
Now We’re Talking: Better Deliberation Groups through Submodular Optimization

Jake Barrett1, Kobi Gal1,2, Paul Gölz3, Rose M. Hong3, and Ariel D. Procaccia3

1University of Edinburgh,
2Ben-Gurion University of the Negev,

3Harvard University
j.t.l.barrett@sms.ed.ac.uk, kgal@exseed.ed.ac.uk, goelz@seas.harvard.edu, rosehong@college.harvard.edu,

arielpro@seas.harvard.edu

Abstract
Citizens’ assemblies are groups of randomly selected con-
stituents who are tasked with providing recommendations on
policy questions. Assembly members form their recommen-
dations through a sequence of discussions in small groups
(deliberation), in which group members exchange arguments
and experiences. We seek to support this process through opti-
mization, by studying how to assign participants to discussion
groups over multiple sessions, in a way that maximizes inter-
action between participants and satisfies diversity constraints
within each group. Since repeated meetings between a given
pair of participants have diminishing marginal returns, we
capture interaction through a submodular function, which is
approximately optimized by a greedy algorithm making calls
to an ILP solver. This framework supports different submodu-
lar objective functions, and we identify sensible options, but
we also show it is not necessary to commit to a particular
choice: Our main theoretical result is a (practically efficient)
algorithm that simultaneously approximates every possible ob-
jective function of the form we are interested in. Experiments
with data from real citizens’ assemblies demonstrate that our
approach substantially outperforms the heuristic algorithm
currently used by practitioners.

1 Introduction
Can deliberation among groups of randomly selected peo-
ple revitalize democracy? A growing number of political
theorists, activists, and even politicians believe so (Fishkin
2018; Landemore 2020; Van Reybrouck 2016) and have been
putting this idea into practice. In the last decade, hundreds
of citizens’ assemblies (also known as deliberative polls or
minipublics) have been convened by civil society and by lo-
cal and national governments (OECD 2020). Recently, these
assemblies have become more numerous and higher profile:
Citizens’ assemblies established in 2016 and 2019 in Ireland,
for example, have led to national referenda and, in turn, to
major constitutional changes. As another example, France
has embraced this paradigm at different levels of govern-
ment (Landemore 2020); in particular, the recommendations
of the Citizens Convention for Climate, established in 2019,
have given rise to significant new legislation.

On a high level, the process of organizing a citizens’ as-
sembly consists of two phases. In the first phase, a pool of vol-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unteers is put together, and the assembly is randomly selected
from this pool. The assembly is required to be representative
of the population in terms of features like gender, ethnicity,
age, and education, but the pool of volunteers is typically
unrepresentative of the population due to self-selection bias.
In a series of papers, Flanigan et al. (2021a, 2020); Flanigan,
Kehne, and Procaccia (2021) develop an algorithmic frame-
work for randomly selecting citizens’ assemblies in a way
that is representative, fair to volunteers, and transparent.

In the second phase of the process, the assembly discusses
the issues at hand and reaches conclusions that inform policy
making. This discussion, known as deliberation, is what en-
ables an assembly composed of laypeople to reach judicious
recommendations on a complex issue. Though deliberation
lies at the heart of a citizens’ assembly’s purpose, almost no
work so far supports deliberation through algorithms, compu-
tation, or AI. Deliberation in a citizens’ assembly takes place
over a number of sessions, where in each session, participants
are divided into discussion groups, which we refer to as ta-
bles. For example, the Citizens’ Assembly of Scotland, which
was convened by the Scottish Government in 2019–2020, ran
over 16 sessions spread across 8 weekends; in each session,
the 104 participants were divided across 12 tables.

This work arises out of a collaboration with the Sorti-
tion Foundation — a nonprofit organization which facilitates
dozens of citizens’ assemblies worldwide every year — on
the design and implementation of algorithms for managing
deliberation. One problem that our contacts brought up is
scheduling the assignment of participants to tables, which we
address in this paper. The practitioners’ primary goal is to
find a schedule that, over the course of the process, allows par-
ticipants to exchange ideas with as many other participants as
possible. In addition, tables must be demographically diverse;
in the Citizens’ Assembly of Scotland, they were diversified
based on political view, age, and gender.

Currently, the Sortition Foundation as well as other non-
profits use a heuristic algorithm called GROUPSELECT (Ver-
poort 2020) to allocate tables, developed by the Sortition
Foundation. Internally, this algorithm optimizes the objective
of maximizing the number of pairs of participants who meet
at least once, assigning no value to subsequent meetings. We
see two shortcoming with this current approach: First, as we
show in Section 6, GROUPSELECT performs quite poorly
in terms of its chosen objective. Second, the objective itself

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5490

often fails to encourage good schedules. We elaborate on this
problem in Section 3, but an example of such a problematic
situation is when all participants have met each other. At that
point, the objective is indifferent between all possible assign-
ments, and thus even a schedule repeating the same table
assignment across all remaining sessions would be optimal.

To overcome these shortcomings, we must address sev-
eral challenges. On a conceptual level, we need a principled
measure of interaction between participants, which we seek
to maximize. If interaction is measured as a function of the
number of times each pair of participants meets, how much
value should the first meeting between Alice and Bob have
relative to the second, third, or fourth? On a technical level,
we aim to develop a theoretically sound and practical algo-
rithmic framework for optimizing our measure of interaction,
with an eye towards real-world deployment.

Our approach and results. It is intuitive that meetings be-
tween the same participants have diminishing marginal re-
turns, e.g., the third meeting carries less value for deliberation
than the second. We express this idea through what we call a
saturation function f : for a monotone nondecreasing and con-
cave function f : N→ R≥0, we model the goal of maximiz-
ing interaction between participants through the submodular
objective f̂ =

∑
{i,j} f(mi,j), where the sum ranges over

all pairs of agents i, j and mi,j is the number of sessions in
which i and j are assigned to the same table. For any choice
of saturation function f , we obtain a practical algorithm that
maximizes the corresponding objective f̂ within an approx-
imation factor of 1 − 1/e ≈ 63%, building on a classical
result in submodular maximization (Nemhauser, Wolsey, and
Fisher 1978) and using an integer linear programming (ILP)
solver as a subroutine.

Which saturation function f should we use? Given that no
objective seems universally better than the others, we pur-
sue an approach of simultaneous approximation (Stein and
Wein 1997). Specifically, we design an algorithm that pro-
duces schedules that Ω(1/ log T)-approximate the objectives
f̂ for all saturation functions f at once, where T is the num-
ber of sessions. Beyond table allocation, this result applies
to maximum-coverage style problems in all other domains.
Specifically, we show that the f -MAXCOVERAGE problem
of Barman, Fawzi, and Fermé (2021) can be Ω(1/ log T)-
approximated for all f at once, in polynomial time.

We then evaluate our optimization algorithms and GROUP-
SELECT on data from seven citizens’ assemblies. We find
that all our algorithms outperform GROUPSELECT by a wide
margin, including when measured by its own objective. Two
saturation functions, based on the harmonic and geometric
series, seem promising for optimizing schedules in practice.

Related work. Along with those already mentioned, sev-
eral works (Benadè, Gölz, and Procaccia 2019; Do et al.
2021; Meir, Sandomirskiy, and Tennenholtz 2021; Saran and
Tumennasan 2013; Walsh and Xia 2012) in computational
social choice have studied the random selection of citizens’
assemblies, but none of them interface with the deliberation
taking place once the assembly convenes. A second line of
work (Chung and Duggan 2020; Fain et al. 2017; Goel and

Lee 2016; Perote-Peña and Piggins 2015; Zvi, Leizerovich,
and Talmon 2021) proposes and analyzes mathematical mod-
els for deliberation, which we see as complementary to our
approach. Whereas these papers capture the dynamics of de-
liberation with more nuance than us, our paper approaches
deliberation through the lens of a practical problem, table al-
location, and its interaction with deliberation. Finally, Fishkin
et al. (2019) develop a system that automatically manages
speaking times and speaker order in online deliberation. This
is the one example we know of that seeks to support delibera-
tion in citizens’ assemblies through a practical, computational
approach, but it addresses a fundamentally different aspect
of the deliberation process.

Our use of submodular objectives follows a long tradi-
tion in AI of maximizing submodular functions to obtain
diverse solutions. For example, this methodology encour-
ages different parts of a multi-document summary to refer
to different sources (Carbonell and Goldstein 1998; Lin and
Bilmes 2011), sensors to be placed where they can collect
complementary information (Krause, Singh, and Guestrin
2008), or papers to be assigned to reviewers with different
expertise (Ahmed, Dickerson, and Fuge 2017). In our applica-
tion, the submodular objective encourages schedules to vary
which pairs of assembly members meet across the sessions.

Our class of objective functions naturally generalizes the
maximum coverage problem (Hochbaum and Pathria 1998)
and coincides with the class of f -MAXCOVERAGE problems
(for saturation functions f) defined by Barman, Fawzi, and
Fermé (2021). Despite this connection, the result of Barman
et al. (an algorithm that, for certain f , obtains a better approx-
imation ratio than 1− 1/e) does not apply to table allocation:
since the “sets” that can be chosen for coverage are implic-
itly represented in table allocation, their algorithm is neither
polynomial-time nor practical to run in our setting.

Finally, our setup resembles the classic social golfer prob-
lem: n golfers must be repeatedly partitioned into k groups,
each of equal size s. Find a schedule of maximum length
given that no two golfers may be placed in the same group
twice. Most work in this space analyzes the solutions for spe-
cific n and k, or optimizes Boolean satisfiability formulations
to find long schedules (e.g., Lardeux et al. 2015; Schmand,
Schröder, and Vargas Koch 2022; Triska and Musliu 2012).
Our problem differs from the social golfer problem in two
ways. First, the social golfer problem maximizes the number
of sessions subject to a hard constraint on repeated meetings,
whereas we minimize repeated meetings subject to a fixed
schedule length. Second, whereas the social golfer problem
allows to group any s golfers together, our representativeness
constraints make the problem no longer symmetric and even
less tractable than the social golfer problem.

2 Model
Table allocation problem. An instance of the table allocation
problem is a tuple consisting of a set of agents N = [n], a
number of tables k, a number of sessions T ≥ 2, and a set
of representativeness constraints. These representativeness
constraints are given as a set F of features, where each feature
φ ∈ F is defined by a set of agents Aφ ⊆ N possessing this

5491

feature, a lower quota ℓφ, and an upper quota uφ such that
0 ≤ ℓφ ≤ uφ ≤ ⌈n/k⌉.

A partition for this instance partitions the agents into k
disjoint tables N = ∆1 ∪̇ · · · ∪̇∆k, subject to two constraints:
(1) each table ∆i has size either ⌊n/k⌋ or ⌈n/k⌉, and (2) each
table ∆i satisfies all representativeness constraints, in the
sense that ℓφ ≤ |∆i ∩Aφ| ≤ uφ for all features φ.1 For ease
of exposition, we assume that any given instance allows for
at least one partition. Given a table allocation instance, our
aim is to construct a schedule, which is a multiset Z over
partitions containing T elements.2

The f -MAXCOVERAGE problem. The optimization objec-
tives we propose for table allocation resemble maximum
coverage, since we aim to cover pairs of agents by selecting
T many partitions, each of which brings together (“covers”)
certain pairs of agents. Our objectives generalize maximum
coverage in that they may reward not only the first meeting
but also subsequent meetings to various degrees.

This generalization of maximum coverage coincides with
the f -MAXCOVERAGE problem defined by Barman, Fawzi,
and Fermé (2021), which is is parameterized by a saturation
function f : N → R≥0 that is monotone nondecreasing,
concave, and satisfies f(0) = 0. Each f -MAXCOVERAGE
instance consists of a finite ground set G, a collection Z of
sets S ⊆ G of ground elements, and target number T ≥ 2 of
sets. For a given instance of f -MAXCOVERAGE, a selection
is a multiset overZ , and a solution is a selection of cardinality
T . The goal of f -MAXCOVERAGE is to find a solution Z that
maximizes the objective f̂ , which is the function mapping
selections Z to R≥0 defined in terms of f such that

f̂(Z) :=
∑

g∈G
f(number of sets in Z that contain g)

=
∑

g∈G
f
(∑

S∈Z:g∈S Z(S)
)
.

For the saturation function f1(x) := 1{x≥1} = min{x, 1},
f1-MAXCOVERAGE coincides with classic maximum cov-
erage. The saturation function f adds expressivity beyond
maximizing coverage; e.g., the objective assigns value to
second appearances of g if f(2) > f(1). Generally, the con-
cavity of f promotes schedules that contain ground elements
similar numbers of times.

A function s that maps selections to R≥0 satisfies dimin-
ishing returns if, for any two selections Z1 ⊑ Z2 and for any
S ∈ Z , s(Z1+{S})−s(Z1) ≥ s(Z2+{S})−s(Z2). We call
s monotone if, for all selections Z1 ⊑ Z2, s(Z1) ≤ s(Z2).
One easily verifies that all objectives f̂ have diminishing
returns and are monotone. Finally, for some α ∈ (0, 1),

1In some assemblies, partitions must additionally satisfy cluster-
ing constraints, requiring that some participants (e.g. those unwill-
ing to be photographed or in need of translation services) be grouped
together. Since our approach in Section 4 generalizes to clustering
in a straight-forward way, we omit it for ease of exposition.

2A multiset over a finite support X is a function ms : X → N,
where ms(x) indicates how many copies of x ∈ X are contained
in the multiset. We write |ms| =

∑
x∈X ms(x) for the cardinality

of a multiset and denote multiset addition by +, multiset difference
by −, and multiset inclusion by ⊑.

a solution Z α-approximates an objective f̂ if f̂(Z) ≥
α · maxsolution Z′ f̂(Z ′). A solution Z is a simultaneous α-
approximation if it α-approximates the objectives f̂ for all
saturation functions f at once.

3 Table Allocation as f -MAXCOVERAGE
Looking at the table allocation problem, it is not obvious
what makes one schedule more conducive to deliberation
than another, other than a vague intuition that discussion
groups should be “mixed up” between sessions. The Sortition
Foundation’s work on GROUPSELECT makes an important
contribution by declaring a mathematically precise objective:
maximizing how many pairs of assembly members meet at
least once. This objective is certainly an incomplete perspec-
tive on what makes a schedule conducive to deliberation, but
it is rooted in the Sortition Foundation’s extensive experience
in organizing citizens’ assemblies.

We can express the objective optimized by GROUPSE-
LECT by casting a given table allocation instance as a f1-
MAXCOVERAGE problem: Let the ground set G be the set(
N
2

)
of all unordered pairs of agents, and let the collection

Z contain, for each partition S = ∆1 ∪̇ · · · ∪̇ ∆k of the
table allocation instance, the set

⋃
1≤i≤k

(
∆i

2

)
of all pairs

sitting at the same table in S. GROUPSELECT’s objective
reduces to f1-MAXCOVERAGE since, for the saturation func-
tion f1(x) = min{x, 1}, each pair i, j that does not meet
contributes 0 to the objective f̂1 and all other pairs contribute
1. Throughout this paper, we will use the same reduction to
optimize the objectives f̂ for other saturation functions f
over schedules.

As mentioned in the introduction, GROUPSELECT’s ob-
jective f̂1 seems inappropriate in many cases. One obvious
concern is that f̂1 does not express any preference between
schedules in which all pairs meet, which, our empirical eval-
uation shows, is not just a hypothetical, but relevant on real
data. Since some repeated meetings are typically unavoidable,
an objective should arguably express a preference over how
these repeated meetings are distributed over pairs. Even for
just two sessions and without representativeness constraints,
repeated meetings are inevitable whenever n > k2. In the
full version of this paper, we show that the minimum number
of repeated meetings is at least k2

(
x
2

)
+ x · y in this case,

where x :=
⌊
n/k2

⌋
and y := n mod k2.

A more subtle issue with optimizing f̂1 is that prioritizing
first meetings might not be worth an arbitrarily high cost
in terms of which other pairs meet. In the full version, we
present a table allocation problem in which it is difficult to
arrange meetings for a subset P of the pairs, in the sense
that (1) at most one pair in P can meet per (representative)
partition, (2) whenever a pair in P meets, representativeness
implies that the other pairs meeting each other are essentially
always the same ones, and (3) if no pair in P meets, there
is a lot of freedom in who meets whom. In this instance, an
algorithm optimizing f̂1 will expend most sessions to make
pairs in P meet one by one, and will make the overwhelming
majority of pairs meet either very often or just once. In such
instances, it seems preferable to forgo some first meetings in

5492

P to allow a large number of pairs to meet a second time.
Motivated by the above limitations of f̂1, we general-

ize the Sortition Foundation’s optimization problem to sat-
uration functions other than f1. Each saturation function
has its distinct advantages and disadvantages, which might
matter to different degrees depending on the instance. For
example, for any r ≥ 2, consider the saturation function
fr(x) := min{x, r}, for which each pair’s contribution to
f̂r increases by 1 per meeting up to the r’th meeting, and
does not increase beyond that. On the upside, the objective
f̂r pushes the schedule towards an ideal point in which each
pair meets r times with maximum vigor. On the downside, if
the representativeness constraints force some pairs to meet
fewer than r times (or more than r times), f̂r is indifferent
between how equally the number of meetings below r (or
above r, respectively) are spread.

In search of saturation functions whose marginal returns
diminish more smoothly, two kinds of saturation functions
strike us as promising. The first are the geometric satura-
tion functions gβ (for some 0 < β < 1), where gβ(x) :=∑x

i=1 β
i. Given that the marginals βmi,j decay exponentially

in the number mi,j of previous meetings of the pair, the ge-
ometric objectives ĝβ should still put much weight on the
first meeting. Geometric objectives possess the intuitively
appealing “self-similarity” property that, if we fix a partial
schedule in which all pairs appear equally often, the problem
of optimizing the remaining partitions looks just like opti-
mizing a shorter schedule, with the objective multiplied by a
constant. A final example is the harmonic saturation function
h(x) :=

∑x
i=1 1/i. Since this function’s marginals decrease

more slowly, we would expect the objective ĥ to prioritize
earlier meetings less radically. Note that the “self-similarity”
property is not satisfied by this objective (see full version).

4 Optimizing a Specific Saturation Function
Having built intuition about the preference over allocation
tradeoffs expressed by a saturation function, we investigate
how a given objective f̂ can be approximately optimized.

One immediate obstacle is that already the problem of
deciding whether any partition exists for the given represen-
tativeness constraints is NP-hard (see full version). Thus,
polynomial-time algorithms cannot produce partitions or
schedules (unless P = NP), which is why we will search for
algorithms that (though not theoretically polynomial-time)
run sufficiently fast on practical inputs. Fortunately, state-
of-the-art solvers for Integer Linear Programming (ILP) can
reliably find a representative partition in little time. Though
ILP solvers are powerful, formulating the entire optimization
over schedules as an ILP is intractable as we show in Sec-
tion 6. Therefore, our algorithmic approach will use ILP as a
powerful subroutine for finding partitions, but our approach
will handle in outside logic how the contributions of different
partitions interact in the objective.

What will enable us to break down the optimization into
generating partitions one at a time are the properties of the
objectives f̂ we consider, namely diminishing returns, mono-
tonicity, and that f̂(∅) = 0. These properties are useful since,

for any multiset function over Z satisfying them, Nemhauser,
Wolsey, and Fisher (1978) showed that a simple greedy al-
gorithm returns a multiset of cardinality T whose objective
value is at least a 1 − 1/e fraction of the optimal objective
value across all multisets of size T .3 This greedy algorithm
iteratively constructs a multiset Z by starting from the empty
multiset and T times adding the set S ∈ Z with largest
marginal increase f̂(Z + {S})− f̂(Z). In most cases where
this greedy algorithm is run, the collection of sets Z is not
too large and explicitly given, which allows to identify S by
enumerating Z . By contrast, the set of all partitions might be
exponentially large, so enumerating them is not an option.

Thus, we instead implement each step of the greedy al-
gorithm by solving an ILP that will yield the partition with
largest marginal increase. This ILP formulation makes use
of the specific shape of our objectives, which decompose
into a sum over pairs of agents, and which have the property
that any partition’s marginal contribution to a pair {i, j}’s
summand is either zero (if i and j do not meet) or a constant
value f(mi,j + 1) − f(mi,j) (if i and j meet), where mi,j

denotes the number of times i and j have met before. Below
we describe the ILP, whose variables are xi,τ (“agent i is
allocated to table τ”) and y{i,j},τ (“agents i and j are both
allocated to table τ”), for all i ̸= j ∈ N and 1 ≤ τ ≤ k:

maximize
∑

{i,j}∈(N2)
1≤τ≤k

(
f(mi,j + 1)− f(mi,j)

)
· y{i,j},τ

subject to
∑

1≤τ≤k

xi,τ = 1 ∀i ∈ N

⌊n/k⌋ ≤
∑
i∈N

xi,τ ≤ ⌈n/k⌉ ∀1≤τ≤k

ℓφ ≤
∑
i∈Aφ

xi,τ ≤ uφ ∀1≤τ≤k, φ ∈ F

y{i,j},τ ≥ xi,τ + xj,τ − 1
y{i,j},τ ≤ xi,τ

y{i,j},τ ≤ xj,τ

 ∀{i, j} ∈
(
N
2

)
,

1≤τ≤k

xi,τ ∈ {0, 1}, y{i,j},τ ∈ {0, 1} ∀i, j, τ .
Observe that, for each pair {i, j}, the 4th, 5th, and 6th
constraints constrain y{i,j},τ to equal one iff xi,τ and xj,τ

are one. As a result, at most one variable y{i,j},τ can be
nonzero for each {i, j}, and thus each pair contributes either
f(mi,j + 1) − f(mi,j) or nothing to the objective, as in-
tended. Due to the quadratically many y{i,j},τ variables and
the constraints tying them to the xi,τ , this ILP is substantially
more difficult to solve than just finding a valid partition, but
we will show in Section 6 that a state-of-the-art ILP solver
can optimize these programs to sufficient accuracy.

We can run the greedy maximization algorithm by iterating
the following steps T times: solving the ILP, extracting the

3Technically, Nemhauser, Wolsey, and Fisher (1978) prove this
for submodular set functions. In our setting, sets may be selected
multiple times, but the claimed result for multiset functions follows
directly by duplicating all sets T times. Whereas diminishing returns
and submodularity are equivalent for set functions, they differ for
multiset functions (Kapralov, Post, and Vondrák 2013).

5493

new partition from the xi,τ , adding the new partition to Z,
and updating the mi,j . If the ILP solver optimizes all sub-
problems to optimality, the resulting schedule will (1− 1/e)-
approximate the objective f̂ as proved by Nemhauser, Wolsey,
and Fisher (1978), and the greedy algorithm is known to out-
perform this approximation factor in many cases (Pokutta,
Singh, and Torrico 2020). Even if we should be forced to
terminate some ILP calls before reaching optimality, our guar-
antees degrade smoothly: If all ILPs return a partition whose
marginal increase is at least an α > 0 fraction of the optimal
marginal increase, the resulting schedule is still at least a
(1− 1/eα)-approximation (Goundan and Schulz 2007).

5 Simultaneously Optimizing All Saturation
Functions

Even though we have found a way to optimize the objective
for any given saturation function f , such an approach remains
not entirely satisfying given that we chose the saturation
function somewhat arbitrarily. As we discussed in Section 3,
how much the saturation function should encourage pairs to
meet for the i’th time across the different i seems to depend
on which distribution of meeting numbers are possible, which
is hard to predict for a given instance.

This challenge of settling on a single saturation function
raises the question of whether it is possible to produce sched-
ules that perform well relative to the objectives belonging
to all saturation functions simultaneously. Since we have
seen in Section 3 that different objective can lead to starkly
different schedules, and since there is an infinite variety of
saturation functions, it would be natural if simultaneous α-
approximations would in general only exist for extremely
low α. Instead, Algorithm 1 below (SIMAPPROX) provides a
simultaneous Ω(1/ log T)-approximation to all objectives.

Algorithm 1: SIMAPPROX

1 Z ← ∅
2 for t = 0, 1, . . . , T − 1 do
3 p← ⌊(t/T) · (1 + log2 T)⌋
4 Z ← Z +

{
argmaxS∈Z f̂2p

(
Z + {S}

)}
5 return Z

This algorithm and our analysis of simultaneous approxi-
mation apply not only to table allocation but to all f -MAX-
COVERAGE problems, which have many further applications.
For these problems, SIMAPPROX even runs in polynomial
time, since the description of an f -MAXCOVERAGE instance
includes Z . For table allocation instances, the implicitly de-
fined Z might be exponentially large, but the ILP from Sec-
tion 4 implements Line 4 in practically efficient running time.

The structure of SIMAPPROX closely resembles that of
greedy maximization in that (using the terminology of table
allocation) it constructs a schedule Z, partition by partition,
greedily adds partitions whose marginal increase relative
to some objective f̂ is largest, and uses the same ILP for-
mulation to identify these partitions. The big difference be-
tween both algorithms is that SIMAPPROX does not optimize

marginals of the same objective in each iteration. Instead, it
first optimizes marginals for f̂20 for some number of steps,
then marginals for f̂21 , then for f̂22 , through the powers of
two up to around f̂T , each for a roughly equal number of
steps. In particular, SIMAPPROX is computationally no more
complex than the greedy maximization algorithm.

The key insight of this algorithm is that α-approximating
the logarithmically many objectives of the form f̂2p (for
some p) suffices to approximate all objectives f̂ within a
constant factor of α. Thus, our proof that SIMAPPROX is a
simultaneous Ω(1/ log T)-approximation proceeds in three
steps: First, we show that the schedule returned by the algo-
rithm Ω(1/ log T)-approximates all f̂r where r is a power
of two (Lemma 5.1). Second, we show that the solution ap-
proximates the objectives f̂r for all r (Lemma 5.2). Finally,
we prove that this implies simultaneous approximation for
all objectives f̂ (Theorem 5.3). We sketch these arguments
below and defer the formal proofs to the full version.

Lemma 5.1. For each 0 ≤ p ≤ log2 T , the solution Z

returned by SIMAPPROX approximates f̂2p within a factor
of (1− 1/e) · (1

1+log2 T −
1
T).

Proof sketch. Since f̂2p is greedily optimized in roughly
T/ log T of the steps, the objective value is at least a (1−1/e)
fraction of the optimal objective value obtained by any sched-
ule of length T/ log T , and this holds despite the steps opti-
mizing other objectives coming before and after. Since f̂2p

has diminishing returns, the optimal objective value for a
schedule of length T/ log T is at least a 1/ log T fraction of
the optimal objective value for a schedule of length T .

Lemma 5.2. For each 1 ≤ r ≤ T , the solution Z returned
by SIMAPPROX approximates f̂r within a factor of 1−1/e

2 ·
(1
1+log2 T −

1
T).

Proof sketch. For two values r1 ≈ r2, the objectives f̂r1 and
f̂r2 are similar to the point that, if r1 ≤ r2, any schedule
that α-approximates f̂r1 at least α · r1

r2
-approximates f̂r2 .

For a given r, let 2p denote its next-lower power of two. By
Lemma 5.1, Z Ω(1/ log T)-approximates f̂2p ; hence, Z must
2p

r · Ω(1/ log T) ≥
1
2 · Ω(1/ log T)-approximate f̂r.

Theorem 5.3. SIMAPPROX produces solutions that simulta-
neously α-approximate f -MAXCOVERAGE for all f , in poly-
nomial time, for α = 1−1/e

2 · (1
1+log2 T −

1
T) ∈ Ω(1/ log T).

Proof sketch. As we show in the full version of the paper, the
fr form a sort of “basis” of the space of saturation functions
in the sense that, for any saturation function f and any T ,
there exist nonnegative weights {wi}1≤i≤T such that f(x) =∑T

i=1 wi · f i(x) for all 0 ≤ x ≤ T . Note that it must then
also hold that f̂ =

∑T
i=1 wi · f̂ i. For any saturation function

f , by Lemma 5.2, it holds that

f̂(Z) =
∑T

i=1
wi · f̂ i(Z) ≥

∑T

i=1
wi · α · max

solution Z′
f̂ i(Z ′)

5494

= α ·
∑T

i=1
max

solution Z′
wi · f̂ i(Z ′)

≥ α · max
solution Z′

∑T

i=1
wi ·f̂ i(Z ′) = α · max

solution Z′
f̂(Z ′).

In the full version, we show that SIMAPPROX’s simultane-
ous approximation ratio of Ω(1/ log T) for f -MAXCOVER-
AGE is optimal up to a log log factor:
Theorem 5.4. There exists a family of maximum coverage
instances such that no solution has a simultaneous approx-
imation ratio larger than O(log log T/ log T). This holds
even if all sets S ∈ Z have equal cardinality (like in the table
allocation problem when k divides n).

In these instances, the ground elements are partitioned into
multiple blocks, and each block represents a different trade-
off between (a) how many ground elements of the block are
included in a set in Z and (b) how many ground elements are
in the block overall. For large values of r, f̂r is maximized by
choosing sets from blocks scoring high on (a) because they
cover many ground elements per set. For small r, by contrast,
blocks scoring high on (b) allow to avoid selecting ground
elements more than r times, which would not help f̂r. Since
scoring high on different objectives f̂r requires selecting dis-
joint sets, no solution can simultaneously approximate them
within a high factor. We conjecture that Theorem 5.4’s impos-
sibility on simultaneous approximation extends to the table
allocation problem; however, the symmetry between tables
and the transitivity of which pairs can simultaneously meet
make analogous instances highly cumbersome to construct.

6 Implementation and Empirical Results
We have implemented all algorithms in this work in Python,
using Gurobi as our ILP solver. Our implementation is open
source at https://github.com/rosemhong/tables. Currently, we
are working with the Sortition Foundation to incorporate our
algorithms into the tool that hosts GROUPSELECT (Verpoort
2020), which will allow users to switch to our improved
algorithms with little effort.

We perform our experiments on seven datasets, each based
on data from a real citizens’ assembly. Two of these datasets,
sf e and sf f, exactly describe assemblies coorganized
by the Sortition Foundation. The other five datasets, sf a
through sf d and hd are derived from assembly-selection
data used by Flanigan et al. (2021a). For these latter datasets,
we do not have access to the members who ended up being
drawn for the citizens’ assembly, but we can “re-run” the
lottery process using the selection software Panelot (Flanigan
et al. 2021b) to obtain an assembly that satisfies the actual
representativeness constraints. In the full version, we describe
the processing of the datasets and the experimental setup in
more detail. To compute experiments in parallel, we run
them on an AWS EC2 C5 instance with a 3.6 GHz processor,
16 threads, and 32 GB of RAM. Given that we limit each
experiment to a single thread, individual running times of our
algorithms are comparable to consumer hardware.

GROUPSELECT cannot satisfy a given list of representa-
tiveness constraints but only makes a best effort at proportion-
ally representing the diversified features. To compare it to our

0 5 10 15 20 25 30
number of sessions T

0.00

0.25

0.50

0.75

1.00

gu
ar

an
te

ed
fr

ac
ti

on
of

op
ti

m
u

m

instance

hd

sf_a

sf_b

sf_c

sf_d

sf_e

sf_f

Figure 1: Approximation certificates for the greedy algorithm
on ĝ1/2, guaranteeing near-optimality. The dashed line marks
1− 1/e.

0 5 10 15 20 25 30
number of sessions T

0

200

400

600

f̂1

algorithm

Greedy(f̂1)

Greedy(ĝ1/2)

Greedy(ĥ)

SimApprox+

SimApprox

GroupSelect

Figure 2: Performance of different algorithms on instance
sf f as measured by f̂1. The cross marks the historically
chosen schedule.

algorithms on equal terms, we run our algorithms with rep-
resentativeness constraints derived from GROUPSELECT’s
output on the given instance. (In the full version, we show
that our algorithms continue to perform well for particularly
tight representativeness constraints.)

6.1 How Well Does the Greedy Algorithm
Optimize Its Objective?

We begin by verifying that optimizing schedules in a one-
shot ILP is not tractable, which justifies our greedy approach.
Indeed, when optimizing ĝ1/2 for a mere 4 sessions, in 4
hours running time, the ILP solver did not find any feasible
schedules from the one-shot ILP in 4 out of the 7 instances.4
We conclude that the runtime of this one-shot approach scales
prohibitively in the number of sessions to be useful.

Can the ILP solver solve the ILPs from Section 4, and how
much time does the solver need for the greedy algorithm to
optimize its objective well? In the full version of the paper,
we show that increasing the ILP solver’s timeout generally
increases objective value attained by the greedy algorithm,
but that these increases level off after around 60 seconds. To
accommodate one outlier and to be safe, we set the optimiza-

4For the other 3 instances, the objective value is no better (within
±1%) than the greedy algorithm’s result produced in 8 minutes.

5495

tion timeout to 120 seconds from here on, for the ILP calls
both in the greedy algorithm and in SIMAPPROX.5

Ideally, we want to know how close to optimal the sched-
ules produced by the greedy algorithm are, but this is impos-
sible to exactly evaluate because we see no way of finding the
optimal schedules for nontrivial instances. We can, however,
modify the greedy algorithms to produce, in addition to a
schedule, what we call a certificate of approximation, which
is a fraction α such that the produced schedule is guaranteed
to be at least an α-approximation of the optimal schedule.6 As
shown in Fig. 1, for example, greedily optimizing the objec-
tive ĝ1/2 produces schedules that are a 0.45-approximation or
better across all instances and numbers of sessions we study.
We stress that these certificates are lower bounds, and that
the schedules are likely to be much closer to optimal than
is guaranteed by the certificates. For example, the perfect
greedy algorithm (i.e., with perfectly optimal ILP solutions)
would have a certificate of 1 − (1− 1

T)
T ≈ 0.63, but typi-

cally performs much closer to optimal.7 The proximity of
the certificates to this number suggests that terminating the
ILP solver yields schedules that are nearly as good as those
of the perfect greedy algorithm and not far from the optimal
objective value.

6.2 Comparison across Table-Allocation
Algorithms

After having measured the greedy algorithm in terms of the
objective it specifically aims to optimize, we now compare
the performance of different algorithms on a given instance
and according to the same metric. In Fig. 2, we show such
results for sf f and f̂1; experiments for other instances and
objectives can be found in the full version. This instance–
objective combination is particularly relevant to investigate,
since the Sortition Foundation did, in fact, maximize f̂1

using GROUPSELECT for this assembly, and since we know
the table allocation (for T = 4 sessions) determined at the
time. As the figure shows quite dramatically, GROUPSE-
LECT cannot compete with our other algorithms. Indeed,
the Sortition Foundation chose a schedule with 164 distinct
meetings for four sessions. By contrast, greedily maximizing
f̂1 yields an objective value of nearly twice that, at 320
distinct meetings. Across our datasets and objective functions,
GROUPSELECT leads to objective values that stagnate at a
much lower level than what our algorithms can achieve, for
reasons which we explain in the full version of this paper.

5For an assembly with many sessions (30), the total optimization
runs in around one hour, which is the runtime of the assembly
selection algorithm by Flanigan et al. (2021a) for large assemblies.

6Calculating these certificates is possible since (1) the ILP solver
returns, in every step, not only a new partition but also an upper
bound on the largest possible marginal increase, and since (2) these
bounds naturally fit into the approximation bound by Nemhauser,
Wolsey, and Fisher (1978). This ex post analysis combines the
strengths of ILP and submodular maximization and is, to our knowl-
edge, novel.

7The certificates are also conservative in that the ILP solver often
struggles with tightening the upper bounds. Thus, each partition’s
marginals are probably closer to optimal than our bounds suggest.

This observation is a powerful argument for practitioners to
move away from GROUPSELECT.

As is not very surprising, greedily optimizing f̂1 produces
schedules with many unique meetings. Given that sf f has(
40
2

)
= 780 pairs of agents, around 90% of pairs meet at

least once within the first 20 sessions. More surprisingly,
greedily optimizing a geometric objective or the harmonic
objective leads to numbers of distinct meetings that are nearly
as high, across all numbers of sessions T we study. Indeed,
throughout our experiments, we see that greedily optimizing
ĝ1/2 or ĥ leads to “well-rounded” schedules in the sense that
they perform well according to other objective metrics, which
makes either algorithm an attractive option for adoption in
practice. Optimizing f̂1 tends to perform very well on other
objectives when T is small but falls behind for larger T , when
encouraging, say, second meetings becomes an important
aspect of what makes a partition contribute to the objective.

A straight-forward implementation of SIMAPPROX does
not perform as well as the above-mentioned algorithms, even
if still much better than GROUPSELECT. A possible expla-
nation is that SIMAPPROX spends much of its time optimiz-
ing objectives f̂r for fairly large r. If most pairs have met
fewer than r times at that point, the ILP might have a large
number of optimal solutions, between which the ILP has no
preference. To mitigate this problem, we test a variant of
SIMAPPROX called SIMAPPROX+, which spends an extra 30
seconds after each ILP call to break ties in favor of partitions
with the more well-rounded objective ĝ1/2. As shown in the
figure, SIMAPPROX+ gets substantially closer to the perfor-
mance of the best greedy algorithms. While such variants of
the simultaneous-approximation algorithm might have value
for highly constrained table allocation problems or for large
numbers of sessions, greedily optimizing ĝ1/2 or ĥ seems
more worthwhile on the practical instances we study.

7 Discussion

As the last section shows, our algorithms produce schedules
that excel in terms of the objective chosen by the practi-
tioners, as well as in terms of the generalized objectives we
introduced. The fundamental research problem, however —
optimizing the group assignment in a way that increases the
quality of deliberation — remains wide open and will require
a multi-faceted approach. According to a handbook for assem-
bly organizers, mixing groups up has a whole range of bene-
fits: it helps assembly members “find common ground across
the whole diverse group” (emphasis added), avoids situations
where they “form cliques,” breaks up unproductive group
dynamics, and overall “keeps things energised” (newDemoc-
racy Foundation and United Nations Democracy Fund 2018).
Not only might each of these benefits suggest a different
schedule, but predicting how well a schedule promotes each
of these effects is also an open question. We believe that
an approach combining optimization, behavioral research,
and dynamic models of deliberation (Chung and Duggan
2020; Fain et al. 2017) can substantially support citizens’
assemblies and, by extension, democratic innovation.

5496

References
Ahmed, F.; Dickerson, J. P.; and Fuge, M. 2017. Diverse
Weighted Biparite b-Matching. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 35–41.
Barman, S.; Fawzi, O.; and Fermé, P. 2021. Tight Approx-
imation Guarantees for Concave Coverage Problems. In
Proceedings of the International Symposium on Theoretical
Aspects of Computer Science (STACS), 9:1–9:17.
Benadè, G.; Gölz, P.; and Procaccia, A. D. 2019. No Stratifi-
cation Without Representation. In Proceedings of the 20th
ACM Conference on Economics and Computation (EC), 281–
314.
Carbonell, J.; and Goldstein, J. 1998. The Use of MMR,
Diversity-Based Reranking for Reordering Documents and
Producing Summaries. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), 335–336.
Chung, H.; and Duggan, J. 2020. A Formal Theory of
Democratic Deliberation. American Political Science Re-
view, 114(1): 14–35.
Do, V.; Atif, J.; Lang, J.; and Usunier, N. 2021. Online
Selection of Diverse Committees. In Proceedings of the
13th International Joint Conference on Artificial Intelligence
(IJCAI), 154–160.
Fain, B.; Goel, A.; Munagala, K.; and Sakshuwong, S. 2017.
Sequential Deliberation for Social Choice. In Proceedings of
the 13th Conference on Web and Internet Economics (WINE),
177–190.
Fishkin, J. 2018. Democracy When the People Are Think-
ing: Revitalizing Our Politics Through Public Deliberation.
Oxford University Press.
Fishkin, J.; Garg, N.; Gelauff, L.; Goel, A.; Munagala, K.;
Sakshuwong, S.; Siu, A.; and Yandamuri, S. 2019. Deliber-
ative Democracy with the Online Deliberation Platform. In
Proceedings of the 7th AAAI Conference on Human Compu-
tation and Crowdsourcing (HCOMP).
Flanigan, B.; Gölz, P.; Gupta, A.; Hennig, B.; and Procac-
cia, A. D. 2021a. Fair Algorithms for Selecting Citizens’
Assemblies. Nature, 596: 548–552.
Flanigan, B.; Gölz, P.; Gupta, A.; and Procaccia, A. D. 2020.
Neutralizing Self-Selection Bias in Sampling for Sortition.
In Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS).
Flanigan, B.; Gölz, P.; Gupta, A.; Procaccia, A. D.; and Rusak,
G. 2021b. Panelot. https://www.panelot.org/. Accessed:
2023-04-13.
Flanigan, B.; Kehne, G.; and Procaccia, A. D. 2021. Fair
Sortition Made Transparent. In Proceedings of the 35th An-
nual Conference on Neural Information Processing Systems
(NeurIPS).
Goel, A.; and Lee, D. T. 2016. Towards Large-Scale Delib-
erative Decision-Making: Small Groups and the Importance
of Triads. In Proceedings of the 17th ACM Conference on
Economics and Computation (EC), 287–303.

Goundan, P. R.; and Schulz, A. S. 2007. Revisiting the
Greedy Approach to Submodular Set Function Maximization.
Working paper.
Hochbaum, D. S.; and Pathria, A. 1998. Analysis of the
Greedy Approach in Problems of Maximum k-Coverage.
Naval Research Logistics, 45(6): 615–627.
Kapralov, M.; Post, I.; and Vondrák, J. 2013. Online Submod-
ular Welfare Maximization: Greedy Is Optimal. In Proceed-
ings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1216–1225.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-Optimal
Sensor Placements in Gaussian Processes: Theory, Efficient
Algorithms and Empirical Studies. Journal of Machine Learn-
ing Research, 9(2).
Landemore, H. 2020. Open Democracy: Reinventing Popular
Rule for the Twenty-First Century. Princeton University
Press.
Lardeux, F.; Monfroy, E.; Crawford, B.; and Soto, R. 2015.
Set Constraint Model and Automated Encoding into SAT: Ap-
plication to the Social Golfer Problem. Annals of Operations
Research, 235(1): 423–452.
Lin, H.; and Bilmes, J. 2011. A Class of Submodular Func-
tions for Document Summarization. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (HLT), 510–520.
Meir, R.; Sandomirskiy, F.; and Tennenholtz, M. 2021. Rep-
resentative Committees of Peers. Journal of Artificial Intelli-
gence Research, 71: 401–429.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978. An
Analysis of Approximations for Maximizing Submodular Set
Functions – I. Mathematical Programming, 14(1): 265–294.
newDemocracy Foundation; and United Nations Democracy
Fund. 2018. Enabling National Initiatives to Take Democracy
Beyond Elections. Technical report.
OECD. 2020. Innovative Citizen Participation and New
Democratic Institutions: Catching the Deliberative Wave.
OECD.
Perote-Peña, J.; and Piggins, A. 2015. A Model of Delibera-
tive and Aggregative Democracy. Economics & Philosophy,
31(1): 93–121.
Pokutta, S.; Singh, M.; and Torrico, A. 2020. On the Un-
reasonable Effectiveness of the Greedy Algorithm: Greedy
Adapts to Sharpness. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 7772–7782.
Saran, R.; and Tumennasan, N. 2013. Whose Opinion
Counts? Implementation by Sortition. Games and Economic
Behavior, 78: 72–84.
Schmand, D.; Schröder, M.; and Vargas Koch, L. 2022. A
Greedy Algorithm for the Social Golfer and the Oberwolfach
Problem. European Journal of Operational Research, 300(1):
310–319.
Stein, C.; and Wein, J. 1997. On the Existence of Sched-
ules That Are Near-Optimal for Both Makespan and Total
Weighted Completion Time. Operations Research Letters,
21(3): 115–122.

5497

Triska, M.; and Musliu, N. 2012. An Effective Greedy Heuris-
tic for the Social Golfer Problem. Annals of Operations
Research, 194(1): 413–425.
Van Reybrouck, D. 2016. Against Elections: The Case for
Democracy. Random House.
Verpoort, P. 2020. GroupSelect App. https://github.com/
sortitionfoundation/groupselect-app/tree/8fe508f. Accessed:
2023-04-13.
Walsh, T.; and Xia, L. 2012. Lot-Based Voting Rules. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), 603–
610.
Zvi, G. B.; Leizerovich, E.; and Talmon, N. 2021. Iterative
Deliberation via Metric Aggregation. In Proceedings of the
7th International Conference on Algorithmic Decision Theory
(ADT), 162–176.

5498

