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Abstract

We introduce a new setting, optimize-and-estimate structured
bandits. Here, a policy must select a batch of arms, each
characterized by its own context, that would allow it to both
maximize reward and maintain an accurate (ideally unbiased)
population estimate of the reward. This setting is inherent
to many public and private sector applications and often re-
quires handling delayed feedback, small data, and distribu-
tion shifts. We demonstrate its importance on real data from
the United States Internal Revenue Service (IRS). The IRS
performs yearly audits of the tax base. Two of its most im-
portant objectives are to identify suspected misreporting and
to estimate the “tax gap” — the global difference between
the amount paid and true amount owed. Based on a unique
collaboration with the IRS, we cast these two processes as a
unified optimize-and-estimate structured bandit. We analyze
optimize-and-estimate approaches to the IRS problem and pro-
pose a novel mechanism for unbiased population estimation
that achieves rewards comparable to baseline approaches. This
approach has the potential to improve audit efficacy, while
maintaining policy-relevant estimates of the tax gap. This has
important social consequences given that the current tax gap
is estimated at nearly half a trillion dollars. We suggest that
this problem setting is fertile ground for further research and
we highlight its interesting challenges. The results of this and
related research are currently being incorporated into the con-
tinual improvement of the IRS audit selection methods.

1 Introduction
Sequential decision-making algorithms, like bandit algo-
rithms and active learning, have been used across a num-
ber of domains: from ad targeting to clinical trial optimiza-
tion (Bouneffouf and Rish 2019). In the public sector, these
methods are not yet widely adopted, but could improve the
efficiency and quality of government services if deployed
with care. Henderson et al. (2021) provides a review of this
potential. Many administrative enforcement agencies in the
United States (U.S.) face the challenge of allocating scarce
resources for auditing regulatory non-compliance. But these
agencies must also balance additional constraints and objec-
tives simultaneously. In particular, they must maintain an
accurate estimate of population non-compliance to inform
policy-making. In this paper, we focus on the potential of
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unifying audit processes with these multiple objectives under
a sequential decision-making framework. We call our setting
optimize-and-estimate structured bandits. This framework is
useful in practical settings, challenging, and has the potential
to bring together methods from survey sampling, bandits, and
active learning. It poses an interesting and novel challenge
for the machine learning community and can benefit many
public and private sector applications (see more discussion
in Appendix C).1 It is critical to many U.S. federal agencies
that are bound by law to balance enforcement priorities with
population estimates of improper payments (Henderson et al.
2021; Office of Management and Budget 2018, 2021).

We highlight this framework with a case study of the Inter-
nal Revenue Service (IRS). The IRS selects taxpayers to audit
every year to detect under-reported tax liability. Improving
audit selection could yield 10:1 returns in revenue and help
fund socially beneficial programs (Sarin and Summers 2019).
But the agency must also provide an accurate assessment of
the tax gap (the projected amount of tax under-reporting if all
taxpayers were audited). Currently, the IRS accomplishes this
via two separate mechanisms: (1) a stratified random sample
to estimate the tax gap; (2) a focused risk-selected sample of
taxpayers to collect under-reported taxes. Based on a unique
multiyear collaboration with the IRS, we were provided with
full micro data access to masked audit data to research how
machine learning could improve audit selection. We investi-
gate whether these separate mechanisms and objectives can
be combined into one batched structured bandit algorithm,
which must both maximize reward and maintain accurate pop-
ulation estimates. Ideally, if information is reused, the system
can make strategic selections to balance the two objectives.
We benchmark several sampling approaches and examine the
trade-offs between them with the goal of understanding the
effects of using bandit algorithms in this high-impact setting.
We identify several interesting results and challenges using
historical taxpayer audit data in collaboration with the IRS.

First, we introduce a novel sampling mechanism called
Adaptive Bin Sampling (ABS) which guarantees an unbiased
population estimate by employing a Horvitz-Thompson (HT)
approach (Horvitz and Thompson 1952), but is comparable
to other methods for cumulative reward. Its unbiasedness
and comparable reward comes at the cost of additional vari-

1Appendices can be found at: https://arxiv.org/abs/2204.11910.
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ance, though the method provides fine-grained control of this
variance-reward trade-off.

Second, we compare this approach to ε-greedy and
optimism-based approaches, where a model-based popula-
tion estimate is used. We find that model-based approaches
are biased absent substantial reliance on ε, but low in vari-
ance. Surprisingly, we find that greedy approaches perform
well in terms of reward, reinforcing findings by Bietti, Agar-
wal, and Langford (2018) and Bastani, Bayati, and Khosravi
(2021). But we find the bias from population estimates in
the greedy regime to be substantial. These biases are greatly
reduced even with small amounts of random exploration, but
the lack of unbiasedness guarantees make them unacceptable
for many public policy settings.

Third, we show that more reward-optimal approaches tend
to sample high-income earners versus low-income earners.
And more reward-optimal approaches tend to audit fewer tax
returns that yield no change (a reward close to 0). This rein-
forces the importance of reducing the amount of unnecessary
exploration, which would place audit burdens on compli-
ant taxpayers. Appendix D details other ethical and societal
considerations taken into account with this work.

Fourth, we show that model errors are heteroskedastic,
resulting in more audits of high-income earners by optimism-
based methods, but not yielding greater rewards.2

We demonstrate that combining random and focused au-
dits into a single framework can more efficiently maximize
revenue while retaining accuracy for estimating the tax gap.
While additional research is needed in this new and challeng-
ing domain, this work demonstrates the promise of applying
a bandit-like approach to the IRS setting, and optimize-and-
estimate structured bandits more broadly. The results of this
and related research are currently being incorporated into the
continual improvement of the IRS audit selection methods.

2 Background
Related Work. The bandit literature is large. To fully engage
with it, we provide an extended literature review in Appendix
E , but we mention several strands of related research here.
The fact that adaptively collected data leads to biased estima-
tion (whether model-based or not) is well-known. See, e.g.,
Nie et al. (2018); Xu, Qin, and Liu (2013); Shin, Ramdas, and
Rinaldo (2021). A number of works have sought to develop
sampling strategies that combat bias. See, e.g. Dimakopoulou
et al. (2017). This work has been in the multi-armed bandit
(MAB) or (mostly linear) contextual bandit settings. In the
MAB setting, there has also been some work which explicitly
considers the trade-off between reward and model-error. See,
e.g, Liu et al. (2014); Erraqabi et al. (2017). In Appendix E
we provide a comparison against our setting, but crucially
we have volatile arms which make our setting different and
closer to the linear stochastic bandit work (a form of struc-
tured bandit) (Abbasi-Yadkori, Pál, and Szepesvári 2011;
Joseph et al. 2018). However, we require non-linearity and
batched selection, as well as adding the novel estimation ob-
jective to this structured bandit setting. To our knowledge,

2We note that it is possible that these stem from measurement
limitations in the high income space (Guyton et al. 2021).

ours is the first formulation which actively incorporates bias
and variance of population estimates into a batched structured
bandit problem formulation. Moreover, our focus is to study
this problem in a real-world public sector domain, taking on
the challenges proposed by Wagstaff (2012). No work we are
aware of has analyzed the IRS setting in this way.

Institutional Background. The IRS maintains two dis-
tinct categories of audit processes. National Research Pro-
gram (NRP) audits enable population estimation of non-
compliance while Operational (Op) audits are aimed at col-
lecting taxes from non-compliant returns. The NRP is a core
measurement program for the IRS to regularly evaluate tax
non-compliance (Government Accountability Office 2002,
2003). The NRP randomly selects, via a stratified random
sample, ∼15k tax returns each year for research audits (Inter-
nal Revenue Service 2019), although this has been decreasing
in recent years and there is pressure to reduce it further (Marr
and Murray 2016; Congressional Budget Office 2020). These
audits are used to identify new areas of noncompliance, es-
timate the overall tax gap, and estimate improper payments
of certain tax credits. Given a recent gross tax gap estimate
of $441 billion (Internal Revenue Service 2019), even minor
increases in efficiency can yield large returns. In addition to
its use for tax gap estimation, NRP serves as a training set
for certain Op audit programs like the Discriminant Func-
tion (DIF) System (Internal Revenue Service 2022), which
is based on a modified Linear Discriminant Analysis (LDA)
model (Lowe 1976). DIF also incorporates other measures
and policy objectives that we do not consider here. We instead
focus on the stylized setting of only population estimation
and reward maximization. Tax returns that have a high likeli-
hood of a significant adjustment, as calculated by DIF, have
a higher probability of being selected for Op audits.

It is important to highlight that Op data is not used for
estimating the DIF risk model and is not used for estimating
the tax gap (specifically, the individual income misreporting
component of the tax gap). Though NRP audits are jointly
used for population estimates of non-compliance and risk
model training, the original sampling design was not opti-
mized for both revenue maximization and estimator accuracy
for tax non-compliance. Random audits have been criticized
for burdening compliant taxpayers and for failing to target
areas of known non-compliance (Lawsky 2008). The cur-
rent process already somewhat represents informal sequential
decision-making system. NRP strata are informed by the Op
distribution, and are adjusted year-to-year. We posit that by
formalizing the current IRS system in the form of a sequential
decision-making problem, we can incorporate more methods
to improve its efficiency, accuracy, and fairness.

Data. The data used throughout this work is from the
NRP’s random sample (Andreoni, Erard, and Feinstein 1998;
Johns and Slemrod 2010; Internal Revenue Service 2016,
2019), which we will treat as the full population of audits,
since they are collected via a stratified random sample and
represent the full population of taxpayers. The NRP sample
is formed by dividing the taxpayer base into activity classes
based on income and claimed tax credits, and various strata
within each class. Each stratum is weighted to be representa-
tive of the national population of tax filers. Then a stratified
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random sample is taken across the classes. NRP audits seek
to estimate the correctness of the whole return via a close to
line-by-line examination (Belnap et al. 2020). This differs
from Op audits, which are narrower in scope and focus on
specific issues. Given the expensive nature of NRP audits,
NRP sample sizes are relatively small (∼15k/year) (Guyton
et al. 2018). The IRS uses these audits to estimate the tax gap
and average non-compliance.3 Legal requirements for these
estimates exist (Taxpayer Advocate Service 2018). The 2018
Office of Management and Budget (OMB) guidelines, for
instance, state that these values should be “statistically valid”
(unbiased estimates of the mean) and have “±3% or better
margin of error at the 95% confidence level for the improper
payment percentage estimate” (Office of Management and
Budget 2018). Later OMB guidelines have provided more
discretion to programs for developing feasible point estimates
and confidence intervals (CIs) (Office of Management and
Budget 2021). Unbiasedness remains an IRS policy priority.

Our NRP stratified random audit sample covers from 2006
to 2014. We use 500 covariates as inputs to the model which
are a superset of those currently used for fitting the DIF model.
The covariates we use include every value reported by a
taxpayer on a tax return. For example, the amount reported in
Box 9 of Form 1040 is Total income and would be included in
these covariates. Table 5 , in the Appendix, provides summary
statistics of the NRP research audits conducted on a yearly
basis. Since NRP audits are stratified, the unweighted means
represent the average adjustment made by the IRS to that
year’s return for all audited taxpayers in the sample. The
weighted mean takes into account stratification weights for
each sample. One can think of the weighted mean as the
average taxpayer misreporting across all taxpayers in the
United States, while the unweighted mean is the average
taxpayer misreporting in the NRP sample.

Problem Formulation. We formulate the optimize-and-
estimate structured bandit problem setting in the scenario
where there is an extremely large, but finite, number (Nt) of
arms (a ∈ At) to select from at every round. This set of arms
is the population at timestep t. The population can vary such
that the set of available arms may be totally different at every
step, similar to a sleeping or volatile bandit (Nika, Elahi,
and Tekin 2021). In fact, it may not be possible to monitor
any given arm over several timesteps.4 To make the problem
tractable, it is assumed that the reward for a given arm can be
modeled by a shared function rat = fθ∗(X

a
t ) where Xa

t are
some set of features associated with arm a at timestep t, and
θ∗ are the parameters of the true reward function. Assume
f ∈ F is any realizable or ε-realizable function. Thus, as is
typical of the structured bandit setting “choosing one action
allows you to gain information about the rewards of other
actions” (Lattimore and Szepesvári 2020, p. 301). The agent

3The IRS uses statistical adjustments to compensate naturally
occurring variation in the depth of audit, and taxpayer misreporting
that is difficult to find via auditing, and other NRP sampling limi-
tations (Guyton et al. 2020; Internal Revenue Service 2019; Erard
and Feinstein 2011). For the goals of this work we ignore these.

4Note the reason we make this assumption is because the NRP
data does not track a cohort of taxpayers, but rather randomly sam-
ples. We are not guaranteed to ever see a taxpayer twice.

chooses a batch of Kt arms to: (1) maximize reward; (2)
yield an accurate and unbiased estimate of the average reward
across all arms – even those that have not been chosen (the
population reward). Thus we seek to optimize a selection
algorithm that chooses non-overlapping actions (â1, ..., âK)
according to a selection policy ($) and outputs a population
estimate (µ̂κ) according to an estimation algorithm (κ):

min
$,κ

ED

[
T∑
t=1

K∑
k=1

r∗(a∗k)− r∗(âk)
]

+ VD,$(µ∗(t)− µ̂κ(t))

(1)

s.t. |µ̂κ(t)− µ∗(t)| → N (0, σ) as K → N, (2)

where D is the underlying distribution from which all tax-
payers are pulled. In our IRS setting each arm (at) represents
a taxpayer which the policy could select for a given year (t).
The associated features (Xa

t ) are the 500 covariates in our
data for the tax return. The reward (rat ) is the adjustment
recorded after the audit. The population average reward that
the agent seeks to accurately model is the average adjustment
(summing together would instead provide the tax gap).

3 Methods
We focus on three methods: (1) ε-greedy; (2) optimism-based
approaches; (3) ABS sampling (see Appendix F for reasoning
and method selection criteria).
ε-greedy. Here we choose to sample randomly with proba-

bility ε. Otherwise, we select the observation with the highest
predicted reward according to a fitted model fθ̂(X

a
t ), where θ̂

indicates fitted model parameters. To batch sample, we repeat
this process K times. The underlying model is then trained
on the received observation-reward pairs, and we repeat. For
population estimation, we use a model-based approach (see,
e.g., Esteban et al. 2019). After the model receives the true
rewards from the sampled arms, the population estimate is
predicted as: µ̂(t) = 1∑

a wa

∑
a∈At

wafθ̂(X
a
t ), where wa is

the NRP sample weight5 from the population distribution.
Optimism. We refer readers to Lattimore and Szepesvári

(2020) for a general introduction to Upper Confidence Bound
(UCB) and optimism-based methods. We import an optimism-
based approach into this setting as follows. Consider a ran-
dom forest with B trees T1, T2, . . . , TB . We form an op-
timistic estimate of the reward for each arm according to:
ρ̂at = 1

B

∑
b Tb(X

a
t )+ZVarb(Tb(Xa

t )), where Z is an explo-
ration parameter based on the variance of the tree-based pre-
dictions, similar to Hutter, Hoos, and Leyton-Brown (2011).
We select the K returns with the largest optimistic reward
estimates. We shorthand this approach as UCB and use the
same model-based population estimation method as ε-greedy.

ABS Sampling. Adaptive Bin Sampling brings together
sampling and bandit literatures to guarantee statistically un-
biased population estimates, while enabling an explicit trade-
off between reward and the variance of the estimate. In

5The returns in each NRP strata can be weighted by the NRP
sample weights to make the sample representative of the overall pop-
ulation, acting as inverse propensity weights. We use NRP weights
for population estimation. See Appendix K.
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Figure 1: Illustration of ABS on 50 synthetic observations. (a) Hypothetical risk distribution and three parameterizations
corresponding to different values of α: 0.1, 1, and 5. Greedy selection, represented by the dotted (gray) line in each panel would
choose the K = 10 returns with the highest risk. The parameterized risk distributions are clustered into three strata (S1, S2, S3),
represented by the colored panels. As α varies, the cluster assignments change. (b) Probabilities of sampling a single individual
from the three strata. As α increases, more weight is put onto the higher risk returns (Stratum 3).

essence, ABS performs adjustable risk-proportional random
sampling over optimized population strata. By maintaining
probabilistic sampling, ABS can employ HT estimation to
achieve an unbiased measurement of the population.

Pseudocode is given in Algorithm 1. Fix timestep t and let
K be our budget. Let r̂a = fθ̂(X

a
t ) be the predicted risk for

return Xa
t . First we sample the top ζ returns. To make the

remaining K − ζ selections, we parameterize the predictions
with a mixing function ρ̂a intended to smoothly transition
focus between the reward and variance objectives, but whose
only requirement is that it be monotone (rank-preserving).
For our empirical exploration we examine two such mixing
functions, a logistic function, ρ̂a = 1

1+exp(−α(r̂a−κ)) and
an exponential function ρ̂a = exp(αr̂a). κ is the value of
the K-th largest value amongst reward predictions {r̂at }. As
α decreases, {ρ̂at } approaches a uniform distribution which
results in lower variance for µ̂(t) but lower reward. As α
increases, the variance of µ̂(t) increases but so too does the
reward. Figure 1 provides a visualization of this.

The distribution of transformed predictions {ρ̂a} is then
stratified into H non-intersecting strata S1, . . . , SH . We
choose strata in order to minimize intra-cluster variance, such
that there are at least K − ζ points per bin:

min
S1,...,SH : |Sh|≥K−ζ

∑
h

∑
ρ̂∈Sh

‖ρ̂− λh‖2, (3)

where λh = |Sh|−1
∑
ρ̂∈Sh

ρ̂ is the average value of the
points in bin b. We place a distribution (πh) over the bins by
averaging the risk in each bin:

πh =
λh∑
h′ λh′

. (4)

To make our selection, we sample K − ζ times from
(πh, . . . , πH) to obtain a bin, and then we sample uniformly
within that bin to choose the return. We do not recalculate
(π1, . . . , πH) after each selection, so while we are sampling
without replacement at the level of returns (we cannot audit
the same taxpayer twice), we are sampling with replacement
at the level of bins. The major benefit of ABS is that by

Algorithm 1: ABS (Logistic)

Input: α, H , ζ, K, (X0, r0)
Train model fθ̂ on initial data (X0, r0).
for t = 1, . . . , T do

Receive observations Xt

Predict rewards r̂a = fθ̂(xa).
Sample top ζ predictions.
∀a ρ̂a ← (1 + exp(−α(r̂a − κ))−1
Construct strata S1, . . . , SH by solving (3).
Form distribution {πh} over strata via (4).
repeat
h ∼ (π1, . . . , πH)
Sample arm uniformly at random from Sh.

until K − ζ samples drawn
Compute µ̂HT once true rewards are collected.
Retrain model f̂ on (∪tiXi,∪tiri).

end for

sampling according to the distribution π, we can employ HT
estimation to eliminate bias. Indeed, if K is the set of arms
sampled during an epoch, µ̂HT (t) = 1∑

a wa

∑
a∈K

wara
pa

is
an unbiased estimate of the true population, where pa is the
probability that arm a was selected (i.e., Pr(a ∈ K)) and wa
is the NRP weight. Like with other HT-based methods (Pot-
ter 1990; Alexander, Dahl, and Weidman 1997), to reduce
variance we also add an option for a minimum probability of
sampling a bin, which we call the trim %. See Appendix N
for more details, proof of unbiased estimation, and estimator
variance. See Appendix U for regret bounds.

Reward Structure Models. As the data is highly non-
linear and high-dimensional, we use Random Forest Regres-
sion (RFR) for our reward model. We exclude linear models
from our suite of algorithms after verifying that they consis-
tently underperform RFR (Appendix M). We do not include
neural networks in this analysis as the data regime is too small.
Future approaches might build on this work using pretrain-
ing methods suited for a few-shot context (Bommasani et al.
2021). We do compare to an LDA baseline (Appendix T.3).
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This is included both as context to our broad modeling deci-
sions, and as an imperfect stylized proxy for one component
of the current risk-based selection approach used by the IRS.

4 Evaluation Protocol
We evaluate according to three metrics: cumulative reward,
percent difference of the population estimate, and the no-
change rate. More details in Appendix L.

Cumulative reward (R) is simply the total reward of
all arms selected by the agent across the entire time se-
ries E

[(∑T
t

∑K
k rak

)]
. It represents the total amount of

under-reported tax revenue returned to the government after
auditing. This is averaged across seeds and denoted as R.

Percent difference (µPE , σPE) is the difference between
the estimated population average and the true population
average: 100%∗ (µ̂−µ∗)/µ∗. µPE is absolute mean percent
difference across seeds (bias). σPE is the standard deviation
of the percent difference across random seeds.

No-change rate (µNR) is the percent of arms that
yield no reward where we round down such that
any reward <$200 is considered no change µNR =

E
[(

(1/T )
∑T
t (1/K)

∑K
k 1{rak < 200)}

])
. NR is of

some importance. An audit that results in no adjustment can
be perceived as unfair, because the taxpayer did not commit
any wrongdoing (Lawsky 2008). It can have adverse effects
on future compliance (Beer et al. 2015; Lederman 2018).
µNR is the average NR across seeds.

Experimental Protocol. Our evaluation protocol for all
experiments follows the same pattern. For a given year we
offer 80% of the NRP sample as arms for the agent to select
from. We repeat this process across 20 distinct random seeds
such that there are 20 unique subsampled datasets that are
shared across all methods, creating a sub-sampled bootstrap
for Confidence Intervals (more in Appendix S). Comparing
methods seed-to-seed will be the same as comparing two
methods on the same dataset. Each year, the agent has a
budget of 600 arms to select from the population of 10k+
arms (description of budget selection in Appendix R). We
delay the delivery of rewards for one year. This is because the
majority of audits are completed and returned only after such
a delay (DeBacker et al. 2018). Thus, the algorithm in year
2008 will only make decisions with the information from
2006. Because of this delay the first two years are randomly
sampled for the entire budget (i.e., there is a warm start).
After receiving rewards for a given year, the agent must
then provide a population estimate of the overall population
average for the reward (i.e., the average tax adjustment after
audit). This process repeats until 2014, the final year available
in our NRP dataset (diagram in Appendix O).

5 Results
We highlight several key findings with additional results and
sensitivity analyses in Appendix T.

Unbiased population estimates are possible with little
impact to reward. ABS sampling can achieve similar returns
to the best performing methods in terms of audit selection,
while yielding an unbiased population estimate (see Table 1).

Best Reward Settings
Policy R µPE σPE µNR

Unbiased

ABS-1 $41.5M∗ 0.4 X 31.0 37.6%
ε-only $41.3M∗ 4.3X 37.4 38.3%
ABS-2 $40.5M∗ 0.6X 24.5 38.3%
Random $12.7M 1.5X 14.7 53.1%

Biased

Greedy $43.6M∗ 16.4 7 8.8 36.5%
UCB-1 $42.4M∗ 15.3 7 9.4 38.6%
ε-Greedy $41.3M∗ 6.1 7 7.5 38.3%
UCB-2 $40.7M∗ 15.6 7 10.21 40.7%

Table 1: Best settings with overlapping CIs (∗) on R. R is
a cumulative reward. µPE is the average percent difference
of the population estimate across seeds. σPE is the standard
deviation of the percent difference across seeds. µNR is the
no change rate. Extended table with hyperparameters for all
displayed methods is in Appendix T, selection method in
Appendix P. Biased methods with no guarantees are highly
undesirable (7). ε-only is the same as ε-Greedy, but popula-
tion estimation uses only the ε sample as a random sample.
Random is where the full, 600 arm, sample is random.

Conversely, greedy, ε-greedy, and UCB approaches – which
use a model-based population estimation method – do not
achieve unbiased population estimates. Others have noted
that adaptively collected data can lead to biased models (Nie
et al. 2018; Neel and Roth 2018). In many public sector set-
tings provably unbiased methods like ABS are required. For
ε-greedy, using the ε-sample only would also achieve an un-
biased estimate, yet due to its small sample size the variance
is prohibitively high. ABS reduces variance by 16% over the
best ε-only method, yielding even better reward. Trading off
$1M over 9 years improves variance over ε-Greedy (ε-only)
by 35%. It is possible to reduce this variance even further at
the cost of some more reward (see Figure 2). Note, due to
an extremely small sample size, though the ε sample is unbi-
ased in theory, we see some minor bias in practice. Model-
based estimates are significantly lower variance, but biased.
This may be because models re-use information across years,
whereas ABS does not. Future research could re-use infor-
mation in ABS to reduce variance, perhaps with a model’s
assistance. Nonetheless, we emphasize that model-based esti-
mates without unbiasedness guarantees are unacceptable for
many public sector uses from a policy perspective.

ABS allows fine-grained control over variance-reward
trade-off. We sample a grid of hyperparameters for ABS
(see Appendix P). Figure 2 shows that more hyperparame-
ter settings close to optimal rewards have higher variance in
population estimates. We can control this variance with the
trimming mechanism. This ensures that each bin of the risk
distribution will be sampled some minimum amount. Figure 2
also shows that when we add trimming, we can retain large
rewards and unbiased population estimates. Top configura-
tions (Table 1) can keep variance down to only 1.7x that of a
random sample, while yielding 3.2x reward. While ε-greedy
with the random sample only does surprisingly well, optimal
ABS configurations have a better Pareto front. We can fit a
function to this Pareto front and estimate the marginal value
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Figure 2: (Top Left) Population estimation empirical standard deviation versus reward for a grid of ABS hyperparameters. Red
x’s and associated labels indicate ε-only and fully random sample. (Top Right) Population estimation variance as a function of
the trim. (Bottom) A kernel density plot of the distribution of sampled arms from 2006 (top left) to 2014 (bottom). X-axis is true
reward. Y-axis is sampling distribution density.

of the reward-variance trade-off (see Appendix T.2).

Greedy is not all you need. Greedy surprisingly achieves
more optimal reward compared to all other methods (see Ta-
ble 1). This aligns with prior work suggesting that a purely
greedy approach in contextual bandits might be enough to
induce sufficient exploration under highly varied contexts (Bi-
etti, Agarwal, and Langford 2018; Kannan et al. 2018; Bas-
tani, Bayati, and Khosravi 2021). Here, there are several
intrinsic sources of exploration that may cause this result:
intrinsic model error, covariate drift (see Appendix Table 5),
differences in tax filing compositions, and the fact that our
population of arms already come from a stratified random
sample (changing in composition year-to-year).

Figure 2 (bottom) demonstrates greedy sampling’s im-
plicit exploration for one random seed. As the years progress,
greedy is (correctly) more biased toward sampling arms with
high rewards. Nonetheless, it yields a large number of arms
that are the same as a random sample would yield. This
inherent exploration backs the hypothesis that the test sam-
ple is highly stochastic, leading to implicit exploration. It
is worth emphasizing that in a larger population and with a
larger budget, greedy’s exploration may not be sufficient and
more explicit exploration may be needed. The key difference
from our result and prior work showing greedy’s surprising
performance (Bietti, Agarwal, and Langford 2018; Kannan
et al. 2018; Bastani, Bayati, and Khosravi 2021) is our addi-
tional population estimation objective. The greedy policy has
a significant bias when it comes to model-based population
estimation. This bias is similar – but not identical – to the bias
reported in other adaptive data settings (Thrun and Schwartz

1993; Nie et al. 2018; Shin, Ramdas, and Rinaldo 2021; Far-
quhar, Gal, and Rainforth 2021). Even a 10% random sample
– significantly underpowered for typical sampling-based esti-
mation – can reduce this bias by more than 2.5× (see Table 1).
Even if greedy can be optimal for a high-variance contextual
bandit, it is not optimal for the optimize-and-estimate setting.
ε-greedy achieves a compromise between variance that may
be more acceptable in settings when some bias is permitted,
but bias is not desirable in most public sector settings. We
also show that RFR regressors significantly outperform LDA
and that incorporating non-random data helps (Appendix T.3).
This is a stylized proxy of the status quo system that uses a
small ε-only sample (NRP) for population estimates and an
LDA-like algorithm (DIF) for selection.

A more focused approach audits higher cumulative to-
tal positive income. A key motivator for our work is that
inefficiently-allocated randomness in audit selection will not
only be suboptimal for the government, but could impose
unnecessary burdens on taxpayers (Lawsky 2008; Davis-
Nozemack 2012). An issue that has received increasing at-
tention by policymakers and commentators in recent years
concerns the fair allocation of audits by income (Kiel 2019;
Internal Revenue Service 2021; Treasury 2021). Although
we do not take a normative position on the precise contours
of a fair distribution of audits, we examine how alternative
models shape the income distribution of audited taxpayers.

As shown in Figure 3, we find that as methods become
more optimal we see an increase in the total positive income
(TPI) of the individuals selected for audit (RF Greedy selects
between $1.8M and $9.4M more cumulative TPI than LDA
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Figure 3: (Top) The distribution of audit classes for several approaches. Markers follow the same order as the legend from left to
right. EITC Stands for “Earned Income Tax Credit” and “TPI” for Total Positive Income. (Bottom Left) Distribution of TPI for
ABS hyperparameter settings. (Bottom Right) Distribution of TPI for various methods.

Greedy, effect size 95% CI matched by seed). We also show
the distribution of ABS hyperparameter settings we sampled.
As the settings are more likely to increase reward and de-
crease no change rates, the cumulative TPI increases. This
indicates that taxpayers with lower TPI are less likely to be
audited as models are more likely to sample in the higher
range of the risk distribution. We confirm this in Figure 3
(top) which shows the distribution of activity classes sampled
by different approaches. These classes are used as strata in
the NRP sample. The UCB and RF Greedy approaches are
more likely to audit taxpayers with more than $1M in TPI
(with UCB sampling this class significantly more, likely due
to heteroskedasticity). More optimal approaches also signif-
icantly sample those with <$200K in TPI, but more than
$200K reported on their Schedule C or F tax return forms
(used to report business and farm income, respectively).

Errors are heteroskedastic, causing difficulties in us-
ing model-based optimism methods. Surprisingly, our
optimism-based approach audits tax returns with higher TPI
more often ($1.2M to $5.8M million cumulative TPI more
than RF Greedy) despite yielding similar returns as the greedy
approach. We believe this is because adjustments and model
errors are heteroskedastic. Though TPI is correlated with
the adjustment amount (Pearson r = 0.49, p < 10−5), all
errors across model fits were heteroskedastic according to a
Breusch–Pagan test (p < 10−5). A potential source of large
uncertainty estimates in the high income range could be be-
cause: (1) there are fewer datapoints in that part of the feature
space; (2) NRP audits may not give an accurate picture of
misreporting at the higher part of the income space, resulting
in larger variance and uncertainty (Guyton et al. 2021); or (3)
additional features are needed to improve precision in part of

the state space. This makes it difficult to use some optimism-
based approaches since there is a confound between aleatoric
and epistemic uncertainty. As a result, optimism-based ap-
proaches audit higher income individuals more often, but do
not necessarily achieve higher returns. This poses another
interesting challenge for future research.

6 Discussion
We have introduced the optimize-and-estimate structured ban-
dit setting. The setting is motivated by common features of
public sector applications (e.g., multiple objectives, batched
selection), where there is wide applicability of sequential
decision making, but, to date, limited understanding of the
unique methodological challenges. We empirically investi-
gate the use of structured bandits in the IRS setting and
show that ABS conforms to IRS specifications (unbiased
estimation) and enables parties to explicitly trade off pop-
ulation estimation variance and reward maximization. This
framework could help address longstanding concerns in the
real-world setting of IRS detection of tax evasion. It could
shift audits toward tax returns with larger understatements
(correlating with more total positive income) and recover
more revenue than the status quo, while maintaining an unbi-
ased population estimate. Though there are other real-world
objectives to consider, such as the effect of audit policies on
tax evasion, our results suggest that unifying audit selection
with estimation may help ensure that processes are as fair,
optimal, and robust as possible. We hope that the methods we
describe here are a starting point for both additional research
into sequential decision-making in public policy and new
research into optimize-and-estimate structured bandits.

5093



Acknowledgements
We would like to thank Emily Black, Jason DeBacker, Hadi
Elzayn, Tom Hertz, Andrew Johns, Dan Jurafsky, Mansheej
Paul, Ahmad Qadri, Evelyn Smith, and Ben Swartz for help-
ful discussions. This work was supported by the Hoffman
Yee program at Stanford’s Institute for Human-Centered Ar-
tificial Intelligence and Arnold Ventures. PH is supported by
the Open Philanthropy AI Fellowship. This work was con-
ducted while BA was at Stanford University. The findings,
interpretations, and conclusions expressed in this paper are
entirely those of the authors and do not necessarily reflect the
views or the official positions of the U.S. Department of the
Treasury or the Internal Revenue Service. Any taxpayer data
used in this research was kept in a secured Treasury or IRS
data repository, and all results have been reviewed to ensure
no confidential information is disclosed.

References
Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
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