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Abstract

Accurate forecasting of tropical cyclone (TC) plays a criti-
cal role in the prevention and defense of TC disasters. We
must explore a more accurate method for TC prediction.
Deep learning methods are increasingly being implemented
to make TC prediction more accurate. However, most exist-
ing methods lack a generic framework for adapting heteroge-
neous meteorological data and do not focus on the importance
of the environment. Therefore, we propose a Multi-Generator
Tropical Cyclone Forecasting model (MGTCF), a generic,
extensible, multi-modal TC prediction model with the key
modules of Generator Chooser Network (GC-Net) and Envi-
ronment Net (Env-Net). The proposed method can utilize het-
erogeneous meteorologic data efficiently and mine environ-
mental factors. In addition, the Multi-generator with Genera-
tor Chooser Net is proposed to tackle the drawbacks of single-
generator TC prediction methods: the prediction of unde-
sired out-of-distribution samples and the problems stemming
from insufficient learning ability. To prove the effectiveness
of MGTCF, we conduct extensive experiments on the China
Meteorological Administration Tropical Cyclone Best Track
Dataset. MGTCF obtains better performance compared with
other deep learning methods and outperforms the official pre-
diction method of the China Central Meteorological Obser-
vatory in most indexes.

Introduction
Tropical cyclones (TCs) are powerful and complex weather
systems, also known as typhoons, hurricanes, or cyclonic
storms. They usually develop in tropical, subtropical, and
temperate zones with substantial precipitation, which main-
tain a balance of global heat and momentum distribution
(Emanuel 2018). However, strong TCs can prove lethal for
vessels and platforms at sea. Furthermore, when a TC makes
landfall, it can also bring about ensuing natural disasters,
such as gales, storm surges, floods (Anthes 2016), which
can cause significant economic losses and casualties. To de-
fend against these disasters, we need to be able to predict
the future tendencies of the trajectory and intensity of TC in
advance. These are the most important aspects of TC pre-
diction and are also the ones that we want to forecast in
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Figure 1: The development of TC with environment factors.
The sub-figures in the left are the examples of heterogeneous
meteorological data.

this work. However, it is very difficult to predict TCs, be-
cause there are many factors involved in the development of
a TC, including the general circulation of atmosphere, the
region of the subtropical high, the pressure structure and
location of the TC, the sea surface temperature, and other
environment-related factors, (Emanuel 2007), as shown in
Figure 1. Researchers still do not understand how all these
factors impact the TC. Because TC prediction is so critical,
researchers began studying this topic in the previous century
(Neumann and Lawrence 1975). They studied the principle
of TC and tried various approaches to improve the accuracy
of TC prediction, including empirical methods, statistical
methods, and numerical methods. Based on these methods,
other approaches have been developed in recent years (Wang
et al. 2015; Chen and Zhang 2019).

Numerical Weather Prediction (NWP) systems have be-
come the mainstream TC prediction method, used by many
official meteorological forecasting agencies, including the
China Central Meteorological Observatory (CMO). This
method uses supercomputers to simulate various factors in-
fluencing the development of TCs. However, because the
principle of TC development is complex, supercomputers
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Figure 2: MGTCF framework. The golden branch is the environment data encoder. The blue branch is the inherent attributes
data of TC (Data1d) encoder. The red branch is the meteorological grid data (Data2d) encoder. Chooser selects different
generators by the probability array, the histogram below GC-Net, from Generator Chooser Net. All predictions from selected
generators constitute the multiple potential tendencies of TC. Best viewed in color.

need to use massive amount of expensive computing re-
sources to execute TC forecasting (Rüttgers et al. 2019). In
comparison, deep learning methods use only several GPUs
to execute difficult tasks. Deep learning is widely used in
many domains, including computing vision (Duan et al.
2022), time series prediction (Fan et al. 2022), and other
interdisciplinary disciplines (Kumar, Biswas, and Pandey
2021; Zhao et al. 2022). Due to the availability of rich het-
erogeneous meteorological data, deep learning technology,
particularly the recurrent neural network (RNN) (Hochreiter
and Schmidhuber 1997), can also be applied to the task of
TC prediction. Therefore, some researchers have started to
explore the application of deep learning technology to TC
prediction.

Single-modal data is first used as the input of an RNN
to predict TCs (Alemany et al. 2019; Pan, Xu, and Shi
2019). This is an interesting attempt to combine deep learn-
ing and TC prediction and promote the development of TC
prediction methods based on deep learning. However, the
features extracted from single-modal data are insufficient
to fully represent the TC. Therefore, predictions using only
single-modal data are not sufficiently precise. Then, hetero-
geneous meteorological data were used in various TC pre-
diction methods (Giffard-Roisin et al. 2020; Liu et al. 2022).
These data include the inherent attribute data of TC called
Data1d (e.g., longitude, latitude, and wind) and meteoro-
logical grid data called Data2d (e.g., satellite images and
meteorological fields). However, these methods used differ-
ent data, and there are varying designs of the data encoder.
Designing a new encoder for each set of meteorological data
is inadvisable, owing to the large amounts of heterogeneous
meteorological data. Therefore, it is necessary to build a
generic encoder for all the different modals and dimensions
of data.

Most meteorologists currently prefer methods employing
a mechanism for predicting multiple potential TC tenden-
cies, as shown in the semitransparent green region shown
at the left in Figure 2. This mechanism, which was not
a part of most previous methods, can provide meteorolo-
gists with more referential and reasonable forecasting. This

mechanism in TC prediction is usually implemented using a
single-generator generative adversarial network (GAN) with
different noises (Huang et al. 2022). However, this type of
method has been shown to have some drawbacks, including
the prediction of undesired out-of-distribution (OOD) sam-
ples and insufficient learning ability (Dendorfer, Elflein, and
Leal-Taixé 2021). These drawbacks need to be resolved in
the task of TC prediction, especially when facing hard pre-
diction examples, because these drawbacks can decrease the
accuracy of long-term predictions. Fortunately, the multi-
generator model has been shown to work when facing these
problems in other domains (Dendorfer, Elflein, and Leal-
Taixé 2021).

As previously mentioned, a TC is a complex weather sys-
tem and is influenced by many factors, such as environment-
related factors, including the month, the region of the sub-
tropical high, and the location of the TC. However, these
factors were ignored in previous deep learning methods
(Chen, Zhang, and Wang 2020). To make the prediction re-
sults more credible and interpretable, the prediction methods
should consider the influence of environment-related factors
and use such data efficiently.

To tackle all these problems, we propose a Multi-
Generator Tropical Cyclone Forecasting model, named
MGTCF, which is a generic, extensible, multi-modal
TC prediction model with the key modules of Genera-
tor Chooser Network (GC-Net) and Environment Network
(Env-Net), for predicting multiple potential tendencies of
TCs. The main contributions of MGTCF are as follows:
1) MGTCF can utilize heterogeneous meteorologic data ef-
ficiently, including the inherent attribute data of TC and
the meteorological grid data. 2) The Multi-generator and
the GC-Net are used to tackle the prediction of undesired
OOD samples and the insufficient learning ability of single-
generator TC prediction methods. 3) Env-Net improves the
performance of TC prediction by embedding the environ-
ment information, which has been traditionally overlooked
but is very important. To our knowledge, this is the first
attempt to build a module focused on environment in TC
prediction. 4) Extensive experiments were conducted on
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the China Meteorological Administration Tropical Cyclone
Best Track Dataset (CMA-BST). We obtained state-of-the-
art performance in deep learning methods and obtained bet-
ter results than the method of the CMO in most indexes.

Method
Definition of the Problem
We propose MGTCF to predict the trajectory and intensity
of TCs in a specific environment. This is also a spatial-
temporal prediction problem. We denote the inherent at-
tribute data of a TC as Data1d, which include the longitude,
latitude, pressure, and wind. We denote the meteorologi-
cal grid data, such as geopotential heigh (GPH) (ECMWF
2022), as Data2d. Environment data, such as the month,
the velocity of movement, history of moving direction (24
h), and the region of the subtropical high, are denoted as
Env-Data. Assuming there is a TC developing in the Pa-
cific Ocean, we receive the history data xt and the envi-
ronment data xnenv of this TC as input X = {x1, x2, ..., xn;
xnenv}. The every point time data is xt = {xt1d, xt2d}, where
t ∈ {1, 2, ..., n}, n is the sequence length of the input data,
and xt1d is the Data1d and xt2d is the Data2d. When we ob-
tain the input X, we want our model to be able to output
Ŷ = {ŷn+1, ŷn+2, ..., ŷn+m} which is as close as possible
to the actual future trajectory and intensity of TC (ground-
truth). The actual future tendency of TC is denoted as Y
= {yn+1, yn+2, ..., yn+m}. In addition, the real and predic-
tion data of TC on each point time are defined as yt =
{yttrajectory, ytintensity} and ŷt = {ŷttrajectory, ŷtintensity}
respectively, where t ∈ {n + 1, n + 2, ..., n + m}. Here,
m is the sequence length of the prediction data of TC.

MGTCF
MGTCF is a GAN-based TC prediction model with the abil-
ity to receive multi-dimension and multi-modal data. There-
fore, we need to build a 2D-Data Encoder and a 1D-Data
Encoder to extract useful the features of these sequential
data. Considering the environment data, we develop the En-
vironment Network to extract the environment informa-
tion efficiently. When we obtain the rich features of TC his-
tory data and environmental factors, we use Multiple Gen-
erators to predict the multiple potential tendencies of TC.
Using the information about the environment and TC, our
model can choose different generators to predict tenden-
cies more accurately by the Generator Chooser Network.
Then, a Discriminator is used to judge the actual tendency
and the predicted tendency. Finally, to obtain the best perfor-
mance, we optimize MGTCF by multiple Loss Functions.
The framework of MGTCF is shown in Figure 2.

2D-Data Encoder. As shown in Figure 2, the 2D-Data
Encoder is the red branch. This branch has two functions:
to extract the spatial-temporal features from the history TC
sequence data by a component, which is based on 3D-
Unet(Çiçek et al. 2016); and to predict the future Data2d
sequence by the history Data2d sequence. These predicted
data will be received by the Decoder-LSTM (De-LSTM) in

Multiple Generators. The process of the 2D-Data Encoder
can be expressed as follows:

eEn
2d , e

De
2d = Encoder2d(X2d;WEncoder2d) (1)

where X2d denotes the history sequence Data2d of TC,
eEn
2d denotes the Data2d feature input for the 1D-Data En-

coder, eDe
2d denotes the Data2d feature input for Genera-

tors, Encoder2d(.) is a function combining 3D-Unet with
several Multilayer Perceptrons (MLPs), andWEncoder2d de-
notes the weight of 3D-Unet and MLPs. Now, we complete
the feature extraction of Data2d and get features eEn

2d and
eDe
2d .

1D-Data Encoder. In Figure 2, 1D-Data Encoder is the
blue branch. This branch is a fundamental part of MGTCF.
It not only encodes the Data1d but also fuses the features
from the 2D-Data Encoder eEn

2d . First, 1D-Data Encoder en-
codesData1d with an MLP and gets features eEn

1d . Then, we
concatenate eEn

2d and eEn
1d as the input of MLP and obtain

eEn
fusion, which is fused with the features from two different

dimensions. Finally, En-LSTM is used to extract the tem-
poral features from eEn

fusion . The major process of 1D-Data
Encoder can be expressed as follows:

eEn
1d = φ(X1d;WMLP−1d) (2)

eEn
fusion = φ(cat(eEn

1d , e
En
2d );WMLP−fusion) (3)

hn = EncoderLSTM (eEn
fusion;WEn−LSTM ) (4)

where φ(.) is an MLP module, and EncoderLSTM () repre-
sents the function of En-LSTM.WMLP−1d,WMLP−fusion,
andWEn−LSTM are the corresponding weights of modules.
hn denotes the temporal-spatial features from the history
Data1d and Data2d of TC, and n is the sequence length
of the input data.

Environment Network (Env-Net). Unlike previous
works on TC prediction (Huang et al. 2022; Alemany
et al. 2019), we pay more attention to the impact of
environment-related information, which plays a critical
role in the development of TCs. Therefore, we build the
Env-Net, depicted as a golden branch in Figure 2, to extract
features of the environment. The Env-Net can receive not
only the temporal sequence data but also the environment
data at a specific time, because not all environment data
have temporal characteristics. For example, the season for
one TC, without temporal characteristics, usually does not
change during the development of the TC. However, the
season represents significant information for using in the
TC prediction, as TCs have different tendencies in different
seasons (Anthes 2016). In general, environment data are
also heterogeneous meteorological data, as can be seen with
Data1d and Data2d. Therefore, we design the Env-Net
with Convolutional Neural Networks (CNN) and MLP to
adapt data with different modals and dimensions. The main
process of Env-Net is:

eEnv
1d = φ(XEnv

1d ;WMLP−Env) (5)

eEnv
2d = CNN(XEnv

2d ;WCNN−Env) (6)
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eEnv = φ(cat(eEnv
1d , eEnv

2d );WMLP−Envfusion) (7)

where XEnv
1d and XEnv

2d are the Data1d and Data2d of en-
vironment respectively, and eEnv

1d represents the features
of Data1d and eEnv

2d represents the features of Data2d.
WMLP−Env , WMLP−Envfusion, and WCNN−Env are the
corresponding weights of modules, and eEnv represents the
final features extracted from environment data.

Generator Chooser Network (GC-Net). Due to the pre-
diction of undesirable out-of-distribution (OOD) samples
and the insufficient learning ability drawbacks of single-
generator TC prediction methods, we attempted to use mul-
tiple generators. In addition, we want our model to be able
to select suitable generators for prediction according to en-
vironmental and TC information. We consider probability
of each generator being selected to be different during dif-
ferent TC predictions, that is, P (gi|hn, eEnv) is different,
where P (.) is the probability of each generator gi, i ∈
{1, 2, ...,K}. Here, K is the number of generators. Each
generator will have its own prediction tendency when it
meets a different environment. For instance, for the trajec-
tory prediction of TC, when one of the generators gq is more
likely to predict the northwest trajectory with a specific en-
vironment envi and our method also considers the future
direction of the TC trajectory as northwest in the environ-
ment envi, the P (gq|hn, eEnv) should be larger than that of
other generators. This means that the probability of gq being
selected is the highest in these generators. Only in this sit-
uation, does our prediction results become more reasonable
and accurate. To obtain the probability of each generator,
we design the GC-Net. The inputs of GC-Net are the multi-
modal features hn and eEnv , and the outputs are the proba-
bilities of each generator. The probability histogram below
the GC-Net in Figure 2 represents the probabilities of each
generator. The main process of GC-Net is:

P = φ(cat(hn, eEnv);WMLP−GCNet) (8)

where P is the probability array of each generator being
chosen, φ(.) is an MLP module, and WMLP−GCNet is the
weight of GC-Net. Then, we use the Monte Carlo method to
obtain the identification (id) list gidlist of the selected gen-
erators by the P and the sampling number l. The length of
gidlist is l.

Multiple Generators. As previously mentioned, we use
multiple generators to solve the OOD and the insufficient
learning ability drawbacks of single-generator TC predic-
tion methods. Each generator obtains distinct features and
has its own prediction tendency by the specific condition,
as shown in the three sub-figures at the left of Figure 2. All
generators are designed with the same architecture but they
do not share weights with each other. De-LSTM is the main
module of each generator. As shown in Figure 2, each gener-
ator has its own id from 1 toK. Our method selects different
generators to predict by the id list gidlist and we obtain mul-
tiple potential tendencies of TC, as shown in Figure 2. The
selected generator receives the features v = [hn, e

De
2d , eEnv]

from the 1D-Data Encoder, 2D-Data Encoder, and Env-
Net and decodes v with a random noise vector z ∼ N (0, 1)
(Gupta et al. 2018) to forecast the future trajectory and in-
tensity of the TC. The main process of the generator gi is:

Ŷi = DecoderLSTMi(v, zi;WDe−LSTMi) (9)

where Ŷi is the trajectory and intensity prediction of TC,
DecoderLSTMi(.) is a decoder function of the generator
gi, and WDe−LSTMi is the weight of the generator gi, i
∈ gidlist. Now, we can finish generating the TC’s future
tendency. This means that we have completed the generator
step. Next, we will introduce the discriminator step.

Discriminator. To make the predictions of generators
more like the real TC, we build the Discriminator to extract
the features of its input and let it judge whether its input data
belong to the real TC : TCreal = [X,Y] or the prediction TC
: TCfake = [X, Ŷ]. Ideally, the Discriminator can learn the
rule of TC development and regard any unreasonable ten-
dency as ”Fake” during training.

Loss Functions

After the above introduction of the key modules in our
method, we know the architecture of MGTCF and why it
is designed that way. To optimize our module, we use four
loss functions: adversarial loss, best of many loss, 2D-Data
loss, and GC-Net loss.

Adversarial Loss. Adversarial loss is a classical loss in
GAN-based models. We use the original adversarial loss to
optimize Generators G and Discriminator D. We want the
output TCfake of G to be accepted by D just as TCreal can
be accepted by D. We also want D to be able to distinguish
the unreasonable TCfake in all the samples, all of which are
received by D, and prompt G to generate more reasonable
and accurate future tendencies of TC. The adversarial loss
in our method reads as follows:

Ladv = H(D([X,Y]), T ) +H(D([X, G(X)]), F ) (10)

whereH is a cross-entropy loss,D(.) outputs the probability
that the input is true. G(.) outputs the future TC prediction,
[X,Y] represents TCreal, [X, G(X)] represents TCfake, T
is the label of TCreal, and F is the label of TCFake.

Best of Many Loss. The best of many loss is a common
loss in the tasks of pedestrian trajectory prediction(Gupta
et al. 2018). We only choose the best prediction in the out-
puts of generators and calculate the loss between it and the
ground truth. This loss encourages MGTCF to predict rea-
sonable multiple potential tendencies of TC. The definition
of this is as follows:

LBMS = min
l

∥∥∥Y − Ŷi∥∥∥
2

(11)

where i ∈ gidlist, l is the number of samples, and ‖.‖2 is the
l2-norm function.
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2D-Data Loss. In order for our method to extract better
temporal-spatial features from Data2d, we add the 2D-Data
loss to further optimize 2D-Data Encoder. As described in
an earlier section, we use 3D U-Net to predict the future
Data2d sequence Ŷ2d. We calculate the loss between Ŷ2d

and the real Data2d sequence Y2d in pixel wise, the main
process is:

L2D =
1

hw × c×m

∥∥∥Yhw×c×m
2d − Ŷ

hw×c×m
2d

∥∥∥
1

(12)

where hw is the spatial size of Data2d, c denotes the chan-
nel number,m is the length of prediction sequence, and ‖.‖1
is the l1-norm function. Overall, the training object of the
GAN part of MGTCF can be expressed follows:

min
G

max
D
Ladv + λBMSLBMS + λ2DL2D (13)

GC-Net Loss. It is important that GC-Net can select suit-
able generators conditioned on the specific environment and
TC. Therefore, we use GC-Net loss to optimize the GC-Net
module. We utilize the real future TC Y and the predicted
TC Ŷ to approximate the likelihood of a particular generator
distribution Pi. The main process is:

P (Y|hn, eenv, g) ∝
1

l

∑
i∈gidlist

exp

−
∥∥∥Ŷi − Y

∥∥∥2
2

2σ


(14)

Next, we obtain the conditional probability of each generator
by Bayes’ Rule:

P (g|hn, eenv,Y) =
P (Y|hn, eenv, g)∑K

i=1 P (Y|hn, eenv, gi)
(15)

In the final step, we use the cross-entropy loss between the
distribution of P (g|hn, eenv,Y) and the GC-Net’s output to
optimize GC-Net:

LGC = H(P (g|hn, eenv,Y), GC(hn, eenv)) (16)

where GC(.) is the probability array of each generator by
GC-Net.

Training Scheme. The prediction performance of genera-
tors will be greatly influenced by the output P of GC-Net.
The more suitable generators our model selects, the more
accurate our model’s predictions. Accordingly, we first train
GC-Net using Equation (16) with freezing the rest of our
model’s parameters in the first q epochs. After this step, GC-
Net can provide a selection scheme of generators along ini-
tialized parameters. It is helpful to train the GAN part of
our model. Then we train all the parameters of MGTCF and
obtain the best performance model by using Equations (16)
and (13).

Experiments
We conduct comparison experiments and ablation studies.
We also discuss the experimental setup to help our readers
to reproduce our method. We will also open our codes on
Github at https://github.com/Zjut-MultimediaPlus/MGTCF.

Experimental Setup
We implemented MGTCF on the PyTorch platform and
ran it on an NVIDIA RTX A6000 GPU. We used Adam
(Kingma and Ba 2015) to optimize our model with an initial
learning rate of 0.0001. We trained MGTCF with a batch
size of 96 and 100+q epochs. The hyperparameter q was
2. The number of generators K and the sampling number
l were set as 6. In all experiments, we input the past 48 h (n
= 8) TC data and predicted the future 24 h (m = 4) tenden-
cies of TC. More details of experimental setup are provided
in the supplementary material.

Datasets. We collected rich meteorological data about
TCs from the year 1950 to 2019. These served as the corner-
stone of our method. Of the data from 1950 to 2016, 80%
were used for the training set and 20% were used for the
validation set. The data for the years 2017 to 2019 were re-
garded as the test set. The main data we used consisted of
inherent attribute data of TC (Data1d), meteorological grid
data (Data2d), and environment data.
Data1d we used were from the CMA-BST (Ying et al.

2014). Trajectory and intensity are the most intuitive and
crucial properties of TCs. Therefore, we selected data on
the longitude, latitude (trajectory), pressure, and wind (in-
tensity) at the center of TC as the training data to describe
the TC.
Data2d we used, geopotential height (GPH), were from

the fifth-generation atmospheric reanalysis of the global cli-
mate (ERA5) (ECMWF 2022) by the European Centre for
Medium-Range Weather Forecasts (ECMWF). We followed
(Liu et al. 2022) and chose the 500 hPa GPH data to describe
the pressure structure of TCs.

Environment data used in our method described the TC
condition during its development. We extracted these data
fromData1d andData2d, including the month, the velocity
of movement, history of moving direction (24 h), history of
intensity change (24 h), the region of the subtropical high,
and the location of the TC. We also provide these data in the
supplementary material.

Metrics. Absolute error was used to evaluate the perfor-
mance of the different methods. For trajectory prediction,
we calculated the absolute distance (km) error between the
real trajectory and the prediction trajectory. In intensity pre-
diction, including pressure (hPa) and wind (m/s) at the TC’s
center, we also calculated the absolute error between the real
data and the prediction data.

Comparison with State-of-the-art Methods
First, we conducted experiments comparing other state-of-
the-art methods with MGTCF. Then, we analyzed the exper-
imental results from multiple aspects. The results showed
that our method obtained the best prediction performance
of the deep learning methods. The results also showed that
MGTCF outperformed CMO in most indexes.

Quantitative Analysis. The comparison results, shown in
Table 1, were evaluated by the average absolute error of
TC trajectory and intensity prediction. First, we looked at
four methods: LSTM (Hochreiter and Schmidhuber 1997),
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Figure 3: Examples of trajectory predictions from 6 h to 24 h and the comparison between our method and MMSTN on
the potential region predictions for four TCs: PABUK (STS, Winter), TAPAH (TY, Summer), FAXAI (STY, Summer), and
HAGIBIS (SuperTY, Summer). Best viewed in color.

methods Distance (km) Pressure (hPa) Wind (m/s)
6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h

LSTM 44.23 102.24 177.60 270.84 - - - - - - - -
GRU 45.85 104.07 180.29 275.77 - - - - - - - -

NMPT 44.10 101.72 177.06 270.91 - - - - - - - -
DLM - - - - - - - - 1.09 1.85 2.48 3.04
SGAN 28.88 61.75 98.74 140.61 1.91 3.12 4.20 5.12 1.05 1.69 2.28 2.81

GBRNN 29.93 65.06 105.74 152.06 - - - - 1.16 1.89 2.52 3.10
MMSTN 27.57 59.09 96.54 139.19 1.69 2.86 3.94 4.74 0.95 1.52 2.10 2.55

CMO 37.08 52.93 60.69 75.49 2.67 4.30 5.04 6.31 2.29 3.45 2.75 5.00
MGTCF 23.14 43.37 67.09 93.08 1.37 2.04 2.66 3.29 0.73 1.17 1.55 1.86

Table 1: Comparisons of average absolute error of TC prediction of different methods.

GRU (Cho et al. 2014), NMPT (Gao et al. 2018), and DLM
(Pan, Xu, and Shi 2019). In the experiment, they executed
prediction tasks with trajectory or intensity modal data, and
their performances were inferior to those of three methods–
SGAN (Gupta et al. 2018), GBRNN (Alemany et al. 2019),
and MMSTN (Huang et al. 2022)–that used trajectory and
intensity information of the TC. We find that if a method can
extract more features efficiently from more data, it can better
forecast a TC. Our method, with the reception of heteroge-
neous meteorological data and effective model designs, in-
cluding GC-Net, Env-Net, and multiple generators, achieved
the best performance among the deep learning methods.
In trajectory prediction, MGTCF surpassed the previous
best method, which was MMSTN (Huang et al. 2022), by
16.08%-33.12%. In intensity prediction, our method demon-
strated an 18.93%-32.49% improvement over MMSTN. Fur-
thermore, as the prediction time became longer, MGTCF can
achieved even more improvement.

When compared with CMO (CMO 2019), MGTCF also
performed better in intensity prediction and short-term tra-
jectory prediction of a TC. Although COM outperformed
MGTCF in 18 h and 24 h trajectory prediction, MGTCF
only needs a GPU, not a supercomputer. We do not know
which the specific method CMO used, but we know it be-
longs to NWP, which needs a supercomputer. In summary,
MGTCF is an effective and potential method that achieves

state-of-the-art performance among deep learning methods.

Qualitative Analysis of the Trajectory Prediction. To
more intuitively prove the effectiveness of our method, we
visualized the results of trajectory prediction and compared
the prediction performances of MGTCF and the previous
best deep learning method, MMSTN (Huang et al. 2022).
As shown in Figure 3, the red circle points sequence rep-
resents the real trajectory, the semitransparent green region
represents the potential tendencies calculated by our mul-
tiple trajectory predictions, the semitransparent red region
represents the potential tendencies of MMSTN, the green
star sequence represents the most accurate prediction trajec-
tory generated by our method, and the background of pre-
diction results represents the satellite cloud image of each
TC.

To demonstrate the superior performance of MGTCF,
we selected four TCs of different grades: severe tropical
storm (STS) PABUK, typhoon (TY) TAPAH, severe ty-
phoon (STY) FAXAI, and super typhoon (SuperTY) HAG-
IBIS. PABUK was generated in winter; the other three TCs
were generated in summer. The semitransparent green re-
gions show that MGTCF performs well when observing the
TC impacted by different environmental factors (e.g., the
grade and the season of TC). Expecting our model to tackle
the TC in a different environment was one of the main mo-
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H M-GC Env Distance (km) Pressure (hPa) Wind (m/s)
6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h

27.57 59.09 96.54 139.19 1.69 2.86 3.94 4.81 0.95 1.52 2.10 2.59√
24.95 48.76 74.47 104.58 1.52 2.40 3.30 3.93 0.77 1.29 1.77 2.16√ √
25.33 48.21 72.20 100.84 1.41 2.28 2.98 3.44 0.76 1.26 1.66 1.92√ √
25.01 46.16 68.41 96.79 1.29 2.02 2.67 3.34 0.71 1.17 1.56 1.96√ √ √
23.14 43.37 67.09 93.08 1.37 2.04 2.66 3.29 0.73 1.18 1.55 1.86

Table 2: Ablation experiments: (H) Receiving Heterogeneous Meteorological Data, (M-GC) Multi-Generators with Generator
Chooser Network, and (Env) Environment Network.

Figure 4: Absolute error distribution of intensity (pressure
and wind) in 6 h TC prediction. Best viewed in color.

tivations for building the key module Env-Net. Otherwise,
the difficulty of forecasting different TCs is different. When
tackling the easy problem of linear prediction, shown in
HAGIBIS’s first image, MGTCF achieved results compara-
ble with MMSTN and provided an accurate and small poten-
tial region of prediction. In the difficult example of nonlinear
prediction, MGTCF provided a larger (when compared with
the easy samples) but reasonable potential region of predic-
tion. Because it is impossible for either the meteorological
experts or our method to predict the future of TC flawlessly,
all we need to do is to provide a reasonable and accurate pre-
diction conditioned on limited information as much as possi-
ble. Fortunately, our multi-generators with GC-Net can per-
form this task. Each generator of our method can obtain the
feature it wants from the history TC data and environmental
factors to make a prediction. This mechanism can make pre-
dictions that each generator thinks are reasonable and pre-
vent our method from predicting OOD samples. When fac-
ing a difficult example, each generator of MGTCF has its
own prediction tendency based on known information and
these prediction tendencies can constitute a more referential
and more robust forecasting region for meteorologists and
government officials. Therefore, the potential region of the
difficult example is bigger than the region of the easy ex-
ample. In addition, the performance of our method is much
better than that of the MMSTN in the difficult example. All
of this further proves the effectiveness of our method.

Analysis of Intensity Error Disruption. The intensity
predictions were also analyzed, and the results are shown
in Figure 4. Subplot (a) describes the relationship between
the absolute error of predicted wind and the wind recorded
in the CMA-BST. Subplot (b) demonstrates the relation-
ship between the absolute error of predicted pressure and

the pressure recorded in CMA-BST. The red curve repre-
sents a polynomial fitting curve from the relationship. We
found that the number of intensity errors increased with the
increase in TC intensity. This means that the mutability of
the intensity of a strong TC is a big challenge in the task of
TC prediction, and it needs to be focused on in the future.

Ablation Studies
We conducted ablative experiments to show the effective-
ness of our method. The results are shown in Table 2, includ-
ing the design for receiving heterogeneous meteorological
data (H), the Multi-Generators with GC-Net (M-GC), and
Env-Net (Env). First, it can be seen that the method without
H was outperformed by the method with H. This means that
the design for receiving heterogeneous meteorological data
in MGTCF is effective, showing an average improvement of
18.68% in trajectory prediction and 15.88% in intensity pre-
diction. Second, we prove the contribution of Env through
the comparison of the method with H and the method with
H and Env. The Env module provided 2.69% and 6.92% av-
erage improvement, respectively. Then, due to the stronger
learning ability of M-GC, the method with H and M-GC ob-
tained 5.17% and 13.02% average improvement in trajec-
tory and intensity prediction, respectively. M-GC provided
even more improvement in the 18 h and 24 h predictions,
with 7.79% and 14.02%, respectively. This means that M-
GC can prevent our model from predicting OOD tendencies
in order to improve the long-term (18 h and 24 h) predic-
tion of TC. Finally, the entire model with H, M-GC, and
Env, named MGTCF, achieved a significant improvement in
performance when compared with the method without any
of our contributions. In summary, the ablative experiments
proved that our design and the key modules are effective.

Conclusion
In this paper, we propose MGTCF for the efficient use of
heterogeneous meteorological data. We also focus on the
environment-related information that other deep learning
methods neglect by building a module, called Env-Net, to
extract rich environment features. In addition, we propose
a Multi-generator with Generator Chooser Net to resolve
some of the drawbacks of single-generator methods. Finally,
we conducted extensive experiments and analyzed how the
design of our model and its key modules works in TC pre-
diction. The experimental results proved that MGTCF would
be an effective method for predicting TCs.
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