (Be), respectively, to cre-

ate two different MIP programs. We use the multiple choice
model presented in (Croxton, Gendron, and Magnanti 2003)
to implement piece-wise linear constraints with the help of

5654

auxiliary binary variables. The program with B′
e = gL(Be)

underestimates the B′
e, which results in an overestimation of

the budget spending and therefore an overestimation of the
attacker’s success rate. This program results in an achieved
feasible defense. The program with B′

e = gU (Be) on the
other hand results in a lower bound on the attacker’s suc-
cess rate. When the intervals are fine enough, experimen-
tally, the achieved feasible defense is close to the lower
bound (therefore close to optimality).

Experiments
All our experiments are carried out on a desktop with i7-
12700 CPU and NVIDIA GeForce RTX 3070 GPU. Our
MIP solver is Gurobi 9.5.1. For pure strategy blocking, we
proposed two algorithms: TDCYCLE and IP (integer pro-
gram based on kernelization). We also include a third algo-
rithm GREEDY to serve as a baseline. GREEDY spends one
unit of budget in each round for a total of b rounds. In each
round, it greedily blocks one edge to maximally decrease
the attacker’s success rate. For mixed strategy blocking, we
have an iterative LP based heuristic ITERLP, a mixed inte-
ger program MIP-F(EASIBLE) for generating a feasible de-
fense and a mixed integer program MIP-LB for generating
a lower bound on the attacker’s success rate.

We evaluate our algorithms using two attack graphs gen-
erated using BLOODHOUND team’s synthetic graph gen-
erator DBCREATOR. We call the attack graph R2000 and
R4000, which are obtained by setting the number of com-
puters in the AD environment to 2000 and 4000. R2000
contains 5997 nodes and 18795 edges and R4000 contains
12001 nodes and 45780 edges. We also generate a third at-
tack graph using a different open source synthetic graph gen-
erator ADSIMULATOR. ADSIMULATOR by default generates
a trivially small graph. We increase all its default param-
eters by a factor of 10 and create an attack graph called
ADS10. ADS10 contains 3015 nodes and 12775 edges.
Even though ADS10 contains less nodes, experimentally it
is actually more expensive to work with compared to R2000
and R4000, as it is further away from a tree.

We only consider three edge types: ADMINTO, MEM-
BEROF, and HASSESSION. These are a representative sam-
ple of edges types used in BloodHound. We set the failure
rates of all edges of type HASSESSION to 0.2 (requiring a
session between an account and a computer, therefore more
likely to fail) and set the failure rates of all edges of the other
two types to 0.05. We set the number of entry nodes to 20.
We select 40 nodes that are furthest away from DA (in terms
of the number of hops to reach DA) and randomly draw 20
nodes among them to be the entry nodes. We define HOP(e)
to be the minimum number of hops between an edge e and
DA. We set MAXHOP to be the maximum value for HOP(e).
An edge is set to be blockable with probability HOP(e)

MAXHOP
. That

is, edges further away from DA are set to be more likely to
be blockable. Generally speaking, edges further away from
DA tend to be about individual employees’ accesses instead
of accesses between servers and admins. We set the budget
to 5 and 10. All experiments are repeated 10 times, with dif-
ferent random draws of the entry nodes and the blockable

edges. The numbers in the table are the attacker’s average
success rates over 10 trials. The numbers in the parenthesis
are the average running time.

budget=5 R2000 R4000 ADS10
GREEDY 0.521 (0.04s) 0.376 (0.34s) 0.448 (4.57s)
TDCYCLE 0.480 (0.10s) 0.373 (15366s) -
IP 0.480 (0.01s) 0.373 (0.06s) 0.409 (0.09s)
ITERLP 0.337 (0.37s) 0.180 (0.57s) 0.300 (1.90s)
MIP-F 0.335 (0.11s) 0.179 (3.54s) 0.303 (4.75s)
MIP-LB 0.333 (0.11s) 0.176 (2.61s) 0.297 (4.98s)

budget=10 R2000 R4000 ADS10
GREEDY 0.499 (0.07s) 0.376 (0.65s) 0.448 (8.97s)
TDCYCLE 0.263 (0.18s) - -
IP 0.263 (0.01s) 0.117 (0.03s) 0.315 (0.10s)
ITERLP 0.266 (0.39s) 0.033 (0.60s) 0.190 (1.92s)
MIP-F 0.270 (0.02s) 0.023 (0.54s) 0.191 (11.27s)
MIP-LB 0.263 (0.02s) 0.014 (0.24s) 0.183 (3.62s)

Interpretation of Results: For pure strategy blocking, TD-
CYCLE and IP are both expected to produce the optimal re-
sults. As expected, they perform better than GREEDY. TD-
CYCLE doesn’t scale for 3 out of 6 settings. On the other
hand, IP scales exceptionally well. As mentioned earlier, IP
scales better since it is based on a parameter that we invent
specifically for describing AD graphs. For graphs with large
number of non-splitting paths and small tree widths, we ex-
pect TDCYCLE to scale better, but such graphs may not
be AD graphs. For mixed strategy blocking, the attacker’s
success rates under both ITERLP and MIP-F(EASIBLE) are
close to MIP-LB (lower bound on the attacker’s success
rate), which indicates that both heuristics are near-optimal.

Results on scaling TDCYCLE via reinforcement learn-
ing: We present results on two settings: R2000 with b = 5
and ADS10 with b = 10. These two are the cheapest and
the most expensive among our six experimental settings. All
our experimental setups are the same as before. We directly
apply Proximal Policy Optimization PPO (Schulman et al.
2017). For each environment, we use training seed 0 to 9
and record the best result.

Opt Greedy RL =Opt Time
R2000, b = 5 0.480 0.521 0.480 10/10 1hr
ADS10, b = 10 0.315 0.448 0.319 9/10 4hr

OPT, GREEDY, RL each represents the average perfor-
mance of these three different approaches (average over 10
trials with random draws of the entry nodes and the block-
able edges). “Time” refers to training time. For R2000 with
b = 5, we obtain the optimal result in 10 out of 10 trials
without limiting the episode length. The maximum episode
length is 27 over 10 trials. For ADS10 with b = 10, we set
an episode length of 15 and obtain the optimal result in 9
out of 10 trials. We recall that, for this setting, TDCYCLE
doesn’t scale at all, but we manage to achieve near-optimal
results via reinforcement learning.

5655

Acknowledgements
Frank Neumann has been supported by the Australian Re-
search Council through grant FT200100536. Hung Nguyen
is supported by the Next Generation Technology Fund
(NGTF-Cyber) grant MyIP 10614 and the Australian Re-
search Council (ARC-NISDRG) grant NI210100139. This
work was supported with supercomputing resources pro-
vided by the Phoenix HPC service at the University of Ade-
laide.

References
Arnborg, S.; Corneil, D. G.; and Proskurowski, A. 1987.
Complexity of Finding Embeddings in a K-Tree. Siam Jour-
nal of Discrete Mathematics, 8(2): 277–284.
Aziz, H.; Gaspers, S.; Lee, E. J.; and Najeebullah, K. 2018.
Defender Stackelberg Game with Inverse Geodesic Length
as Utility Metric. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, 694–702. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems.
Aziz, H.; Gaspers, S.; and Najeebullah, K. 2017. Weakening
Covert Networks by Minimizing Inverse Geodesic Length.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, 779–785. Melbourne, Aus-
tralia: International Joint Conferences on Artificial Intelli-
gence Organization. ISBN 978-0-9992411-0-3.
Baier, G.; Erlebach, T.; Hall, A.; Köhler, E.; and Schilling,
H. 2006. Length-Bounded Cuts and Flows. In In Proc. 33rd
International Colloquium on Automata, Languages and Pro-
gramming (ICALP), 679–690.
Bar-noy, A.; Khuller, S.; and Schieber, B. 1995. The Com-
plexity of Finding Most Vital Arcs and Nodes. Technical
report, University of Maryland.
Bodlaender, H. L.; Fomin, F. V.; Koster, A. M. C. A.;
Kratsch, D.; and Thilikos, D. M. 2006. On Exact Algorithms
for Treewidth. In Azar, Y.; and Erlebach, T., eds., Algorithms
– ESA 2006, Lecture Notes in Computer Science, 672–683.
Berlin, Heidelberg: Springer. ISBN 978-3-540-38876-0.
Croxton, K. L.; Gendron, B.; and Magnanti, T. L. 2003.
A Comparison of Mixed-Integer Programming Models for
Nonconvex Piecewise Linear Cost Minimization Problems.
Management Science, 49(9): 1268–1273.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer International
Publishing. ISBN 978-3-319-21274-6.
Dijkstra, E. W. 1959. A Note on Two Problems in Connex-
ion with Graphs. Numerische mathematik, 1: 269–271.
Dinur, I.; and Safra, S. 2005. On the Hardness of Approx-
imating Minimum Vertex Cover. Annals of Mathematics,
162(1): 439–485.
Dunagan, J.; Zheng, A. X.; and Simon, D. R. 2009. Heat-
Ray: Combating Identity Snowball Attacks Using Machine-
learning, Combinatorial Optimization and Attack Graphs. In
Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles - SOSP ’09, 305. Big Sky, Mon-
tana, USA: ACM Press. ISBN 978-1-60558-752-3.

Durkota, K.; Lisý, V.; Bošanský, B.; Kiekintveld, C.; and
Pěchouček, M. 2019. Hardening Networks against Strategic
Attackers Using Attack Graph Games. Computers & Secu-
rity, 87: 101578.
Dvořák, P.; and Knop, D. 2018. Parameterized Complex-
ity of Length-bounded Cuts and Multicuts. Algorithmica,
80(12): 3597–3617.
Enterprise Management Associates 2021. The Rise of Ac-
tive Directory Exploits: Is It Time to Sound the Alarm?
Technical report https://www.enterprisemanagement.com/.
Goel, D.; Ward-Graham, M. H.; Neumann, A.; Neumann, F.;
Nguyen, H.; and Guo, M. 2022. Defending Active Directory
by Combining Neural Network based Dynamic Program and
Evolutionary Diversity Optimisation. In GECCO ’22: Ge-
netic and Evolutionary Computation Conference, 2022.
Golovach, P. A.; and Thilikos, D. M. 2011. Paths of
Bounded Length and Their Cuts: Parameterized Complex-
ity and Algorithms. Discrete Optimization, 8(1): 72–86.
Guo, M.; Li, J.; Neumann, A.; Neumann, F.; and Nguyen, H.
2022. Practical Fixed-Parameter Algorithms for Defending
Active Directory Style Attack Graphs. In AAAI 2022.
Jain, M.; and Korzhyk, D. 2011. A Double Oracle Algo-
rithm for Zero-Sum Security Games on Graphs. In 10th
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6,
2011, Volume 1-3, 327–334.
Lallie, H. S.; Debattista, K.; and Bal, J. 2020. A Review
of Attack Graph and Attack Tree Visual Syntax in Cyber
Security. Computer Science Review, 35: 100219.
Milani, S.; Shen, W.; Chan, K. S.; Venkatesan, S.; Leslie,
N. O.; Kamhoua, C.; and Fang, F. 2020. Harnessing the
Power of Deception in Attack Graph-Based Security Games.
In Zhu, Q.; Baras, J. S.; Poovendran, R.; and Chen, J., eds.,
Decision and Game Theory for Security, 147–167. Cham:
Springer International Publishing. ISBN 978-3-030-64793-
3.
Milgram, S. 1967. The Small-World Problem. Psychology
Today, 1: 61–67.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.

5656

