
Don’t Predict Counterfactual Values, Predict Expected Values Instead

Jeremiasz Wołosiuk1, Maciej Świechowski2,3, Jacek Mańdziuk3

1 Deepsolver
2 QED Software

3 Warsaw University of Technology
jeremi@deepsolver.com, maciej.swiechowski@qed.pl, jacek.mandziuk@pw.edu.pl

Abstract
Counterfactual Regret Minimization algorithms are the most
popular way of estimating the Nash Equilibrium in imperfect-
information zero-sum games. In particular, DeepStack - the
state-of-the-art Poker bot – employs the so-called Deep
Counterfactual Value Network (DCVN) to learn the Coun-
terfactual Values (CFVs) associated with various states in the
game. Each CFV is a multiplication of two factors: (1) the
probability that the opponent would reach a given state in a
game, which can be explicitly calculated from the input data,
and (2) the expected value (EV) of a payoff in that state,
which is a complex function of the input data, hard to cal-
culate. In this paper, we propose a simple yet powerful mod-
ification to the CFVs estimation process, which consists in
utilizing a deep neural network to estimate only the EV fac-
tor of CFV. This new target setting significantly simplifies the
learning problem and leads to much more accurate CFVs es-
timation. A direct comparison, in terms of CFVs prediction
losses, shows a significant prediction accuracy improvement
of the proposed approach (DEVN) over the original DCVN
formulation (relatively by 9.18 − 15.70% when using card
abstraction, and by 3.37 − 8.39% without card abstraction,
depending on a particular setting). Furthermore, the applica-
tion of DEVN improves the theoretical lower bound of the
error by 29.05 − 31.83% compared to the DCVN pipeline
when card abstraction is applied.
Additionally, DEVN is able to achieve the goal using signifi-
cantly smaller, and faster to infer, networks.
While the proposed modification may seem to be of a rather
technical nature, it, in fact, presents a fundamentally differ-
ent approach to the overall process of learning and estimat-
ing CFVs, since the distributions of the training signals differ
significantly between DCVN and DEVN. The former esti-
mates CFVs, which are biased by the probability of reaching
a given game state, while training the latter relies on a direct
EV estimation, regardless of the state probability. In effect,
the learning signal of DEVN presents a better estimation of
the true value of a given state, thus allowing more accurate
CFVs estimation.

1 Introduction
Poker is probably the most popular imperfect-information
card game in contemporary Artificial Intelligence (AI) re-
search (Billings et al. 2002; Rubin and Watson 2011). The

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

game has been an object of intensive AI studies since Darse
Billing’s master thesis (Billings 1995). Soon after, online
Poker platforms became popular and further boosted the in-
terest in this game. In 2006, the first annual AAAI Computer
Poker Competition was held (Bard et al. 2013).

The first notable Poker-playing systems were
Loki (Billings et al. 1998) and Poki (Davidson et al.
2000). Both programs employed the enumeration approach,
wherein each possible game state (with respect to hidden
information) was assigned a heuristic score that denoted
its winning chance. The heuristics relied on the given hand
strength, hand potential, betting strategy and some elements
of opponent modelling.

The next wave of programs operated by approximating
Nash equilibrium strategies, which are commonly known as
game theory optimal (GTO) strategies in the Poker commu-
nity. To achieve this goal, Vexbot (Schauenberg 2006) em-
ployed expectimax search. PsOpti/Sparbot (Billings et al.
2003) applied linear programming on heavily abstracted
game trees. Others used Monte Carlo simulation-based ap-
proaches (Schweizer et al. 2009; Broeck, Driessens, and Ra-
mon 2009) including Monte Carlo Tree Search (Heinrich
and Silver 2014), which is a very popular and successful
technique in games in general (Świechowski et al. 2023).

A major milestone was the introduction of Counterfac-
tual Regret Minimization algorithm (CFR) (Zinkevich et al.
2007), which allowed to outperform all winners of the AAAI
2006 Computer Poker Competition.

In 2017, the search for superhuman Poker playing bot
has, is some sense, been concluded. Two bots: Libra-
tus (Brown and Sandholm 2017) and DeepStack (Moravčı́k
et al. 2017) were the first to consistently surpass profes-
sional human Poker players in 2-player No-Limit Texas
Hold’em. Libratus is comprised of three parts: (1) precom-
puted “blueprint” strategies, (2) nested subgame solving and
(3) self-improvement. For tasks (1) - (2) it employs Monte
Carlo Counterfactual Regret Minimization (MCCFR) with
Regret-Based Pruning (RBP) (Brown, Ganzfried, and Sand-
holm 2015). The self-improvement consists in an adaptive
way of performing action abstractions based on the most
frequent actions chosen by the opponent. DeepStack, briefly
summarized in section 4, soundly transfers heuristic search
methods from perfect to imperfect-information games. The
system uses depth-limited search employs Deep Counter-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5303



factual Value Network (DCVN) to learn the Counterfactual
Values (CFVs) associated with different states in Poker.

Since 2017, the majority of the strongest Poker bots have
been based on the CFR technique. Supremus (Zarick et al.
2020) introduced incremental modifications to the Deep-
Stack approach, whereas Pluribus (Brown and Sandholm
2019) was an improved version of Libratus. However, in
both these bots, the underlying SOTA idea, i.e. estimation of
CFVs, remained unchanged. Later, DeepCFR (Brown et al.
2019) obviated the usage of abstraction and storing strate-
gies in a tabular form by using neural networks to approxi-
mate the results of CFR reasoning.

Three exceptions from the above-mentioned research
stream are ReBel (Brown et al. 2020), which combines Re-
inforcement Learning (RL) with search techniques, Alpha
Holdem (Zhao et al. 2022), inspired by AlphaGo (Silver
et al. 2016), which is an end-to-end Deep RL approach, and
DREAM (Steinberger, Lerer, and Brown 2020), which is a
model-free algorithm that uses an additional neural network
to reduce the variance of the Monte Carlo CFR.

Lately, there appeared the Player Of Games algo-
rithm (Schmid et al. 2021), which generalizes DeepStack ap-
proach to create an agent successful in both perfect and im-
perfect information games, by means of combining guided
search, self-play learning, and game-theoretic reasoning.

In this paper, we consider the 2-player (a.k.a. heads-up)
variant of No-Limit Texas Hold’em Poker, addressed by
DeepStack, Libratus and their successors. Following Poker
tradition, during the analysis of a situation, we distinguish
one of the players, whose perspective is discussed, and will
refer to him/her as a hero. For the complete set of game rules,
please consult (Poker rules 2016).

Motivation
This work is motivated by certain limitations of a direct pre-
diction of CFVs. Each predicted CFV is a multiplication of
two factors: the probability of reaching a particular state in a
game (called a matchup), which can be explicitly calculated
from the input data, and the expected value (EV) of a payoff
in that state, which is a complex function of the input data,
hard to calculate.

To reduce the complexity of a CFVs prediction task, card
abstraction techniques are applied that group hands of simi-
lar strength (i.e. the probability of winning against a random
hand of the opponent). We observed that Poker hands of sim-
ilar strength have similar EVs, whereas multiplying them by
probabilities introduces a noise-like modifier to the hand’s
values – making CFVs different even for similar-strength
hands.

Values other than CFVs are also used in DeepCFR and
DREAM algorithms, i.e. instead of using CFVs explicitly as
the target of a neural network training, their scaled values are
considered. While the above scaling stems from the usage of
Monte Carlo variant of CFR, an independent but similar idea
is the basis of our work.

We propose to focus on the prediction of EVs and to ap-
ply card abstraction techniques to EVs, regardless of the
matchup modifier, which is used at a later stage, to unab-
stracted hands. This new target setting significantly simpli-

fies the learning problem and leads to much more accurate
CFVs estimation.

While the proposed modification may seem to be of a
rather technical nature, it, in fact, presents a fundamentally
different approach to the process of learning and estimating
CFVs, since the distributions of the training signals much
differ between DCVN and DEVN. The former estimates
CFVs, which are affected by the probability of reaching a
given game state, while training the latter relies on a direct
EV estimation, regardless of the associated probabilities.

Contribution
The main contribution of this work is fivefold.

• We propose a new approach (DEVN) to the problem
of estimating Countefactual Values in Poker (and poten-
tially in other related contexts / tasks) that relies on pre-
diction of Expected Values and their subsequent multi-
plication by the matchup values.

• The efficacy of the proposed method is proven by its
comparison with the DCVN approach, which is consid-
ered the state-of-the-art (SOTA) approach in the litera-
ture (Moravčı́k et al. 2017; Zarick et al. 2020; Brown and
Sandholm 2019), in 7 experimental setups described in
detail in section 6.

• The error introduced by applying card abstraction to EVs
(in DEVN) is much smaller than in the case of CFVs
(in DCVN). We show experimentally that DEVN lowers
the theoretical error bound of estimating CFVs relatively
by 29.05 − 31.83% using an encoding error metric, in-
troduced in section 6, thus leaving room for further im-
provement of results. Furthermore, the experiments show
the relative advantage of 9.18 − 15.70% of DEVN over
DCVN with unbucketed loss metric, introduced in sec-
tion 6. This practical result further cements the idea that
using card abstractions in DEVN finally leads to more
accurate CFVs predictions than in the case of DCVN.

• The experiments without using card abstraction show
the relative advantage of 3.37 − 8.39% of DEVN over
DCVN, indicating that predicting EVs is generally a
better-suited learning task than CFVs prediction.

• We show that unbucketed loss of 2-layer DEVNs is gen-
erally not worse than that of 7-layer DCVNs when card
abstraction is used, and that the relative gain from ex-
panding the network by adding additional layers is higher
for DEVN than for DCVN.

2 Preliminaries
Game-Theoretic Basics Poker is an imperfect-
information extensive-form game (Zinkevich et al. 2007),
which means that it can be represented in the form of a
game tree, using the concept of information sets (Karlin and
Peres 2017; Frank and Basin 1998). An information set (or
infoset for short) is a set of states in which the acting player
could be at the moment, and which are indistinguishable
for him/her. This ambiguity is a direct consequence of an
imperfect-information nature of the game, where part of
the state description (e.g. the opponents’ hands in Poker) is

5304



unknown to the player. Consequently, when performing an
action in a given infoset the player needs to consider pos-
sible realizations of the infoset in terms of fully-described
game states.

Although we consider a 2-player variant of Poker, in what
follows the underlying concepts are introduced in n-player
setting. Their transformation to a 2-player case is straight-
forward. Let’s denote by P the set of players and by Ii a
family of infosets in which player i ∈ P is an active player,
i.e. it is his/her turn to perform an action.

Each node in the game tree represents an infoset I ∈ Ii
which is a set of histories h ∈ H . We overload the definition
of I and say that I(h) ∈ Ip(h) is the infoset containing his-
tory h. Each non-terminal history h corresponds to player
p(h) ∈ P who is an active player in the state correspond-
ing to I(h). In each state corresponding to terminal history
ht ∈ Z ⊂ H each player k obtains utility uk(ht).

In Texas Hold’em, terminal histories are showdowns and
folds. Each history contains information about particular
hands of the players, public cards on the board, and a bet-
ting history. Therefore, the infoset I(h) is a set of histories
with a particular betting history, particular board and private
cards of player p(h) (identical to those in h), but with any
possible combination of private cards held by other players
(assuming particular private cards of player p(h)).

Texas Hold’em has a zero-sum property, i.e. for any ter-
minal history ht,

∑
i∈P

ui(ht) = 0, because a pot consists only

of players’ money and the gain of one player is a loss of all
the others.

A player’s strategy σi ∈ Σ is a function that assigns prob-
abilities to all legal actions in all infosets. A strategy profile
σ is a function that assigns a strategy to each player.

Nash Equilibrium – NE (Nash 1951; Zinkevich et al.
2007) is a strategy profile in which none of the players can
increase his/her expected value by changing his/her strategy,
if other players would not change theirs.

The NE σ = (σ1, . . . , σn) can be defined as follows:
u1(σ) ≥ max

σ′
1∈Σ1

u1((σ
′
1, σ2, . . . , σn))

. . .

un(σ) ≥ max
σ′
n∈Σn

un((σ1, σ2, . . . , σ
′
n))

(1)

Let bi(σ) be the payoff of player i in strategy σ. The best
response strategy bri(σ) is the best strategy that player i can
adopt against other players when they play strategies from σ.
It stems immediately from the NE definition that bri(σ) =
bi(σ) when σ is the NE profile.

Exploitability is a popular metric in Poker that calculates
the distance from the NE. Let b1(σ) and b2(σ) be best re-
sponse utility values for the players, In 2-player variant Ex-
ploitability is defined as follows:

ϵσ = (b1(σ) + b2(σ))/2 (2)

Intuitively, ϵσ tells how much a given strategy profile
would lose against a perfect opponent, if the player would
apply the best response strategy and would play as the first

player in half of the games (and as the second player in the
other half). The exploitability of NE is equal to 0.

While playing the NE profile guarantees that a player can-
not be exploited, it does not assure obtaining maximal util-
ity (payoff). Exploiting is a process of derivation from NE
strategy to maximize the player’s utility. Knowing that the
opponent plays according to some strategy σ and assuming
he/she will not change it, the best answer strategy is br(σ).
However, playing according to strategy br(σ) is exploitable
itself, since the opponent can change his/her strategy to in-
crease his/her utility. This is why professional Poker players
aim to learn the GTO strategy as a non-exploitable baseline.

3 Counterfactual Regret (CFR)
Minimization

Regret of a given action a is defined as a difference be-
tween the payoff of taking a and the payoff of the action
actually taken. Hart and Mas-Colell (2000) proved that min-
imizing the cumulative regret for all players leads to playing
strategies that converge to correlated equilibrium. However,
due to the complexity of calculating the regret, a number of
approximate regret minimization algorithms have been pro-
posed (Hallak, Mertikopoulos, and Cevher 2021).

CFR Minimization (Zinkevich et al. 2007) is a family of
methods that extend the base regret minimization methods
with two ideas: (1) taking into account the probability of
reaching a certain information set and (2) iterative and
multi-step procedure to calculate the future regret and
back-propagate it accordingly to information sets located
earlier in the planned sequence. Zinkevich et al. (2007)
have shown that CFR are of both space and time linear
complexity w.r.t. the number of information sets.

Certain CFR variants are used by the top Poker bots in-
cluding CFR+ in Cepherus (Bowling et al. 2017), MCCRM
in Libratus (Brown and Sandholm 2017), and DCVN in
DeepStack (Moravčı́k et al. 2017). CFR methods are also
applied to other imperfect-information games, e.g. CFR-D
in Leduc Hold’em (Burch, Johanson, and Bowling 2014) or
MCCRM in Bluff (Burch et al. 2012).

Counterfactual Value (CFV) is a notion used in CFR.
CFVi(σ, I) is equal to the expected payoff of player i at
infoset I weighted by the probability of reaching I assum-
ing that he/she plays according to the given strategy profile
σ and aims to reach I . Following (Johanson et al. 2012),
CFVi(σ, I) is defined as follows:

CFVi(σ, I) =
∑
h∈HI

ui(h) ∗ πσ
−i(h[I]) ∗ πσ(h[I], h) (3)

where i - is the player; HI - is a set of terminal histo-
ries passing through I; h[I] is a prefix of h contained in I;
πσ
−i(h) is the probability of reaching history h given strat-

egy profile σ, assuming that the probability of player i to
choose actions that lead to h is 1; πσ(h, h′) is the probabil-
ity of reaching history h′ using strategy profile σ and given
that state h was achieved (in particular πσ(h, h) = 1).

5305



Expected Value and Matchup The expected value (EV)
of a payoff of player i at information set I is defined as fol-
lows:

EVi(σ, I) =

∑
h∈HI

ui(h) ∗ πσ
−i(h[I]) ∗ πσ(h[I], h)∑

h∈HI

πσ
−i(h[I])

(4)

where the denominator is usually referred to as matchup.
Precisely, matchupi(σ, I) denotes the joint probability that
the opponents of player i will reach infoset I:∑

h∈HI

πσ
−i(h[I]) = matchupi(σ, I) (5)

Please observe that combining (3), (4) and (5) leads to (6):

CFVi(σ, I) = EVi(σ, I) ·matchupi(σ, I) (6)

The above observation forms the basis for the CFR algo-
rithm modification proposed in section 5.

4 DeepStack, Supremus and Deep
Counterfactual Value Networks (DCVNs)

DeepStack (Moravčı́k et al. 2017) is a groundbreaking
achievement in computer Poker. In short, the system per-
forms CFR minimization via continuous re-solving and
depth-limited search at every decision point in the game.
In addition, it employs bucketing of player hands, which
is an established abstraction method for imperfect informa-
tion games (Johanson et al. 2013). A bucket denotes a group
of player’s hands that are functionally similar. The authors
revealed that 1000 buckets were generated using k-means
clustering, however, they did not make the generated buck-
ets publicly available.

Supremus (Zarick et al. 2020) is essentially an up-scaled
reimplementation of DeepStack. It uses much more training
data, which is also finer-grained (due to less abstracted ac-
tion space), and more iterations. In addition, it introduces a
new CFR variant called CFR-D continual resolving. Finally,
Supremus is implemented as an end-to-end GPU approach.

The novelty of the method proposed in this paper con-
cerns one of fundamental aspects of DeepStack’s and Supre-
mus’ architectures – the process of computing CFVs. In or-
der to explain the proposed idea, the original approach to
calculating CFVs is presented below, followed by a detailed
description of the proposed modified method in section 5.

It is worth to underline that the problem of CFVs calcu-
lation extends beyond the game of Poker and the proposed
method can also be applied in other domains, e.g. cyberse-
curity (Cotae and Reindorf 2021), resource allocation (Keith
and Ahner 2021), or econometrics (Pesaran and Smith 2016)

Deep Counterfactual Value Networks
DCVNs are deep neural networks trained to predict the
counterfactual values (eq. 3).

The DCVN Pipeline (DeepStack and Supremus)
1. The game state is defined by the the pot size, public cards

and a range of each player (i.e., a probability distribution
of having a certain hand by a player).

2. For all players, the ranges and public cards are clus-
tered into buckets. Both DeepStack and Supremus use
1000 buckets, created using Potential Aware Card Ab-
straction (Ganzfried and Sandholm 2014). A vector of
bucket ranges and the normalized pot size (divided by
the stack size) serve as the DCVN input.

3. DCVN is a feedforward neural network with 7 fully con-
nected hidden layers, each of them consisting of 500 neu-
rons that use Parametric ReLU activation function.

4. The output from the network is a distribution of values
over buckets, which are transformed by a single outer
layer to satisfy the zero-sum property. Such transformed
values are CFVs defined for buckets.

5. Finally, an inverse bucketing is performed to obtain the
CFVs for specific players’ hands. Such a vector of CFVs
is then used in look-ahead search.

5 Deep Expected Value Networks (DEVNs)
In this work, we propose a different approach to obtaining
reliable CFVs, required by the CFR algorithms. Instead of
using DCVNs, we introduce DEVNs (i.e. neural networks
that predict EVs) which outputs, multiplied by matchups
(eq. 6), serve as CFVs approximations.

The idea undeprining the use of DEVNs differs from that
of DCVNs. When predicting CFVs for a particular state and
hero’s cards, one asks how valuable would it be for the hero
to try reaching this state, whereas when predicting EVs, the
question is how valuable is a given state assuming that the
opponent would enter it.

The probability of entering the state by the opponent,
given a particular hero hand, is provided by the matchup
value. The matchup for a given hero hand is a probability
that an independently selected opponent’s hand will not be
blocked by the hero’s hand, using opponent’s range and re-
lying on the fact that a particular card cannot appear more
than once. The blocking relation is represented as a 1326
x 1326 matrix with ones if a hand in the column does not
block the hand in the row, and zeroes otherwise. Assuming
that ranges are normalized, calculating matchups is simply a
multiplication of this matrix by the opponent’s range vector.

DEVN Pipeline is similar to that of DCVN, except that:

1. There is no outer network to satisfy the zero-sum prop-
erty during training (step 4 of DCVN). However, this
property can be satisfied at prediction time as we discuss
in Supplementary Material.

2. The final output (step 5 of DCVN) contains EVs instead
of CFVs, for specific players’ hands.

3. Due to step 2, to obtain CFVs, a calculation of matchups
and their multiplication by EVs (eq. 6) is performed.

Training Procedure
The training process is performed similarly to DCVN, ex-
cept that EVs (instead of CFVs) have to be provided as the
ground truth. Depending on the implementation, EVs can be
obtained aside with CFVs during solving, or can be calcu-
lated from CFVs by dividing them by the matchups.

5306



Figure 1: The processes of EVs bucketing and inverse
bucketing performed on a subset of hands. During the
bucketing, values for hands in a specific bucket are av-
eraged. During inverse bucketing, the value for a hand
assigned to a bucket is a copy of the bucket value.
To transform EVs into CFVs, EVs are multiplied by
matchups. Presented values are random. encoding error =√

(5.7− 4.75)2 + . . .+ (−2− (−1.5))2 = 1.34.
A similar visualization, picturing CFVs bucketing process,
is presented in Supplementary Material.

Similarly to DeepStack and Supremus - a feedforward
neural network with PReLU is used, however, the tests en-
compass various numbers of layers and neurons in a single
layer. The dataset (see section 6) is split in the proportion
90/10 between training and validation sets. The training is
performed for 400 epochs on batches of size 24000 samples,
using Adam optimizer with learning rate equal to 3 · 10−4.

6 Experiments
A comparison of DEVN with DCVN is performed in isola-
tion from the methods of comparing Poker bots, since they
are heavily affected by several external factors stemming
from a particular implementation. Furthermore, our focus is
on the CFVs prediction rather than creation of a full Poker
bot. Therefore, we directly compare the validation losses
(defined further in this section) for DEVN and DCVN.

Datasets Two different datasets of sizes 10M and 8.5M ,
resp. were generated using the same approach as in Deep-
Stack, In short, each sample was taken from a randomly
generated turn subgame. The states on turn were solved us-
ing the regular CFR. This way, we are able to solve them
until assumed exploitability of discovered strategies. To as-
sure that the potential inaccuracy of CFVs in the datasets
will not be a source of error, we performed preliminary tests
to find a low enough threshold on the exploitability such that
RMSE between vectors of found CFVs and ground truth
CFVs (calculated until exploitability of 0.01% of the pot)
will be with probability 0.9 smaller than 0.5, and with prob-
ability 0.98 smaller than 1. Please consult the DeepStack pa-
per (Moravčı́k et al. 2017) for a detailed explanation of the
data preparation process. CFVs are in the range [-0.5, 10],
as they are normalized by the pot.

Bucketings Two different bucketings were used in the ex-
periments to avoid a potential bias from a particular bucket-
ing. As in the case of DeepStack, the method of generation
was Potential Aware Card Abstraction (Ganzfried and Sand-
holm 2014).

Experiment Settings Both neural networks, i.e, DEVN
and DCVN, resp. used in the experiments are composed of
7, 5, 3 or 2 layers. In each case the following 5 experimental
settings are applied:
I: Dataset 1, 1000 buckets, 500 neurons in layer – a setup
used by DeepStack and Supremus (with 7 layers);
II: Dataset 1, 1000 buckets, 1024 neurons in layer – this ex-
periment was run twice to test stability;
III: Dataset 1, 2000 buckets, 1024 neurons in layer – to test
scalability, I → II → III;
IV: Dataset 2, 1000 buckets, 1024 neurons in layer – to test
repeatability between datasets, II → IV;
V: Dataset 2, 2000 buckets, 1024 neurons in layer – to test
scalability and between-sets repeatability, III → V.
To further test the strength of the proposed approach, we
created two more settings in which no bucketing is used.
Instead, the network takes an information about the public
cards as an input, in the form of one-hot encoding. The re-
sults are presented in Supplementary Material1.

Methods of Comparison
The outputs of the DEVN and DCVN pipelines are CFVs
which can be compared directly. At the same time, a direct
comparison of the training losses of neural networks in both
pipelines is not possible since the network outputs are dif-
ferent. Therefore, we use two additional loss measures: the
unbucketed loss and the encoding error, both of which can
be directly compared between the two approaches.

Encoding Error of a bucketing (Hopner and Loza Mencı́a
2018) represents the minimal theoretical error that
DCVN/DEVN can achieve using a given bucketing. It can
be viewed as an unbucketed loss of a perfectly performing
neural network (which has the training loss equal to 0 and
predicts bucketed values without any error). This error is cal-
culated on the validation dataset using RMSE. It can be com-
pared with unbucketed loss within each pipeline, and also
between DEVN and DCVN. An example of encoding error
calculation within the DEVN pipeline is shown in Fig. 1.

Bucketed Loss / Training Loss represents the error of a
neural network on the training and validation sets and is de-
fined as a difference between the bucketed ground truth and
predicted values. Following (Moravčı́k et al. 2017) it is cal-
culated using HuberLoss (Hopner and Loza Mencı́a 2018)
with parameter δ = 1.

Unbucketed Loss is the error of the entire DCVN/DEVN
pipeline, including the error of the neural network and the er-
ror introduced by the bucketing. It represents the Root Mean
Squared (RMS) difference between the ground truth CFVs
and the neural network prediction after the inverse bucketing

1https://github.com/jwolosiuk/dont-predict-cfvs-predict-evs-
instead (additional results and code)

5307



Dataset Buckets DCVN DEVN Rel. impr.
1 1000 2.782 1.944 30.11%
1 2000 2.634 1.796 31.83%
2 1000 4.006 2.842 29.05%
2 2000 3.887 2.726 29.86%

Table 1: Encoding error (EE) for DCVN and DEVN
pipelines for each unique pair (dataset, bucketing). Note that
EE does not depend on the neural network used. The last col-
umn shows the relative improvement of DEVN over DCVN.

Method Training loss Validation loss
EVs (2 layers) 0.000796± 3e−6 0.001270± 4e−6
EVs (3 layers) 0.000628± 8e−7 0.001007± 4e−6
EVs (5 layers) 0.000534± 2e−6 0.000830± 4e−6
EVs (7 layers) 0.000507± 3e−6 0.000780± 7e−7

CFVs (2 layers) 0.000746± 1e−6 0.001093± 5e−6
CFVs (3 layers) 0.000612± 1e−6 0.000891± 3e−6
CFVs (5 layers) 0.000540± 2e−7 0.000761± 9e−9
CFVs (7 layers) 0.000516± 2e−6 0.000726± 3e−6

Table 2: Bucketed losses ± st.dev.in setting II. The results
for other settings are similar (see Supplementary Material).

(multiplied by matchups in the case of DEVN) as a percent
of the pot size. As discussed in (Moravčı́k et al. 2017) if this
loss is low, the resulting strategies approximate NE well. The
unbucketed loss is calculated every 10 epochs and the model
with the lowest loss on the validation set is picked from each
experiment run.

7 Results
Encoding Error values are presented in Table 1 for both
datasets and both bucketings, and in Fig. 2b (Datatset 1) and
Fig. 2c (Dataset 2). DEVN managed to lower the theoretical
minimum error bound by 29.05%−31.83% compared to the
DCVN approach. It should be noted that, in practice, obtain-
ing the unbucketed loss equal to or even close to the encod-
ing error value may not be possible due to certain loss of
information caused by the bucketing of the neural network
input. Nevertheless, such a substantial gain creates relatively
large room for accuracy improvements.

Bucketed (Training) Losses of the DEVN and DCVN
network, resp. are shown in Table 2 and in Fig. 2a (DEVN).
For both networks, a steep decline of both losses and the
fact that the losses are close to each other suggest that neu-
ral networks learn their respective tasks effectively. While
the values for both methods cannot be directly compared,
training losses can be compared with the validation losses
separately for each of the two methods.

Unbucketed Loss results are the most important in the
context of the core claim of the paper, i.e. the advantage
of EVs prediction instead of prediction of CFVs. The ex-
periments were performed for five settings I-V introduced
earlier in the previous section. The results are presented in
Table 3 and Figs. 2b and 2c. Predicting EVs directly leads to

Size DCVN DEVN Rel. impr.
I: Dataset 1; 1000 buckets; 500 neurons per layer

2 4.161 3.679 11.59%
3 3.919 3.448 12.02%
5 3.745 3.264 12.85%
7 3.679 3.204 12.92%

EE 2.782 1.944 30.11%

II: Dataset 1; 1000 buckets; 1024 neurons per layer
2 3.934± 0.010 3.449± 0.000037 12.33%
3 3.700± 0.001 3.212± 0.006 13.19%
5 3.554± 0.001 3.054± 0.004 14.07%
7 3.513± 0.002 2.994± 0.006 14.77%

EE 2.782 1.944 30.11%

III: Dataset 1; 2000 buckets; 1024 neurons per layer
2 3.795 3.317 12.61%
3 3.578 3.080 13.92%
5 3.419 2.905 15.02%
7 3.368 2.839 15.70%

EE 2.634 1.796 31.83%

IV: Dataset 2; 1000 buckets; 1024 neurons per layer
2 6.316 5.729 9.29%
3 5.982 5.380 10.07%
5 5.821 5.150 11.53%
7 5.772 5.021 13.02%

EE 4.006 2.842 29.05%

V: Dataset 2; 2000 buckets; 1024 neurons per layer
2 6.375 5.790 9.18%
3 6.035 5.389 10.71%
5 5.793 5.095 12.05%
7 5.724 4.939 13.73%

EE 3.887 2.726 29.86%

Table 3: Unbucketed loss of DCVN and DEVN for various
parameter settings. Experiments in setting II were run twice.
The remaining results are based on a single run. EE denotes
the encoding error (copied from Tab. 1), i.e. the minimum
theoretical error bound, for each setting, respectively.

lower losses in each setting and for each considered numbers
of layers. In general, it can be observed that the bigger the
network, the better the relative improvement. The relative
improvement varies from 9.18% (setting V with 2 hidden
layers) to 15.7% for (setting III with 7 hidden layers).

In Figure 2b, it can be seen that doubling the number of
neurons per layer (from 500 to 1024) improves the results
for both DCVN and DEVN. Likewise, doubling the number
of buckets (from 1000 to 2000) ameliorates the results in
both cases. At the same time, however, DEVN with only
500 neurons per layer and 1000 buckets (setting I) performs
better than DCVN with 1024 neurons per layer and 2000
buckets (setting III), for each tested number of layers.

In Dataset 2 (Figure 2c) the gain from using DEVN over
DCVN is also clear, although the improvement from using
2000 buckets (V) instead of 1000 buckets (IV) is smaller.
This difference is attributed to different distributions of gen-

5308



(a) Bucketed training and validation loss,
resp. for a neural network predition of EVs
(DEVN) with 5 layers in setting II

(b) Encoding errors (EE) and unbucketed
losses (UL) for neural networks trained on
Dataset 1. s stands for setting

(c) Encoding errors (EE) and unbucketed
losses (UL) for neural networks trained on
Dataset 2. s stands for setting

Figure 2: (a) DEVN learning curves (bucketed loss). (b), (c) DEVN and DCVN unbucketed losses and encoding errors

(a) Setting I (b) Setting II (c) Setting III (d) Setting IV (e) Setting V

Figure 3: Unbucketed loss for each neural network size relative to the 2-layer network, for DEVN and DCVN. The X axis
denotes the number of layers, and the Y axis relative improvement of unbucketed loss in %.

erated public cards in Dataset 2 and the respective bucketing.
Moreover, in 4 out of 5 cases, the loss of EV-predicting net-
work with 2 layers is smaller or equal to the CFV-predicting
network with 7 layers, which shows the DEVN potential to
use simpler predictive models effectively.

Not only does DEVN better incorporate smaller networks,
it also gains more when additional layers are used. The un-
bucketed loss gain, relative to the 2-layer network, for each
neural network size and for both DEVN and DCVN, is il-
lustrated in Figs. 3a- 3e, resp. for settings I-V. In all settings,
the plot for DEVN is above the DCVN one, indicating that
DEVN gains more from increasing the network size.

8 Conclusions and Future Work
The paper presents a new method of calculating CFVs that
are used in CFR algorithms in game domain. The proposed
approach consists of two steps. First, EVs are predicted us-
ing Deep Expected Value Networks - DEVN (introduced
in Section 5) and then the obtained EVs are multiplied by
matchups, which are relatively easy to calculate. DEVN is
compared with the SOTA method that predicts CFVs di-
rectly using Deep Counterfactual Value Networks - DCVN.

Application of DEVN improves theoretical lower bound
of CFVs prediction error by 29.05 − 31.83% compared to
the DCVN pipeline. This gain is attributed to the card ab-
straction techniques employed by both DEVN and DCVN,
i.e. bucketing of the input and the output, and inverse buck-
eting. Card abstraction techniques group together hands of
similar strength and average their EVs/CFVs values, resp.,

which causes certain information loss. Lower encoding er-
ror of DEVN than DCVN indicates that averaging of EVs is
more effective than CFVs averaging.

The proposed modification allows to achieve significantly
higher – between 9.18% and 15.7% – prediction accuracy
(unbucketed loss), in relation to the SOTA approach. These
results further back up the above conclusion (drawn from
the analysis of the encoding error) about higher efficacy of
applying card abstractions to EVs than CFVs.

In the case of bucketing, 2-layer DEVN achieves not
worse results than 7-layer DCVN, which shows that the card
abstraction error in CFVs cannot be mitigated by simply em-
ploying bigger networks (compared to the EVs prediction).

The 3.37 − 8.39% improvement of DEVN over DCVN
in the experiments without card abstraction (see Supple-
mentary Material) shows that the increased performance of
DEVN is not only attributed to the higher efficacy when em-
ploying card abstraction techniques to EVs instead of CFVs,
but also to the fact that prediction of EVs is generally an eas-
ier task, compared to CFVs prediction.

The fact that DCVN pipeline does not improve meaning-
fully beyond 7 layers and 500 neurons per layer, makes the
above conclusion even more meaningful.

In summary, in DCVN, the estimation of CFVs is affected
by the probability of reaching a given state, which has a neg-
ative impact on generalization. Consequently, when predict-
ing CFVs, our approach (DEVN) separates these two con-
cepts, i.e. robust calculation of probabilities (matchups) and
effective prediction of EVs.

5309



Acknowledgments
JW was supported by Deepsolver. MŚ was supported by
funding from Smart Growth Operational Programme 2014-
2020, financed by European Regional Development Fund
under GameINN project POIR.01.02.00-00-0207/20, oper-
ated by National Centre for Research and Development in
Poland.

References
Bard, N.; Hawkin, J.; Rubin, J.; and Zinkevich, M. 2013.
The annual computer poker competition. AI Magazine,
34(2): 112–112.
Billings, D. 1995. Computer poker. Master’s thesis, Univer-
sity of Alberta.
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximating
Game-Theoretic Optimal Strategies for Full-Scale Poker. In
IJCAI, volume 3, 661.
Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D.
2002. The challenge of poker. Artificial Intelligence, 134(1-
2): 201–240.
Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D. 1998.
Opponent Modeling in Poker. In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence and
Tenth Innovative Applications of Artificial Intelligence Con-
ference (AAAI ’98, IAAI ’98), 493–499.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2017. Heads-up limit hold'em poker is solved. Communica-
tions of the ACM, 60(11): 81–88.
Broeck, G. V. d.; Driessens, K.; and Ramon, J. 2009. Monte-
Carlo tree search in poker using expected reward distribu-
tions. In Asian Conference on Machine Learning, 367–381.
Springer.
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q. 2020.
Combining Deep Reinforcement Learning and Search for
Imperfect-Information Games. arXiv:2007.13544.
Brown, N.; Ganzfried, S.; and Sandholm, T. 2015. Hierar-
chical abstraction, distributed equilibrium computation, and
post-processing, with application to a champion no-limit
Texas Hold’em agent. In Workshops at the twenty-ninth
AAAI conference on artificial intelligence.
Brown, N.; Lerer, A.; Gross, S.; and Sandholm, T. 2019.
Deep Counterfactual Regret Minimization. In Chaudhuri,
K.; and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 793–802.
PMLR.
Brown, N.; and Sandholm, T. 2017. Libratus: The Super-
human AI for No-Limit Poker. In Sierra, C., ed., IJCAI,
5226–5228. ijcai.org. ISBN 978-0-9992411-0-3.
Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science, 365: eaay2400.
Burch, N.; Johanson, M.; and Bowling, M. 2014. Solv-
ing Imperfect Information Games Using Decomposition.
arXiv:1303.4441.

Burch, N.; Lanctot, M.; Szafron, D.; and Gibson, R. 2012.
Efficient Monte Carlo Counterfactual Regret Minimization
in Games with Many Player Actions. In Pereira, F.; Burges,
C.; Bottou, L.; and Weinberger, K., eds., Advances in Neural
Information Processing Systems, volume 25. Curran Asso-
ciates, Inc.
Cotae, P.; and Reindorf, N. E. A. 2021. Using counterfac-
tual regret minimization and Monte Carlo tree search for cy-
bersecurity threats. In 2021 IEEE International Black Sea
Conference on Communications and Networking (BlackSea-
Com), 1–6. IEEE.
Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron, D.
2000. Improved opponent modeling in poker. In Interna-
tional Conference on Artificial Intelligence, ICAI’00, 1467–
1473.
Frank, I.; and Basin, D. 1998. Search in games with in-
complete information: A case study using Bridge card play.
Artificial Intelligence, 100(1-2): 87–123.
Ganzfried, S.; and Sandholm, T. 2014. Potential-aware
imperfect-recall abstraction with earth mover’s distance in
imperfect-information games. Proceedings of the National
Conference on Artificial Intelligence, 1: 682–690.
Hallak, N.; Mertikopoulos, P.; and Cevher, V. 2021. Re-
gret minimization in stochastic non-convex learning via a
proximal-gradient approach. In International Conference on
Machine Learning, 4008–4017. PMLR.
Hart, S.; and Mas-Colell, A. 2000. A Simple Adaptive Pro-
cedure Leading to Correlated Equilibrium. Econometrica,
68(5): 1127–1150.
Heinrich, J.; and Silver, D. 2014. Self-play Monte-Carlo
tree search in computer poker. In Workshops at the Twenty-
Eighth AAAI Conference on Artificial Intelligence.
Hopner, P.; and Loza Mencı́a, E. 2018. Analysis and Opti-
mization of Deep Counterfactual Value Networks. KI 2018:
Advances in Artificial Intelligence, 305–312.
Johanson, M.; Bard, N.; Lanctot, M.; Gibson, R. G.; and
Bowling, M. 2012. Efficient Nash equilibrium approxima-
tion through Monte Carlo counterfactual regret minimiza-
tion. In van der Hoek, W.; Padgham, L.; Conitzer, V.; and
Winikoff, M., eds., AAMAS, 837–846. IFAAMAS.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, 271–278.
Karlin, A. R.; and Peres, Y. 2017. Game Theory, Alive, vol-
ume 101. American Mathematical Soc.
Keith, A.; and Ahner, D. 2021. Counterfactual regret mini-
mization for integrated cyber and air defense resource allo-
cation. European Journal of Operational Research, 292(1):
95–107.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-level Artificial Intelligence in
heads-up no-limit Poker. Science, 356(6337): 508–513.
Nash, J. 1951. Non-cooperative Games. Annals of Mathe-
matics, 54(2): 286–295.

5310



Pesaran, M. H.; and Smith, R. P. 2016. Counterfactual anal-
ysis in macroeconometrics: An empirical investigation into
the effects of quantitative easing. Research in Economics,
70(2): 262–280.
Poker rules. 2016. Texas Hold’em Game Rulebook.
https://oag.ca.gov/sites/all/files/agweb/pdfs/gambling/
BGC texas.pdf (Accessed: 2022-08-14).
Rubin, J.; and Watson, I. 2011. Computer poker: A review.
Artificial Intelligence, 175(5): 958–987. Special Review Is-
sue.
Schauenberg, T. C. 2006. Opponent Modelling and Search
in Poker. Master’s thesis, University of Alberta.
Schmid, M.; Moravcik, M.; Burch, N.; Kadlec, R.; David-
son, J.; Waugh, K.; Bard, N.; Timbers, F.; Lanctot, M.; Hol-
land, Z.; et al. 2021. Player of Games. arXiv preprint
arXiv:2112.03178.
Schweizer, I.; Panitzek, K.; Park, S.-H.; and Fürnkranz, J.
2009. An exploitative Monte-Carlo poker agent. In Annual
Conference on Artificial Intelligence, 65–72. Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587): 484–489.
Steinberger, E.; Lerer, A.; and Brown, N. 2020. DREAM:
Deep regret minimization with advantage baselines and
model-free learning. arXiv preprint arXiv:2006.10410.
Świechowski, M.; Godlewski, K.; Sawicki, B.; and
Mańdziuk, J. 2023. Monte Carlo Tree Search: a review of
recent modifications and applications. Artificial Intelligence
Review, 56: 2497–2562.
Zarick, R.; Pellegrino, B.; Brown, N.; and Banister, C. 2020.
Unlocking the Potential of Deep Counterfactual Value Net-
works. arXiv:2007.10442.
Zhao, E.; Yan, R.; Li, J.; Li, K.; and Xing, J. 2022. Al-
phaHoldem: High-Performance Artificial Intelligence for
Heads-Up No-Limit Poker via End-to-End Reinforcement
Learning. In Proceedings of the 36th AAAI Conference on
Artificial Intelligence, 4689–4697.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2007. Regret Minimization in Games with Incomplete Infor-
mation. Advances in neural information processing systems,
20.

5311


